1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/cpuhotplug.h> 12 #include <linux/init.h> 13 #include <linux/percpu.h> 14 #include <linux/slab.h> 15 16 #include <asm/asm-offsets.h> 17 #include <asm/cacheflush.h> 18 #include <asm/cacheops.h> 19 #include <asm/idle.h> 20 #include <asm/mips-cm.h> 21 #include <asm/mips-cpc.h> 22 #include <asm/mipsmtregs.h> 23 #include <asm/pm.h> 24 #include <asm/pm-cps.h> 25 #include <asm/smp-cps.h> 26 #include <asm/uasm.h> 27 28 /* 29 * cps_nc_entry_fn - type of a generated non-coherent state entry function 30 * @online: the count of online coupled VPEs 31 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count 32 * 33 * The code entering & exiting non-coherent states is generated at runtime 34 * using uasm, in order to ensure that the compiler cannot insert a stray 35 * memory access at an unfortunate time and to allow the generation of optimal 36 * core-specific code particularly for cache routines. If coupled_coherence 37 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state, 38 * returns the number of VPEs that were in the wait state at the point this 39 * VPE left it. Returns garbage if coupled_coherence is zero or this is not 40 * the entry function for CPS_PM_NC_WAIT. 41 */ 42 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count); 43 44 /* 45 * The entry point of the generated non-coherent idle state entry/exit 46 * functions. Actually per-core rather than per-CPU. 47 */ 48 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT], 49 nc_asm_enter); 50 51 /* Bitmap indicating which states are supported by the system */ 52 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT); 53 54 /* 55 * Indicates the number of coupled VPEs ready to operate in a non-coherent 56 * state. Actually per-core rather than per-CPU. 57 */ 58 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count); 59 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc); 60 61 /* Indicates online CPUs coupled with the current CPU */ 62 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled); 63 64 /* 65 * Used to synchronize entry to deep idle states. Actually per-core rather 66 * than per-CPU. 67 */ 68 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier); 69 70 /* Saved CPU state across the CPS_PM_POWER_GATED state */ 71 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state); 72 73 /* A somewhat arbitrary number of labels & relocs for uasm */ 74 static struct uasm_label labels[32]; 75 static struct uasm_reloc relocs[32]; 76 77 enum mips_reg { 78 zero, at, v0, v1, a0, a1, a2, a3, 79 t0, t1, t2, t3, t4, t5, t6, t7, 80 s0, s1, s2, s3, s4, s5, s6, s7, 81 t8, t9, k0, k1, gp, sp, fp, ra, 82 }; 83 84 bool cps_pm_support_state(enum cps_pm_state state) 85 { 86 return test_bit(state, state_support); 87 } 88 89 static void coupled_barrier(atomic_t *a, unsigned online) 90 { 91 /* 92 * This function is effectively the same as 93 * cpuidle_coupled_parallel_barrier, which can't be used here since 94 * there's no cpuidle device. 95 */ 96 97 if (!coupled_coherence) 98 return; 99 100 smp_mb__before_atomic(); 101 atomic_inc(a); 102 103 while (atomic_read(a) < online) 104 cpu_relax(); 105 106 if (atomic_inc_return(a) == online * 2) { 107 atomic_set(a, 0); 108 return; 109 } 110 111 while (atomic_read(a) > online) 112 cpu_relax(); 113 } 114 115 int cps_pm_enter_state(enum cps_pm_state state) 116 { 117 unsigned cpu = smp_processor_id(); 118 unsigned core = current_cpu_data.core; 119 unsigned online, left; 120 cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled); 121 u32 *core_ready_count, *nc_core_ready_count; 122 void *nc_addr; 123 cps_nc_entry_fn entry; 124 struct core_boot_config *core_cfg; 125 struct vpe_boot_config *vpe_cfg; 126 127 /* Check that there is an entry function for this state */ 128 entry = per_cpu(nc_asm_enter, core)[state]; 129 if (!entry) 130 return -EINVAL; 131 132 /* Calculate which coupled CPUs (VPEs) are online */ 133 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6) 134 if (cpu_online(cpu)) { 135 cpumask_and(coupled_mask, cpu_online_mask, 136 &cpu_sibling_map[cpu]); 137 online = cpumask_weight(coupled_mask); 138 cpumask_clear_cpu(cpu, coupled_mask); 139 } else 140 #endif 141 { 142 cpumask_clear(coupled_mask); 143 online = 1; 144 } 145 146 /* Setup the VPE to run mips_cps_pm_restore when started again */ 147 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 148 /* Power gating relies upon CPS SMP */ 149 if (!mips_cps_smp_in_use()) 150 return -EINVAL; 151 152 core_cfg = &mips_cps_core_bootcfg[core]; 153 vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(¤t_cpu_data)]; 154 vpe_cfg->pc = (unsigned long)mips_cps_pm_restore; 155 vpe_cfg->gp = (unsigned long)current_thread_info(); 156 vpe_cfg->sp = 0; 157 } 158 159 /* Indicate that this CPU might not be coherent */ 160 cpumask_clear_cpu(cpu, &cpu_coherent_mask); 161 smp_mb__after_atomic(); 162 163 /* Create a non-coherent mapping of the core ready_count */ 164 core_ready_count = per_cpu(ready_count, core); 165 nc_addr = kmap_noncoherent(virt_to_page(core_ready_count), 166 (unsigned long)core_ready_count); 167 nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK); 168 nc_core_ready_count = nc_addr; 169 170 /* Ensure ready_count is zero-initialised before the assembly runs */ 171 ACCESS_ONCE(*nc_core_ready_count) = 0; 172 coupled_barrier(&per_cpu(pm_barrier, core), online); 173 174 /* Run the generated entry code */ 175 left = entry(online, nc_core_ready_count); 176 177 /* Remove the non-coherent mapping of ready_count */ 178 kunmap_noncoherent(); 179 180 /* Indicate that this CPU is definitely coherent */ 181 cpumask_set_cpu(cpu, &cpu_coherent_mask); 182 183 /* 184 * If this VPE is the first to leave the non-coherent wait state then 185 * it needs to wake up any coupled VPEs still running their wait 186 * instruction so that they return to cpuidle, which can then complete 187 * coordination between the coupled VPEs & provide the governor with 188 * a chance to reflect on the length of time the VPEs were in the 189 * idle state. 190 */ 191 if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online)) 192 arch_send_call_function_ipi_mask(coupled_mask); 193 194 return 0; 195 } 196 197 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl, 198 struct uasm_reloc **pr, 199 const struct cache_desc *cache, 200 unsigned op, int lbl) 201 { 202 unsigned cache_size = cache->ways << cache->waybit; 203 unsigned i; 204 const unsigned unroll_lines = 32; 205 206 /* If the cache isn't present this function has it easy */ 207 if (cache->flags & MIPS_CACHE_NOT_PRESENT) 208 return; 209 210 /* Load base address */ 211 UASM_i_LA(pp, t0, (long)CKSEG0); 212 213 /* Calculate end address */ 214 if (cache_size < 0x8000) 215 uasm_i_addiu(pp, t1, t0, cache_size); 216 else 217 UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size)); 218 219 /* Start of cache op loop */ 220 uasm_build_label(pl, *pp, lbl); 221 222 /* Generate the cache ops */ 223 for (i = 0; i < unroll_lines; i++) { 224 if (cpu_has_mips_r6) { 225 uasm_i_cache(pp, op, 0, t0); 226 uasm_i_addiu(pp, t0, t0, cache->linesz); 227 } else { 228 uasm_i_cache(pp, op, i * cache->linesz, t0); 229 } 230 } 231 232 if (!cpu_has_mips_r6) 233 /* Update the base address */ 234 uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz); 235 236 /* Loop if we haven't reached the end address yet */ 237 uasm_il_bne(pp, pr, t0, t1, lbl); 238 uasm_i_nop(pp); 239 } 240 241 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl, 242 struct uasm_reloc **pr, 243 const struct cpuinfo_mips *cpu_info, 244 int lbl) 245 { 246 unsigned i, fsb_size = 8; 247 unsigned num_loads = (fsb_size * 3) / 2; 248 unsigned line_stride = 2; 249 unsigned line_size = cpu_info->dcache.linesz; 250 unsigned perf_counter, perf_event; 251 unsigned revision = cpu_info->processor_id & PRID_REV_MASK; 252 253 /* 254 * Determine whether this CPU requires an FSB flush, and if so which 255 * performance counter/event reflect stalls due to a full FSB. 256 */ 257 switch (__get_cpu_type(cpu_info->cputype)) { 258 case CPU_INTERAPTIV: 259 perf_counter = 1; 260 perf_event = 51; 261 break; 262 263 case CPU_PROAPTIV: 264 /* Newer proAptiv cores don't require this workaround */ 265 if (revision >= PRID_REV_ENCODE_332(1, 1, 0)) 266 return 0; 267 268 /* On older ones it's unavailable */ 269 return -1; 270 271 default: 272 /* Assume that the CPU does not need this workaround */ 273 return 0; 274 } 275 276 /* 277 * Ensure that the fill/store buffer (FSB) is not holding the results 278 * of a prefetch, since if it is then the CPC sequencer may become 279 * stuck in the D3 (ClrBus) state whilst entering a low power state. 280 */ 281 282 /* Preserve perf counter setup */ 283 uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 284 uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 285 286 /* Setup perf counter to count FSB full pipeline stalls */ 287 uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf); 288 uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 289 uasm_i_ehb(pp); 290 uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */ 291 uasm_i_ehb(pp); 292 293 /* Base address for loads */ 294 UASM_i_LA(pp, t0, (long)CKSEG0); 295 296 /* Start of clear loop */ 297 uasm_build_label(pl, *pp, lbl); 298 299 /* Perform some loads to fill the FSB */ 300 for (i = 0; i < num_loads; i++) 301 uasm_i_lw(pp, zero, i * line_size * line_stride, t0); 302 303 /* 304 * Invalidate the new D-cache entries so that the cache will need 305 * refilling (via the FSB) if the loop is executed again. 306 */ 307 for (i = 0; i < num_loads; i++) { 308 uasm_i_cache(pp, Hit_Invalidate_D, 309 i * line_size * line_stride, t0); 310 uasm_i_cache(pp, Hit_Writeback_Inv_SD, 311 i * line_size * line_stride, t0); 312 } 313 314 /* Barrier ensuring previous cache invalidates are complete */ 315 uasm_i_sync(pp, STYPE_SYNC); 316 uasm_i_ehb(pp); 317 318 /* Check whether the pipeline stalled due to the FSB being full */ 319 uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */ 320 321 /* Loop if it didn't */ 322 uasm_il_beqz(pp, pr, t1, lbl); 323 uasm_i_nop(pp); 324 325 /* Restore perf counter 1. The count may well now be wrong... */ 326 uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */ 327 uasm_i_ehb(pp); 328 uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */ 329 uasm_i_ehb(pp); 330 331 return 0; 332 } 333 334 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl, 335 struct uasm_reloc **pr, 336 unsigned r_addr, int lbl) 337 { 338 uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000)); 339 uasm_build_label(pl, *pp, lbl); 340 uasm_i_ll(pp, t1, 0, r_addr); 341 uasm_i_or(pp, t1, t1, t0); 342 uasm_i_sc(pp, t1, 0, r_addr); 343 uasm_il_beqz(pp, pr, t1, lbl); 344 uasm_i_nop(pp); 345 } 346 347 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state) 348 { 349 struct uasm_label *l = labels; 350 struct uasm_reloc *r = relocs; 351 u32 *buf, *p; 352 const unsigned r_online = a0; 353 const unsigned r_nc_count = a1; 354 const unsigned r_pcohctl = t7; 355 const unsigned max_instrs = 256; 356 unsigned cpc_cmd; 357 int err; 358 enum { 359 lbl_incready = 1, 360 lbl_poll_cont, 361 lbl_secondary_hang, 362 lbl_disable_coherence, 363 lbl_flush_fsb, 364 lbl_invicache, 365 lbl_flushdcache, 366 lbl_hang, 367 lbl_set_cont, 368 lbl_secondary_cont, 369 lbl_decready, 370 }; 371 372 /* Allocate a buffer to hold the generated code */ 373 p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL); 374 if (!buf) 375 return NULL; 376 377 /* Clear labels & relocs ready for (re)use */ 378 memset(labels, 0, sizeof(labels)); 379 memset(relocs, 0, sizeof(relocs)); 380 381 if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) { 382 /* Power gating relies upon CPS SMP */ 383 if (!mips_cps_smp_in_use()) 384 goto out_err; 385 386 /* 387 * Save CPU state. Note the non-standard calling convention 388 * with the return address placed in v0 to avoid clobbering 389 * the ra register before it is saved. 390 */ 391 UASM_i_LA(&p, t0, (long)mips_cps_pm_save); 392 uasm_i_jalr(&p, v0, t0); 393 uasm_i_nop(&p); 394 } 395 396 /* 397 * Load addresses of required CM & CPC registers. This is done early 398 * because they're needed in both the enable & disable coherence steps 399 * but in the coupled case the enable step will only run on one VPE. 400 */ 401 UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence()); 402 403 if (coupled_coherence) { 404 /* Increment ready_count */ 405 uasm_i_sync(&p, STYPE_SYNC_MB); 406 uasm_build_label(&l, p, lbl_incready); 407 uasm_i_ll(&p, t1, 0, r_nc_count); 408 uasm_i_addiu(&p, t2, t1, 1); 409 uasm_i_sc(&p, t2, 0, r_nc_count); 410 uasm_il_beqz(&p, &r, t2, lbl_incready); 411 uasm_i_addiu(&p, t1, t1, 1); 412 413 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 414 uasm_i_sync(&p, STYPE_SYNC_MB); 415 416 /* 417 * If this is the last VPE to become ready for non-coherence 418 * then it should branch below. 419 */ 420 uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence); 421 uasm_i_nop(&p); 422 423 if (state < CPS_PM_POWER_GATED) { 424 /* 425 * Otherwise this is not the last VPE to become ready 426 * for non-coherence. It needs to wait until coherence 427 * has been disabled before proceeding, which it will do 428 * by polling for the top bit of ready_count being set. 429 */ 430 uasm_i_addiu(&p, t1, zero, -1); 431 uasm_build_label(&l, p, lbl_poll_cont); 432 uasm_i_lw(&p, t0, 0, r_nc_count); 433 uasm_il_bltz(&p, &r, t0, lbl_secondary_cont); 434 uasm_i_ehb(&p); 435 if (cpu_has_mipsmt) 436 uasm_i_yield(&p, zero, t1); 437 uasm_il_b(&p, &r, lbl_poll_cont); 438 uasm_i_nop(&p); 439 } else { 440 /* 441 * The core will lose power & this VPE will not continue 442 * so it can simply halt here. 443 */ 444 if (cpu_has_mipsmt) { 445 /* Halt the VPE via C0 tchalt register */ 446 uasm_i_addiu(&p, t0, zero, TCHALT_H); 447 uasm_i_mtc0(&p, t0, 2, 4); 448 } else if (cpu_has_vp) { 449 /* Halt the VP via the CPC VP_STOP register */ 450 unsigned int vpe_id; 451 452 vpe_id = cpu_vpe_id(&cpu_data[cpu]); 453 uasm_i_addiu(&p, t0, zero, 1 << vpe_id); 454 UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop()); 455 uasm_i_sw(&p, t0, 0, t1); 456 } else { 457 BUG(); 458 } 459 uasm_build_label(&l, p, lbl_secondary_hang); 460 uasm_il_b(&p, &r, lbl_secondary_hang); 461 uasm_i_nop(&p); 462 } 463 } 464 465 /* 466 * This is the point of no return - this VPE will now proceed to 467 * disable coherence. At this point we *must* be sure that no other 468 * VPE within the core will interfere with the L1 dcache. 469 */ 470 uasm_build_label(&l, p, lbl_disable_coherence); 471 472 /* Invalidate the L1 icache */ 473 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache, 474 Index_Invalidate_I, lbl_invicache); 475 476 /* Writeback & invalidate the L1 dcache */ 477 cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache, 478 Index_Writeback_Inv_D, lbl_flushdcache); 479 480 /* Barrier ensuring previous cache invalidates are complete */ 481 uasm_i_sync(&p, STYPE_SYNC); 482 uasm_i_ehb(&p); 483 484 if (mips_cm_revision() < CM_REV_CM3) { 485 /* 486 * Disable all but self interventions. The load from COHCTL is 487 * defined by the interAptiv & proAptiv SUMs as ensuring that the 488 * operation resulting from the preceding store is complete. 489 */ 490 uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core); 491 uasm_i_sw(&p, t0, 0, r_pcohctl); 492 uasm_i_lw(&p, t0, 0, r_pcohctl); 493 494 /* Barrier to ensure write to coherence control is complete */ 495 uasm_i_sync(&p, STYPE_SYNC); 496 uasm_i_ehb(&p); 497 } 498 499 /* Disable coherence */ 500 uasm_i_sw(&p, zero, 0, r_pcohctl); 501 uasm_i_lw(&p, t0, 0, r_pcohctl); 502 503 if (state >= CPS_PM_CLOCK_GATED) { 504 err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu], 505 lbl_flush_fsb); 506 if (err) 507 goto out_err; 508 509 /* Determine the CPC command to issue */ 510 switch (state) { 511 case CPS_PM_CLOCK_GATED: 512 cpc_cmd = CPC_Cx_CMD_CLOCKOFF; 513 break; 514 case CPS_PM_POWER_GATED: 515 cpc_cmd = CPC_Cx_CMD_PWRDOWN; 516 break; 517 default: 518 BUG(); 519 goto out_err; 520 } 521 522 /* Issue the CPC command */ 523 UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd()); 524 uasm_i_addiu(&p, t1, zero, cpc_cmd); 525 uasm_i_sw(&p, t1, 0, t0); 526 527 if (state == CPS_PM_POWER_GATED) { 528 /* If anything goes wrong just hang */ 529 uasm_build_label(&l, p, lbl_hang); 530 uasm_il_b(&p, &r, lbl_hang); 531 uasm_i_nop(&p); 532 533 /* 534 * There's no point generating more code, the core is 535 * powered down & if powered back up will run from the 536 * reset vector not from here. 537 */ 538 goto gen_done; 539 } 540 541 /* Barrier to ensure write to CPC command is complete */ 542 uasm_i_sync(&p, STYPE_SYNC); 543 uasm_i_ehb(&p); 544 } 545 546 if (state == CPS_PM_NC_WAIT) { 547 /* 548 * At this point it is safe for all VPEs to proceed with 549 * execution. This VPE will set the top bit of ready_count 550 * to indicate to the other VPEs that they may continue. 551 */ 552 if (coupled_coherence) 553 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, 554 lbl_set_cont); 555 556 /* 557 * VPEs which did not disable coherence will continue 558 * executing, after coherence has been disabled, from this 559 * point. 560 */ 561 uasm_build_label(&l, p, lbl_secondary_cont); 562 563 /* Now perform our wait */ 564 uasm_i_wait(&p, 0); 565 } 566 567 /* 568 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs 569 * will run this. The first will actually re-enable coherence & the 570 * rest will just be performing a rather unusual nop. 571 */ 572 uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3 573 ? CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK 574 : CM3_GCR_Cx_COHERENCE_COHEN_MSK); 575 576 uasm_i_sw(&p, t0, 0, r_pcohctl); 577 uasm_i_lw(&p, t0, 0, r_pcohctl); 578 579 /* Barrier to ensure write to coherence control is complete */ 580 uasm_i_sync(&p, STYPE_SYNC); 581 uasm_i_ehb(&p); 582 583 if (coupled_coherence && (state == CPS_PM_NC_WAIT)) { 584 /* Decrement ready_count */ 585 uasm_build_label(&l, p, lbl_decready); 586 uasm_i_sync(&p, STYPE_SYNC_MB); 587 uasm_i_ll(&p, t1, 0, r_nc_count); 588 uasm_i_addiu(&p, t2, t1, -1); 589 uasm_i_sc(&p, t2, 0, r_nc_count); 590 uasm_il_beqz(&p, &r, t2, lbl_decready); 591 uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1); 592 593 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 594 uasm_i_sync(&p, STYPE_SYNC_MB); 595 } 596 597 if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) { 598 /* 599 * At this point it is safe for all VPEs to proceed with 600 * execution. This VPE will set the top bit of ready_count 601 * to indicate to the other VPEs that they may continue. 602 */ 603 cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont); 604 605 /* 606 * This core will be reliant upon another core sending a 607 * power-up command to the CPC in order to resume operation. 608 * Thus an arbitrary VPE can't trigger the core leaving the 609 * idle state and the one that disables coherence might as well 610 * be the one to re-enable it. The rest will continue from here 611 * after that has been done. 612 */ 613 uasm_build_label(&l, p, lbl_secondary_cont); 614 615 /* Barrier ensuring all CPUs see the updated r_nc_count value */ 616 uasm_i_sync(&p, STYPE_SYNC_MB); 617 } 618 619 /* The core is coherent, time to return to C code */ 620 uasm_i_jr(&p, ra); 621 uasm_i_nop(&p); 622 623 gen_done: 624 /* Ensure the code didn't exceed the resources allocated for it */ 625 BUG_ON((p - buf) > max_instrs); 626 BUG_ON((l - labels) > ARRAY_SIZE(labels)); 627 BUG_ON((r - relocs) > ARRAY_SIZE(relocs)); 628 629 /* Patch branch offsets */ 630 uasm_resolve_relocs(relocs, labels); 631 632 /* Flush the icache */ 633 local_flush_icache_range((unsigned long)buf, (unsigned long)p); 634 635 return buf; 636 out_err: 637 kfree(buf); 638 return NULL; 639 } 640 641 static int cps_pm_online_cpu(unsigned int cpu) 642 { 643 enum cps_pm_state state; 644 unsigned core = cpu_data[cpu].core; 645 unsigned dlinesz = cpu_data[cpu].dcache.linesz; 646 void *entry_fn, *core_rc; 647 648 for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) { 649 if (per_cpu(nc_asm_enter, core)[state]) 650 continue; 651 if (!test_bit(state, state_support)) 652 continue; 653 654 entry_fn = cps_gen_entry_code(cpu, state); 655 if (!entry_fn) { 656 pr_err("Failed to generate core %u state %u entry\n", 657 core, state); 658 clear_bit(state, state_support); 659 } 660 661 per_cpu(nc_asm_enter, core)[state] = entry_fn; 662 } 663 664 if (!per_cpu(ready_count, core)) { 665 core_rc = kmalloc(dlinesz * 2, GFP_KERNEL); 666 if (!core_rc) { 667 pr_err("Failed allocate core %u ready_count\n", core); 668 return -ENOMEM; 669 } 670 per_cpu(ready_count_alloc, core) = core_rc; 671 672 /* Ensure ready_count is aligned to a cacheline boundary */ 673 core_rc += dlinesz - 1; 674 core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1)); 675 per_cpu(ready_count, core) = core_rc; 676 } 677 678 return 0; 679 } 680 681 static int __init cps_pm_init(void) 682 { 683 /* A CM is required for all non-coherent states */ 684 if (!mips_cm_present()) { 685 pr_warn("pm-cps: no CM, non-coherent states unavailable\n"); 686 return 0; 687 } 688 689 /* 690 * If interrupts were enabled whilst running a wait instruction on a 691 * non-coherent core then the VPE may end up processing interrupts 692 * whilst non-coherent. That would be bad. 693 */ 694 if (cpu_wait == r4k_wait_irqoff) 695 set_bit(CPS_PM_NC_WAIT, state_support); 696 else 697 pr_warn("pm-cps: non-coherent wait unavailable\n"); 698 699 /* Detect whether a CPC is present */ 700 if (mips_cpc_present()) { 701 /* Detect whether clock gating is implemented */ 702 if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK) 703 set_bit(CPS_PM_CLOCK_GATED, state_support); 704 else 705 pr_warn("pm-cps: CPC does not support clock gating\n"); 706 707 /* Power gating is available with CPS SMP & any CPC */ 708 if (mips_cps_smp_in_use()) 709 set_bit(CPS_PM_POWER_GATED, state_support); 710 else 711 pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n"); 712 } else { 713 pr_warn("pm-cps: no CPC, clock & power gating unavailable\n"); 714 } 715 716 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online", 717 cps_pm_online_cpu, NULL); 718 } 719 arch_initcall(cps_pm_init); 720