xref: /openbmc/linux/arch/mips/kernel/pm-cps.c (revision 4f6cce39)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
15 
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/idle.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mipsmtregs.h>
23 #include <asm/pm.h>
24 #include <asm/pm-cps.h>
25 #include <asm/smp-cps.h>
26 #include <asm/uasm.h>
27 
28 /*
29  * cps_nc_entry_fn - type of a generated non-coherent state entry function
30  * @online: the count of online coupled VPEs
31  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
32  *
33  * The code entering & exiting non-coherent states is generated at runtime
34  * using uasm, in order to ensure that the compiler cannot insert a stray
35  * memory access at an unfortunate time and to allow the generation of optimal
36  * core-specific code particularly for cache routines. If coupled_coherence
37  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
38  * returns the number of VPEs that were in the wait state at the point this
39  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
40  * the entry function for CPS_PM_NC_WAIT.
41  */
42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
43 
44 /*
45  * The entry point of the generated non-coherent idle state entry/exit
46  * functions. Actually per-core rather than per-CPU.
47  */
48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
49 				  nc_asm_enter);
50 
51 /* Bitmap indicating which states are supported by the system */
52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
53 
54 /*
55  * Indicates the number of coupled VPEs ready to operate in a non-coherent
56  * state. Actually per-core rather than per-CPU.
57  */
58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
59 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
60 
61 /* Indicates online CPUs coupled with the current CPU */
62 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
63 
64 /*
65  * Used to synchronize entry to deep idle states. Actually per-core rather
66  * than per-CPU.
67  */
68 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
69 
70 /* Saved CPU state across the CPS_PM_POWER_GATED state */
71 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
72 
73 /* A somewhat arbitrary number of labels & relocs for uasm */
74 static struct uasm_label labels[32];
75 static struct uasm_reloc relocs[32];
76 
77 enum mips_reg {
78 	zero, at, v0, v1, a0, a1, a2, a3,
79 	t0, t1, t2, t3, t4, t5, t6, t7,
80 	s0, s1, s2, s3, s4, s5, s6, s7,
81 	t8, t9, k0, k1, gp, sp, fp, ra,
82 };
83 
84 bool cps_pm_support_state(enum cps_pm_state state)
85 {
86 	return test_bit(state, state_support);
87 }
88 
89 static void coupled_barrier(atomic_t *a, unsigned online)
90 {
91 	/*
92 	 * This function is effectively the same as
93 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
94 	 * there's no cpuidle device.
95 	 */
96 
97 	if (!coupled_coherence)
98 		return;
99 
100 	smp_mb__before_atomic();
101 	atomic_inc(a);
102 
103 	while (atomic_read(a) < online)
104 		cpu_relax();
105 
106 	if (atomic_inc_return(a) == online * 2) {
107 		atomic_set(a, 0);
108 		return;
109 	}
110 
111 	while (atomic_read(a) > online)
112 		cpu_relax();
113 }
114 
115 int cps_pm_enter_state(enum cps_pm_state state)
116 {
117 	unsigned cpu = smp_processor_id();
118 	unsigned core = current_cpu_data.core;
119 	unsigned online, left;
120 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
121 	u32 *core_ready_count, *nc_core_ready_count;
122 	void *nc_addr;
123 	cps_nc_entry_fn entry;
124 	struct core_boot_config *core_cfg;
125 	struct vpe_boot_config *vpe_cfg;
126 
127 	/* Check that there is an entry function for this state */
128 	entry = per_cpu(nc_asm_enter, core)[state];
129 	if (!entry)
130 		return -EINVAL;
131 
132 	/* Calculate which coupled CPUs (VPEs) are online */
133 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
134 	if (cpu_online(cpu)) {
135 		cpumask_and(coupled_mask, cpu_online_mask,
136 			    &cpu_sibling_map[cpu]);
137 		online = cpumask_weight(coupled_mask);
138 		cpumask_clear_cpu(cpu, coupled_mask);
139 	} else
140 #endif
141 	{
142 		cpumask_clear(coupled_mask);
143 		online = 1;
144 	}
145 
146 	/* Setup the VPE to run mips_cps_pm_restore when started again */
147 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
148 		/* Power gating relies upon CPS SMP */
149 		if (!mips_cps_smp_in_use())
150 			return -EINVAL;
151 
152 		core_cfg = &mips_cps_core_bootcfg[core];
153 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
154 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
155 		vpe_cfg->gp = (unsigned long)current_thread_info();
156 		vpe_cfg->sp = 0;
157 	}
158 
159 	/* Indicate that this CPU might not be coherent */
160 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
161 	smp_mb__after_atomic();
162 
163 	/* Create a non-coherent mapping of the core ready_count */
164 	core_ready_count = per_cpu(ready_count, core);
165 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
166 				   (unsigned long)core_ready_count);
167 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
168 	nc_core_ready_count = nc_addr;
169 
170 	/* Ensure ready_count is zero-initialised before the assembly runs */
171 	ACCESS_ONCE(*nc_core_ready_count) = 0;
172 	coupled_barrier(&per_cpu(pm_barrier, core), online);
173 
174 	/* Run the generated entry code */
175 	left = entry(online, nc_core_ready_count);
176 
177 	/* Remove the non-coherent mapping of ready_count */
178 	kunmap_noncoherent();
179 
180 	/* Indicate that this CPU is definitely coherent */
181 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
182 
183 	/*
184 	 * If this VPE is the first to leave the non-coherent wait state then
185 	 * it needs to wake up any coupled VPEs still running their wait
186 	 * instruction so that they return to cpuidle, which can then complete
187 	 * coordination between the coupled VPEs & provide the governor with
188 	 * a chance to reflect on the length of time the VPEs were in the
189 	 * idle state.
190 	 */
191 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
192 		arch_send_call_function_ipi_mask(coupled_mask);
193 
194 	return 0;
195 }
196 
197 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
198 				  struct uasm_reloc **pr,
199 				  const struct cache_desc *cache,
200 				  unsigned op, int lbl)
201 {
202 	unsigned cache_size = cache->ways << cache->waybit;
203 	unsigned i;
204 	const unsigned unroll_lines = 32;
205 
206 	/* If the cache isn't present this function has it easy */
207 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
208 		return;
209 
210 	/* Load base address */
211 	UASM_i_LA(pp, t0, (long)CKSEG0);
212 
213 	/* Calculate end address */
214 	if (cache_size < 0x8000)
215 		uasm_i_addiu(pp, t1, t0, cache_size);
216 	else
217 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
218 
219 	/* Start of cache op loop */
220 	uasm_build_label(pl, *pp, lbl);
221 
222 	/* Generate the cache ops */
223 	for (i = 0; i < unroll_lines; i++) {
224 		if (cpu_has_mips_r6) {
225 			uasm_i_cache(pp, op, 0, t0);
226 			uasm_i_addiu(pp, t0, t0, cache->linesz);
227 		} else {
228 			uasm_i_cache(pp, op, i * cache->linesz, t0);
229 		}
230 	}
231 
232 	if (!cpu_has_mips_r6)
233 		/* Update the base address */
234 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
235 
236 	/* Loop if we haven't reached the end address yet */
237 	uasm_il_bne(pp, pr, t0, t1, lbl);
238 	uasm_i_nop(pp);
239 }
240 
241 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
242 			     struct uasm_reloc **pr,
243 			     const struct cpuinfo_mips *cpu_info,
244 			     int lbl)
245 {
246 	unsigned i, fsb_size = 8;
247 	unsigned num_loads = (fsb_size * 3) / 2;
248 	unsigned line_stride = 2;
249 	unsigned line_size = cpu_info->dcache.linesz;
250 	unsigned perf_counter, perf_event;
251 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
252 
253 	/*
254 	 * Determine whether this CPU requires an FSB flush, and if so which
255 	 * performance counter/event reflect stalls due to a full FSB.
256 	 */
257 	switch (__get_cpu_type(cpu_info->cputype)) {
258 	case CPU_INTERAPTIV:
259 		perf_counter = 1;
260 		perf_event = 51;
261 		break;
262 
263 	case CPU_PROAPTIV:
264 		/* Newer proAptiv cores don't require this workaround */
265 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
266 			return 0;
267 
268 		/* On older ones it's unavailable */
269 		return -1;
270 
271 	default:
272 		/* Assume that the CPU does not need this workaround */
273 		return 0;
274 	}
275 
276 	/*
277 	 * Ensure that the fill/store buffer (FSB) is not holding the results
278 	 * of a prefetch, since if it is then the CPC sequencer may become
279 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
280 	 */
281 
282 	/* Preserve perf counter setup */
283 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
284 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
285 
286 	/* Setup perf counter to count FSB full pipeline stalls */
287 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
288 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
289 	uasm_i_ehb(pp);
290 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
291 	uasm_i_ehb(pp);
292 
293 	/* Base address for loads */
294 	UASM_i_LA(pp, t0, (long)CKSEG0);
295 
296 	/* Start of clear loop */
297 	uasm_build_label(pl, *pp, lbl);
298 
299 	/* Perform some loads to fill the FSB */
300 	for (i = 0; i < num_loads; i++)
301 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
302 
303 	/*
304 	 * Invalidate the new D-cache entries so that the cache will need
305 	 * refilling (via the FSB) if the loop is executed again.
306 	 */
307 	for (i = 0; i < num_loads; i++) {
308 		uasm_i_cache(pp, Hit_Invalidate_D,
309 			     i * line_size * line_stride, t0);
310 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
311 			     i * line_size * line_stride, t0);
312 	}
313 
314 	/* Barrier ensuring previous cache invalidates are complete */
315 	uasm_i_sync(pp, STYPE_SYNC);
316 	uasm_i_ehb(pp);
317 
318 	/* Check whether the pipeline stalled due to the FSB being full */
319 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
320 
321 	/* Loop if it didn't */
322 	uasm_il_beqz(pp, pr, t1, lbl);
323 	uasm_i_nop(pp);
324 
325 	/* Restore perf counter 1. The count may well now be wrong... */
326 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
327 	uasm_i_ehb(pp);
328 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
329 	uasm_i_ehb(pp);
330 
331 	return 0;
332 }
333 
334 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
335 				struct uasm_reloc **pr,
336 				unsigned r_addr, int lbl)
337 {
338 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
339 	uasm_build_label(pl, *pp, lbl);
340 	uasm_i_ll(pp, t1, 0, r_addr);
341 	uasm_i_or(pp, t1, t1, t0);
342 	uasm_i_sc(pp, t1, 0, r_addr);
343 	uasm_il_beqz(pp, pr, t1, lbl);
344 	uasm_i_nop(pp);
345 }
346 
347 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
348 {
349 	struct uasm_label *l = labels;
350 	struct uasm_reloc *r = relocs;
351 	u32 *buf, *p;
352 	const unsigned r_online = a0;
353 	const unsigned r_nc_count = a1;
354 	const unsigned r_pcohctl = t7;
355 	const unsigned max_instrs = 256;
356 	unsigned cpc_cmd;
357 	int err;
358 	enum {
359 		lbl_incready = 1,
360 		lbl_poll_cont,
361 		lbl_secondary_hang,
362 		lbl_disable_coherence,
363 		lbl_flush_fsb,
364 		lbl_invicache,
365 		lbl_flushdcache,
366 		lbl_hang,
367 		lbl_set_cont,
368 		lbl_secondary_cont,
369 		lbl_decready,
370 	};
371 
372 	/* Allocate a buffer to hold the generated code */
373 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
374 	if (!buf)
375 		return NULL;
376 
377 	/* Clear labels & relocs ready for (re)use */
378 	memset(labels, 0, sizeof(labels));
379 	memset(relocs, 0, sizeof(relocs));
380 
381 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
382 		/* Power gating relies upon CPS SMP */
383 		if (!mips_cps_smp_in_use())
384 			goto out_err;
385 
386 		/*
387 		 * Save CPU state. Note the non-standard calling convention
388 		 * with the return address placed in v0 to avoid clobbering
389 		 * the ra register before it is saved.
390 		 */
391 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
392 		uasm_i_jalr(&p, v0, t0);
393 		uasm_i_nop(&p);
394 	}
395 
396 	/*
397 	 * Load addresses of required CM & CPC registers. This is done early
398 	 * because they're needed in both the enable & disable coherence steps
399 	 * but in the coupled case the enable step will only run on one VPE.
400 	 */
401 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
402 
403 	if (coupled_coherence) {
404 		/* Increment ready_count */
405 		uasm_i_sync(&p, STYPE_SYNC_MB);
406 		uasm_build_label(&l, p, lbl_incready);
407 		uasm_i_ll(&p, t1, 0, r_nc_count);
408 		uasm_i_addiu(&p, t2, t1, 1);
409 		uasm_i_sc(&p, t2, 0, r_nc_count);
410 		uasm_il_beqz(&p, &r, t2, lbl_incready);
411 		uasm_i_addiu(&p, t1, t1, 1);
412 
413 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
414 		uasm_i_sync(&p, STYPE_SYNC_MB);
415 
416 		/*
417 		 * If this is the last VPE to become ready for non-coherence
418 		 * then it should branch below.
419 		 */
420 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
421 		uasm_i_nop(&p);
422 
423 		if (state < CPS_PM_POWER_GATED) {
424 			/*
425 			 * Otherwise this is not the last VPE to become ready
426 			 * for non-coherence. It needs to wait until coherence
427 			 * has been disabled before proceeding, which it will do
428 			 * by polling for the top bit of ready_count being set.
429 			 */
430 			uasm_i_addiu(&p, t1, zero, -1);
431 			uasm_build_label(&l, p, lbl_poll_cont);
432 			uasm_i_lw(&p, t0, 0, r_nc_count);
433 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
434 			uasm_i_ehb(&p);
435 			if (cpu_has_mipsmt)
436 				uasm_i_yield(&p, zero, t1);
437 			uasm_il_b(&p, &r, lbl_poll_cont);
438 			uasm_i_nop(&p);
439 		} else {
440 			/*
441 			 * The core will lose power & this VPE will not continue
442 			 * so it can simply halt here.
443 			 */
444 			if (cpu_has_mipsmt) {
445 				/* Halt the VPE via C0 tchalt register */
446 				uasm_i_addiu(&p, t0, zero, TCHALT_H);
447 				uasm_i_mtc0(&p, t0, 2, 4);
448 			} else if (cpu_has_vp) {
449 				/* Halt the VP via the CPC VP_STOP register */
450 				unsigned int vpe_id;
451 
452 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
453 				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
454 				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
455 				uasm_i_sw(&p, t0, 0, t1);
456 			} else {
457 				BUG();
458 			}
459 			uasm_build_label(&l, p, lbl_secondary_hang);
460 			uasm_il_b(&p, &r, lbl_secondary_hang);
461 			uasm_i_nop(&p);
462 		}
463 	}
464 
465 	/*
466 	 * This is the point of no return - this VPE will now proceed to
467 	 * disable coherence. At this point we *must* be sure that no other
468 	 * VPE within the core will interfere with the L1 dcache.
469 	 */
470 	uasm_build_label(&l, p, lbl_disable_coherence);
471 
472 	/* Invalidate the L1 icache */
473 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
474 			      Index_Invalidate_I, lbl_invicache);
475 
476 	/* Writeback & invalidate the L1 dcache */
477 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
478 			      Index_Writeback_Inv_D, lbl_flushdcache);
479 
480 	/* Barrier ensuring previous cache invalidates are complete */
481 	uasm_i_sync(&p, STYPE_SYNC);
482 	uasm_i_ehb(&p);
483 
484 	if (mips_cm_revision() < CM_REV_CM3) {
485 		/*
486 		* Disable all but self interventions. The load from COHCTL is
487 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
488 		*  operation resulting from the preceding store is complete.
489 		*/
490 		uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
491 		uasm_i_sw(&p, t0, 0, r_pcohctl);
492 		uasm_i_lw(&p, t0, 0, r_pcohctl);
493 
494 		/* Barrier to ensure write to coherence control is complete */
495 		uasm_i_sync(&p, STYPE_SYNC);
496 		uasm_i_ehb(&p);
497 	}
498 
499 	/* Disable coherence */
500 	uasm_i_sw(&p, zero, 0, r_pcohctl);
501 	uasm_i_lw(&p, t0, 0, r_pcohctl);
502 
503 	if (state >= CPS_PM_CLOCK_GATED) {
504 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
505 					lbl_flush_fsb);
506 		if (err)
507 			goto out_err;
508 
509 		/* Determine the CPC command to issue */
510 		switch (state) {
511 		case CPS_PM_CLOCK_GATED:
512 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
513 			break;
514 		case CPS_PM_POWER_GATED:
515 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
516 			break;
517 		default:
518 			BUG();
519 			goto out_err;
520 		}
521 
522 		/* Issue the CPC command */
523 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
524 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
525 		uasm_i_sw(&p, t1, 0, t0);
526 
527 		if (state == CPS_PM_POWER_GATED) {
528 			/* If anything goes wrong just hang */
529 			uasm_build_label(&l, p, lbl_hang);
530 			uasm_il_b(&p, &r, lbl_hang);
531 			uasm_i_nop(&p);
532 
533 			/*
534 			 * There's no point generating more code, the core is
535 			 * powered down & if powered back up will run from the
536 			 * reset vector not from here.
537 			 */
538 			goto gen_done;
539 		}
540 
541 		/* Barrier to ensure write to CPC command is complete */
542 		uasm_i_sync(&p, STYPE_SYNC);
543 		uasm_i_ehb(&p);
544 	}
545 
546 	if (state == CPS_PM_NC_WAIT) {
547 		/*
548 		 * At this point it is safe for all VPEs to proceed with
549 		 * execution. This VPE will set the top bit of ready_count
550 		 * to indicate to the other VPEs that they may continue.
551 		 */
552 		if (coupled_coherence)
553 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
554 					    lbl_set_cont);
555 
556 		/*
557 		 * VPEs which did not disable coherence will continue
558 		 * executing, after coherence has been disabled, from this
559 		 * point.
560 		 */
561 		uasm_build_label(&l, p, lbl_secondary_cont);
562 
563 		/* Now perform our wait */
564 		uasm_i_wait(&p, 0);
565 	}
566 
567 	/*
568 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
569 	 * will run this. The first will actually re-enable coherence & the
570 	 * rest will just be performing a rather unusual nop.
571 	 */
572 	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
573 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK
574 				: CM3_GCR_Cx_COHERENCE_COHEN_MSK);
575 
576 	uasm_i_sw(&p, t0, 0, r_pcohctl);
577 	uasm_i_lw(&p, t0, 0, r_pcohctl);
578 
579 	/* Barrier to ensure write to coherence control is complete */
580 	uasm_i_sync(&p, STYPE_SYNC);
581 	uasm_i_ehb(&p);
582 
583 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
584 		/* Decrement ready_count */
585 		uasm_build_label(&l, p, lbl_decready);
586 		uasm_i_sync(&p, STYPE_SYNC_MB);
587 		uasm_i_ll(&p, t1, 0, r_nc_count);
588 		uasm_i_addiu(&p, t2, t1, -1);
589 		uasm_i_sc(&p, t2, 0, r_nc_count);
590 		uasm_il_beqz(&p, &r, t2, lbl_decready);
591 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
592 
593 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
594 		uasm_i_sync(&p, STYPE_SYNC_MB);
595 	}
596 
597 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
598 		/*
599 		 * At this point it is safe for all VPEs to proceed with
600 		 * execution. This VPE will set the top bit of ready_count
601 		 * to indicate to the other VPEs that they may continue.
602 		 */
603 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
604 
605 		/*
606 		 * This core will be reliant upon another core sending a
607 		 * power-up command to the CPC in order to resume operation.
608 		 * Thus an arbitrary VPE can't trigger the core leaving the
609 		 * idle state and the one that disables coherence might as well
610 		 * be the one to re-enable it. The rest will continue from here
611 		 * after that has been done.
612 		 */
613 		uasm_build_label(&l, p, lbl_secondary_cont);
614 
615 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
616 		uasm_i_sync(&p, STYPE_SYNC_MB);
617 	}
618 
619 	/* The core is coherent, time to return to C code */
620 	uasm_i_jr(&p, ra);
621 	uasm_i_nop(&p);
622 
623 gen_done:
624 	/* Ensure the code didn't exceed the resources allocated for it */
625 	BUG_ON((p - buf) > max_instrs);
626 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
627 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
628 
629 	/* Patch branch offsets */
630 	uasm_resolve_relocs(relocs, labels);
631 
632 	/* Flush the icache */
633 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
634 
635 	return buf;
636 out_err:
637 	kfree(buf);
638 	return NULL;
639 }
640 
641 static int cps_pm_online_cpu(unsigned int cpu)
642 {
643 	enum cps_pm_state state;
644 	unsigned core = cpu_data[cpu].core;
645 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
646 	void *entry_fn, *core_rc;
647 
648 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
649 		if (per_cpu(nc_asm_enter, core)[state])
650 			continue;
651 		if (!test_bit(state, state_support))
652 			continue;
653 
654 		entry_fn = cps_gen_entry_code(cpu, state);
655 		if (!entry_fn) {
656 			pr_err("Failed to generate core %u state %u entry\n",
657 			       core, state);
658 			clear_bit(state, state_support);
659 		}
660 
661 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
662 	}
663 
664 	if (!per_cpu(ready_count, core)) {
665 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
666 		if (!core_rc) {
667 			pr_err("Failed allocate core %u ready_count\n", core);
668 			return -ENOMEM;
669 		}
670 		per_cpu(ready_count_alloc, core) = core_rc;
671 
672 		/* Ensure ready_count is aligned to a cacheline boundary */
673 		core_rc += dlinesz - 1;
674 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
675 		per_cpu(ready_count, core) = core_rc;
676 	}
677 
678 	return 0;
679 }
680 
681 static int __init cps_pm_init(void)
682 {
683 	/* A CM is required for all non-coherent states */
684 	if (!mips_cm_present()) {
685 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
686 		return 0;
687 	}
688 
689 	/*
690 	 * If interrupts were enabled whilst running a wait instruction on a
691 	 * non-coherent core then the VPE may end up processing interrupts
692 	 * whilst non-coherent. That would be bad.
693 	 */
694 	if (cpu_wait == r4k_wait_irqoff)
695 		set_bit(CPS_PM_NC_WAIT, state_support);
696 	else
697 		pr_warn("pm-cps: non-coherent wait unavailable\n");
698 
699 	/* Detect whether a CPC is present */
700 	if (mips_cpc_present()) {
701 		/* Detect whether clock gating is implemented */
702 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
703 			set_bit(CPS_PM_CLOCK_GATED, state_support);
704 		else
705 			pr_warn("pm-cps: CPC does not support clock gating\n");
706 
707 		/* Power gating is available with CPS SMP & any CPC */
708 		if (mips_cps_smp_in_use())
709 			set_bit(CPS_PM_POWER_GATED, state_support);
710 		else
711 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
712 	} else {
713 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
714 	}
715 
716 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
717 				 cps_pm_online_cpu, NULL);
718 }
719 arch_initcall(cps_pm_init);
720