xref: /openbmc/linux/arch/mips/kernel/pm-cps.c (revision 3a35093a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6 
7 #include <linux/cpuhotplug.h>
8 #include <linux/init.h>
9 #include <linux/percpu.h>
10 #include <linux/slab.h>
11 #include <linux/suspend.h>
12 
13 #include <asm/asm-offsets.h>
14 #include <asm/cacheflush.h>
15 #include <asm/cacheops.h>
16 #include <asm/idle.h>
17 #include <asm/mips-cps.h>
18 #include <asm/mipsmtregs.h>
19 #include <asm/pm.h>
20 #include <asm/pm-cps.h>
21 #include <asm/smp-cps.h>
22 #include <asm/uasm.h>
23 
24 /*
25  * cps_nc_entry_fn - type of a generated non-coherent state entry function
26  * @online: the count of online coupled VPEs
27  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
28  *
29  * The code entering & exiting non-coherent states is generated at runtime
30  * using uasm, in order to ensure that the compiler cannot insert a stray
31  * memory access at an unfortunate time and to allow the generation of optimal
32  * core-specific code particularly for cache routines. If coupled_coherence
33  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
34  * returns the number of VPEs that were in the wait state at the point this
35  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
36  * the entry function for CPS_PM_NC_WAIT.
37  */
38 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
39 
40 /*
41  * The entry point of the generated non-coherent idle state entry/exit
42  * functions. Actually per-core rather than per-CPU.
43  */
44 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
45 				  nc_asm_enter);
46 
47 /* Bitmap indicating which states are supported by the system */
48 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
49 
50 /*
51  * Indicates the number of coupled VPEs ready to operate in a non-coherent
52  * state. Actually per-core rather than per-CPU.
53  */
54 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
55 
56 /* Indicates online CPUs coupled with the current CPU */
57 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
58 
59 /*
60  * Used to synchronize entry to deep idle states. Actually per-core rather
61  * than per-CPU.
62  */
63 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
64 
65 /* Saved CPU state across the CPS_PM_POWER_GATED state */
66 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
67 
68 /* A somewhat arbitrary number of labels & relocs for uasm */
69 static struct uasm_label labels[32];
70 static struct uasm_reloc relocs[32];
71 
72 enum mips_reg {
73 	zero, at, v0, v1, a0, a1, a2, a3,
74 	t0, t1, t2, t3, t4, t5, t6, t7,
75 	s0, s1, s2, s3, s4, s5, s6, s7,
76 	t8, t9, k0, k1, gp, sp, fp, ra,
77 };
78 
79 bool cps_pm_support_state(enum cps_pm_state state)
80 {
81 	return test_bit(state, state_support);
82 }
83 
84 static void coupled_barrier(atomic_t *a, unsigned online)
85 {
86 	/*
87 	 * This function is effectively the same as
88 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
89 	 * there's no cpuidle device.
90 	 */
91 
92 	if (!coupled_coherence)
93 		return;
94 
95 	smp_mb__before_atomic();
96 	atomic_inc(a);
97 
98 	while (atomic_read(a) < online)
99 		cpu_relax();
100 
101 	if (atomic_inc_return(a) == online * 2) {
102 		atomic_set(a, 0);
103 		return;
104 	}
105 
106 	while (atomic_read(a) > online)
107 		cpu_relax();
108 }
109 
110 int cps_pm_enter_state(enum cps_pm_state state)
111 {
112 	unsigned cpu = smp_processor_id();
113 	unsigned core = cpu_core(&current_cpu_data);
114 	unsigned online, left;
115 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
116 	u32 *core_ready_count, *nc_core_ready_count;
117 	void *nc_addr;
118 	cps_nc_entry_fn entry;
119 	struct core_boot_config *core_cfg;
120 	struct vpe_boot_config *vpe_cfg;
121 
122 	/* Check that there is an entry function for this state */
123 	entry = per_cpu(nc_asm_enter, core)[state];
124 	if (!entry)
125 		return -EINVAL;
126 
127 	/* Calculate which coupled CPUs (VPEs) are online */
128 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
129 	if (cpu_online(cpu)) {
130 		cpumask_and(coupled_mask, cpu_online_mask,
131 			    &cpu_sibling_map[cpu]);
132 		online = cpumask_weight(coupled_mask);
133 		cpumask_clear_cpu(cpu, coupled_mask);
134 	} else
135 #endif
136 	{
137 		cpumask_clear(coupled_mask);
138 		online = 1;
139 	}
140 
141 	/* Setup the VPE to run mips_cps_pm_restore when started again */
142 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
143 		/* Power gating relies upon CPS SMP */
144 		if (!mips_cps_smp_in_use())
145 			return -EINVAL;
146 
147 		core_cfg = &mips_cps_core_bootcfg[core];
148 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
149 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
150 		vpe_cfg->gp = (unsigned long)current_thread_info();
151 		vpe_cfg->sp = 0;
152 	}
153 
154 	/* Indicate that this CPU might not be coherent */
155 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
156 	smp_mb__after_atomic();
157 
158 	/* Create a non-coherent mapping of the core ready_count */
159 	core_ready_count = per_cpu(ready_count, core);
160 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
161 				   (unsigned long)core_ready_count);
162 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
163 	nc_core_ready_count = nc_addr;
164 
165 	/* Ensure ready_count is zero-initialised before the assembly runs */
166 	WRITE_ONCE(*nc_core_ready_count, 0);
167 	coupled_barrier(&per_cpu(pm_barrier, core), online);
168 
169 	/* Run the generated entry code */
170 	left = entry(online, nc_core_ready_count);
171 
172 	/* Remove the non-coherent mapping of ready_count */
173 	kunmap_noncoherent();
174 
175 	/* Indicate that this CPU is definitely coherent */
176 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
177 
178 	/*
179 	 * If this VPE is the first to leave the non-coherent wait state then
180 	 * it needs to wake up any coupled VPEs still running their wait
181 	 * instruction so that they return to cpuidle, which can then complete
182 	 * coordination between the coupled VPEs & provide the governor with
183 	 * a chance to reflect on the length of time the VPEs were in the
184 	 * idle state.
185 	 */
186 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
187 		arch_send_call_function_ipi_mask(coupled_mask);
188 
189 	return 0;
190 }
191 
192 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
193 				  struct uasm_reloc **pr,
194 				  const struct cache_desc *cache,
195 				  unsigned op, int lbl)
196 {
197 	unsigned cache_size = cache->ways << cache->waybit;
198 	unsigned i;
199 	const unsigned unroll_lines = 32;
200 
201 	/* If the cache isn't present this function has it easy */
202 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
203 		return;
204 
205 	/* Load base address */
206 	UASM_i_LA(pp, t0, (long)CKSEG0);
207 
208 	/* Calculate end address */
209 	if (cache_size < 0x8000)
210 		uasm_i_addiu(pp, t1, t0, cache_size);
211 	else
212 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
213 
214 	/* Start of cache op loop */
215 	uasm_build_label(pl, *pp, lbl);
216 
217 	/* Generate the cache ops */
218 	for (i = 0; i < unroll_lines; i++) {
219 		if (cpu_has_mips_r6) {
220 			uasm_i_cache(pp, op, 0, t0);
221 			uasm_i_addiu(pp, t0, t0, cache->linesz);
222 		} else {
223 			uasm_i_cache(pp, op, i * cache->linesz, t0);
224 		}
225 	}
226 
227 	if (!cpu_has_mips_r6)
228 		/* Update the base address */
229 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
230 
231 	/* Loop if we haven't reached the end address yet */
232 	uasm_il_bne(pp, pr, t0, t1, lbl);
233 	uasm_i_nop(pp);
234 }
235 
236 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
237 			     struct uasm_reloc **pr,
238 			     const struct cpuinfo_mips *cpu_info,
239 			     int lbl)
240 {
241 	unsigned i, fsb_size = 8;
242 	unsigned num_loads = (fsb_size * 3) / 2;
243 	unsigned line_stride = 2;
244 	unsigned line_size = cpu_info->dcache.linesz;
245 	unsigned perf_counter, perf_event;
246 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
247 
248 	/*
249 	 * Determine whether this CPU requires an FSB flush, and if so which
250 	 * performance counter/event reflect stalls due to a full FSB.
251 	 */
252 	switch (__get_cpu_type(cpu_info->cputype)) {
253 	case CPU_INTERAPTIV:
254 		perf_counter = 1;
255 		perf_event = 51;
256 		break;
257 
258 	case CPU_PROAPTIV:
259 		/* Newer proAptiv cores don't require this workaround */
260 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
261 			return 0;
262 
263 		/* On older ones it's unavailable */
264 		return -1;
265 
266 	default:
267 		/* Assume that the CPU does not need this workaround */
268 		return 0;
269 	}
270 
271 	/*
272 	 * Ensure that the fill/store buffer (FSB) is not holding the results
273 	 * of a prefetch, since if it is then the CPC sequencer may become
274 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
275 	 */
276 
277 	/* Preserve perf counter setup */
278 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
279 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
280 
281 	/* Setup perf counter to count FSB full pipeline stalls */
282 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
283 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
284 	uasm_i_ehb(pp);
285 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
286 	uasm_i_ehb(pp);
287 
288 	/* Base address for loads */
289 	UASM_i_LA(pp, t0, (long)CKSEG0);
290 
291 	/* Start of clear loop */
292 	uasm_build_label(pl, *pp, lbl);
293 
294 	/* Perform some loads to fill the FSB */
295 	for (i = 0; i < num_loads; i++)
296 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
297 
298 	/*
299 	 * Invalidate the new D-cache entries so that the cache will need
300 	 * refilling (via the FSB) if the loop is executed again.
301 	 */
302 	for (i = 0; i < num_loads; i++) {
303 		uasm_i_cache(pp, Hit_Invalidate_D,
304 			     i * line_size * line_stride, t0);
305 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
306 			     i * line_size * line_stride, t0);
307 	}
308 
309 	/* Barrier ensuring previous cache invalidates are complete */
310 	uasm_i_sync(pp, __SYNC_full);
311 	uasm_i_ehb(pp);
312 
313 	/* Check whether the pipeline stalled due to the FSB being full */
314 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
315 
316 	/* Loop if it didn't */
317 	uasm_il_beqz(pp, pr, t1, lbl);
318 	uasm_i_nop(pp);
319 
320 	/* Restore perf counter 1. The count may well now be wrong... */
321 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
322 	uasm_i_ehb(pp);
323 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
324 	uasm_i_ehb(pp);
325 
326 	return 0;
327 }
328 
329 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
330 				struct uasm_reloc **pr,
331 				unsigned r_addr, int lbl)
332 {
333 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
334 	uasm_build_label(pl, *pp, lbl);
335 	uasm_i_ll(pp, t1, 0, r_addr);
336 	uasm_i_or(pp, t1, t1, t0);
337 	uasm_i_sc(pp, t1, 0, r_addr);
338 	uasm_il_beqz(pp, pr, t1, lbl);
339 	uasm_i_nop(pp);
340 }
341 
342 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
343 {
344 	struct uasm_label *l = labels;
345 	struct uasm_reloc *r = relocs;
346 	u32 *buf, *p;
347 	const unsigned r_online = a0;
348 	const unsigned r_nc_count = a1;
349 	const unsigned r_pcohctl = t7;
350 	const unsigned max_instrs = 256;
351 	unsigned cpc_cmd;
352 	int err;
353 	enum {
354 		lbl_incready = 1,
355 		lbl_poll_cont,
356 		lbl_secondary_hang,
357 		lbl_disable_coherence,
358 		lbl_flush_fsb,
359 		lbl_invicache,
360 		lbl_flushdcache,
361 		lbl_hang,
362 		lbl_set_cont,
363 		lbl_secondary_cont,
364 		lbl_decready,
365 	};
366 
367 	/* Allocate a buffer to hold the generated code */
368 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
369 	if (!buf)
370 		return NULL;
371 
372 	/* Clear labels & relocs ready for (re)use */
373 	memset(labels, 0, sizeof(labels));
374 	memset(relocs, 0, sizeof(relocs));
375 
376 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
377 		/* Power gating relies upon CPS SMP */
378 		if (!mips_cps_smp_in_use())
379 			goto out_err;
380 
381 		/*
382 		 * Save CPU state. Note the non-standard calling convention
383 		 * with the return address placed in v0 to avoid clobbering
384 		 * the ra register before it is saved.
385 		 */
386 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
387 		uasm_i_jalr(&p, v0, t0);
388 		uasm_i_nop(&p);
389 	}
390 
391 	/*
392 	 * Load addresses of required CM & CPC registers. This is done early
393 	 * because they're needed in both the enable & disable coherence steps
394 	 * but in the coupled case the enable step will only run on one VPE.
395 	 */
396 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
397 
398 	if (coupled_coherence) {
399 		/* Increment ready_count */
400 		uasm_i_sync(&p, __SYNC_mb);
401 		uasm_build_label(&l, p, lbl_incready);
402 		uasm_i_ll(&p, t1, 0, r_nc_count);
403 		uasm_i_addiu(&p, t2, t1, 1);
404 		uasm_i_sc(&p, t2, 0, r_nc_count);
405 		uasm_il_beqz(&p, &r, t2, lbl_incready);
406 		uasm_i_addiu(&p, t1, t1, 1);
407 
408 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
409 		uasm_i_sync(&p, __SYNC_mb);
410 
411 		/*
412 		 * If this is the last VPE to become ready for non-coherence
413 		 * then it should branch below.
414 		 */
415 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
416 		uasm_i_nop(&p);
417 
418 		if (state < CPS_PM_POWER_GATED) {
419 			/*
420 			 * Otherwise this is not the last VPE to become ready
421 			 * for non-coherence. It needs to wait until coherence
422 			 * has been disabled before proceeding, which it will do
423 			 * by polling for the top bit of ready_count being set.
424 			 */
425 			uasm_i_addiu(&p, t1, zero, -1);
426 			uasm_build_label(&l, p, lbl_poll_cont);
427 			uasm_i_lw(&p, t0, 0, r_nc_count);
428 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
429 			uasm_i_ehb(&p);
430 			if (cpu_has_mipsmt)
431 				uasm_i_yield(&p, zero, t1);
432 			uasm_il_b(&p, &r, lbl_poll_cont);
433 			uasm_i_nop(&p);
434 		} else {
435 			/*
436 			 * The core will lose power & this VPE will not continue
437 			 * so it can simply halt here.
438 			 */
439 			if (cpu_has_mipsmt) {
440 				/* Halt the VPE via C0 tchalt register */
441 				uasm_i_addiu(&p, t0, zero, TCHALT_H);
442 				uasm_i_mtc0(&p, t0, 2, 4);
443 			} else if (cpu_has_vp) {
444 				/* Halt the VP via the CPC VP_STOP register */
445 				unsigned int vpe_id;
446 
447 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
448 				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
449 				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
450 				uasm_i_sw(&p, t0, 0, t1);
451 			} else {
452 				BUG();
453 			}
454 			uasm_build_label(&l, p, lbl_secondary_hang);
455 			uasm_il_b(&p, &r, lbl_secondary_hang);
456 			uasm_i_nop(&p);
457 		}
458 	}
459 
460 	/*
461 	 * This is the point of no return - this VPE will now proceed to
462 	 * disable coherence. At this point we *must* be sure that no other
463 	 * VPE within the core will interfere with the L1 dcache.
464 	 */
465 	uasm_build_label(&l, p, lbl_disable_coherence);
466 
467 	/* Invalidate the L1 icache */
468 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
469 			      Index_Invalidate_I, lbl_invicache);
470 
471 	/* Writeback & invalidate the L1 dcache */
472 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
473 			      Index_Writeback_Inv_D, lbl_flushdcache);
474 
475 	/* Barrier ensuring previous cache invalidates are complete */
476 	uasm_i_sync(&p, __SYNC_full);
477 	uasm_i_ehb(&p);
478 
479 	if (mips_cm_revision() < CM_REV_CM3) {
480 		/*
481 		* Disable all but self interventions. The load from COHCTL is
482 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
483 		*  operation resulting from the preceding store is complete.
484 		*/
485 		uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
486 		uasm_i_sw(&p, t0, 0, r_pcohctl);
487 		uasm_i_lw(&p, t0, 0, r_pcohctl);
488 
489 		/* Barrier to ensure write to coherence control is complete */
490 		uasm_i_sync(&p, __SYNC_full);
491 		uasm_i_ehb(&p);
492 	}
493 
494 	/* Disable coherence */
495 	uasm_i_sw(&p, zero, 0, r_pcohctl);
496 	uasm_i_lw(&p, t0, 0, r_pcohctl);
497 
498 	if (state >= CPS_PM_CLOCK_GATED) {
499 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
500 					lbl_flush_fsb);
501 		if (err)
502 			goto out_err;
503 
504 		/* Determine the CPC command to issue */
505 		switch (state) {
506 		case CPS_PM_CLOCK_GATED:
507 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
508 			break;
509 		case CPS_PM_POWER_GATED:
510 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
511 			break;
512 		default:
513 			BUG();
514 			goto out_err;
515 		}
516 
517 		/* Issue the CPC command */
518 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
519 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
520 		uasm_i_sw(&p, t1, 0, t0);
521 
522 		if (state == CPS_PM_POWER_GATED) {
523 			/* If anything goes wrong just hang */
524 			uasm_build_label(&l, p, lbl_hang);
525 			uasm_il_b(&p, &r, lbl_hang);
526 			uasm_i_nop(&p);
527 
528 			/*
529 			 * There's no point generating more code, the core is
530 			 * powered down & if powered back up will run from the
531 			 * reset vector not from here.
532 			 */
533 			goto gen_done;
534 		}
535 
536 		/* Barrier to ensure write to CPC command is complete */
537 		uasm_i_sync(&p, __SYNC_full);
538 		uasm_i_ehb(&p);
539 	}
540 
541 	if (state == CPS_PM_NC_WAIT) {
542 		/*
543 		 * At this point it is safe for all VPEs to proceed with
544 		 * execution. This VPE will set the top bit of ready_count
545 		 * to indicate to the other VPEs that they may continue.
546 		 */
547 		if (coupled_coherence)
548 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
549 					    lbl_set_cont);
550 
551 		/*
552 		 * VPEs which did not disable coherence will continue
553 		 * executing, after coherence has been disabled, from this
554 		 * point.
555 		 */
556 		uasm_build_label(&l, p, lbl_secondary_cont);
557 
558 		/* Now perform our wait */
559 		uasm_i_wait(&p, 0);
560 	}
561 
562 	/*
563 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
564 	 * will run this. The first will actually re-enable coherence & the
565 	 * rest will just be performing a rather unusual nop.
566 	 */
567 	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
568 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
569 				: CM3_GCR_Cx_COHERENCE_COHEN);
570 
571 	uasm_i_sw(&p, t0, 0, r_pcohctl);
572 	uasm_i_lw(&p, t0, 0, r_pcohctl);
573 
574 	/* Barrier to ensure write to coherence control is complete */
575 	uasm_i_sync(&p, __SYNC_full);
576 	uasm_i_ehb(&p);
577 
578 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
579 		/* Decrement ready_count */
580 		uasm_build_label(&l, p, lbl_decready);
581 		uasm_i_sync(&p, __SYNC_mb);
582 		uasm_i_ll(&p, t1, 0, r_nc_count);
583 		uasm_i_addiu(&p, t2, t1, -1);
584 		uasm_i_sc(&p, t2, 0, r_nc_count);
585 		uasm_il_beqz(&p, &r, t2, lbl_decready);
586 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
587 
588 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
589 		uasm_i_sync(&p, __SYNC_mb);
590 	}
591 
592 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
593 		/*
594 		 * At this point it is safe for all VPEs to proceed with
595 		 * execution. This VPE will set the top bit of ready_count
596 		 * to indicate to the other VPEs that they may continue.
597 		 */
598 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
599 
600 		/*
601 		 * This core will be reliant upon another core sending a
602 		 * power-up command to the CPC in order to resume operation.
603 		 * Thus an arbitrary VPE can't trigger the core leaving the
604 		 * idle state and the one that disables coherence might as well
605 		 * be the one to re-enable it. The rest will continue from here
606 		 * after that has been done.
607 		 */
608 		uasm_build_label(&l, p, lbl_secondary_cont);
609 
610 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
611 		uasm_i_sync(&p, __SYNC_mb);
612 	}
613 
614 	/* The core is coherent, time to return to C code */
615 	uasm_i_jr(&p, ra);
616 	uasm_i_nop(&p);
617 
618 gen_done:
619 	/* Ensure the code didn't exceed the resources allocated for it */
620 	BUG_ON((p - buf) > max_instrs);
621 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
622 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
623 
624 	/* Patch branch offsets */
625 	uasm_resolve_relocs(relocs, labels);
626 
627 	/* Flush the icache */
628 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
629 
630 	return buf;
631 out_err:
632 	kfree(buf);
633 	return NULL;
634 }
635 
636 static int cps_pm_online_cpu(unsigned int cpu)
637 {
638 	enum cps_pm_state state;
639 	unsigned core = cpu_core(&cpu_data[cpu]);
640 	void *entry_fn, *core_rc;
641 
642 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
643 		if (per_cpu(nc_asm_enter, core)[state])
644 			continue;
645 		if (!test_bit(state, state_support))
646 			continue;
647 
648 		entry_fn = cps_gen_entry_code(cpu, state);
649 		if (!entry_fn) {
650 			pr_err("Failed to generate core %u state %u entry\n",
651 			       core, state);
652 			clear_bit(state, state_support);
653 		}
654 
655 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
656 	}
657 
658 	if (!per_cpu(ready_count, core)) {
659 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
660 		if (!core_rc) {
661 			pr_err("Failed allocate core %u ready_count\n", core);
662 			return -ENOMEM;
663 		}
664 		per_cpu(ready_count, core) = core_rc;
665 	}
666 
667 	return 0;
668 }
669 
670 static int cps_pm_power_notifier(struct notifier_block *this,
671 				 unsigned long event, void *ptr)
672 {
673 	unsigned int stat;
674 
675 	switch (event) {
676 	case PM_SUSPEND_PREPARE:
677 		stat = read_cpc_cl_stat_conf();
678 		/*
679 		 * If we're attempting to suspend the system and power down all
680 		 * of the cores, the JTAG detect bit indicates that the CPC will
681 		 * instead put the cores into clock-off state. In this state
682 		 * a connected debugger can cause the CPU to attempt
683 		 * interactions with the powered down system. At best this will
684 		 * fail. At worst, it can hang the NoC, requiring a hard reset.
685 		 * To avoid this, just block system suspend if a JTAG probe
686 		 * is detected.
687 		 */
688 		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
689 			pr_warn("JTAG probe is connected - abort suspend\n");
690 			return NOTIFY_BAD;
691 		}
692 		return NOTIFY_DONE;
693 	default:
694 		return NOTIFY_DONE;
695 	}
696 }
697 
698 static int __init cps_pm_init(void)
699 {
700 	/* A CM is required for all non-coherent states */
701 	if (!mips_cm_present()) {
702 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
703 		return 0;
704 	}
705 
706 	/*
707 	 * If interrupts were enabled whilst running a wait instruction on a
708 	 * non-coherent core then the VPE may end up processing interrupts
709 	 * whilst non-coherent. That would be bad.
710 	 */
711 	if (cpu_wait == r4k_wait_irqoff)
712 		set_bit(CPS_PM_NC_WAIT, state_support);
713 	else
714 		pr_warn("pm-cps: non-coherent wait unavailable\n");
715 
716 	/* Detect whether a CPC is present */
717 	if (mips_cpc_present()) {
718 		/* Detect whether clock gating is implemented */
719 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
720 			set_bit(CPS_PM_CLOCK_GATED, state_support);
721 		else
722 			pr_warn("pm-cps: CPC does not support clock gating\n");
723 
724 		/* Power gating is available with CPS SMP & any CPC */
725 		if (mips_cps_smp_in_use())
726 			set_bit(CPS_PM_POWER_GATED, state_support);
727 		else
728 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
729 	} else {
730 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
731 	}
732 
733 	pm_notifier(cps_pm_power_notifier, 0);
734 
735 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
736 				 cps_pm_online_cpu, NULL);
737 }
738 arch_initcall(cps_pm_init);
739