xref: /openbmc/linux/arch/mips/kernel/pm-cps.c (revision 1491eaf9)
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 
15 #include <asm/asm-offsets.h>
16 #include <asm/cacheflush.h>
17 #include <asm/cacheops.h>
18 #include <asm/idle.h>
19 #include <asm/mips-cm.h>
20 #include <asm/mips-cpc.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 static DEFINE_PER_CPU_ALIGNED(void*, ready_count_alloc);
59 
60 /* Indicates online CPUs coupled with the current CPU */
61 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
62 
63 /*
64  * Used to synchronize entry to deep idle states. Actually per-core rather
65  * than per-CPU.
66  */
67 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
68 
69 /* Saved CPU state across the CPS_PM_POWER_GATED state */
70 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
71 
72 /* A somewhat arbitrary number of labels & relocs for uasm */
73 static struct uasm_label labels[32] __initdata;
74 static struct uasm_reloc relocs[32] __initdata;
75 
76 /* CPU dependant sync types */
77 static unsigned stype_intervention;
78 static unsigned stype_memory;
79 static unsigned stype_ordering;
80 
81 enum mips_reg {
82 	zero, at, v0, v1, a0, a1, a2, a3,
83 	t0, t1, t2, t3, t4, t5, t6, t7,
84 	s0, s1, s2, s3, s4, s5, s6, s7,
85 	t8, t9, k0, k1, gp, sp, fp, ra,
86 };
87 
88 bool cps_pm_support_state(enum cps_pm_state state)
89 {
90 	return test_bit(state, state_support);
91 }
92 
93 static void coupled_barrier(atomic_t *a, unsigned online)
94 {
95 	/*
96 	 * This function is effectively the same as
97 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
98 	 * there's no cpuidle device.
99 	 */
100 
101 	if (!coupled_coherence)
102 		return;
103 
104 	smp_mb__before_atomic();
105 	atomic_inc(a);
106 
107 	while (atomic_read(a) < online)
108 		cpu_relax();
109 
110 	if (atomic_inc_return(a) == online * 2) {
111 		atomic_set(a, 0);
112 		return;
113 	}
114 
115 	while (atomic_read(a) > online)
116 		cpu_relax();
117 }
118 
119 int cps_pm_enter_state(enum cps_pm_state state)
120 {
121 	unsigned cpu = smp_processor_id();
122 	unsigned core = current_cpu_data.core;
123 	unsigned online, left;
124 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
125 	u32 *core_ready_count, *nc_core_ready_count;
126 	void *nc_addr;
127 	cps_nc_entry_fn entry;
128 	struct core_boot_config *core_cfg;
129 	struct vpe_boot_config *vpe_cfg;
130 
131 	/* Check that there is an entry function for this state */
132 	entry = per_cpu(nc_asm_enter, core)[state];
133 	if (!entry)
134 		return -EINVAL;
135 
136 	/* Calculate which coupled CPUs (VPEs) are online */
137 #ifdef CONFIG_MIPS_MT
138 	if (cpu_online(cpu)) {
139 		cpumask_and(coupled_mask, cpu_online_mask,
140 			    &cpu_sibling_map[cpu]);
141 		online = cpumask_weight(coupled_mask);
142 		cpumask_clear_cpu(cpu, coupled_mask);
143 	} else
144 #endif
145 	{
146 		cpumask_clear(coupled_mask);
147 		online = 1;
148 	}
149 
150 	/* Setup the VPE to run mips_cps_pm_restore when started again */
151 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
152 		/* Power gating relies upon CPS SMP */
153 		if (!mips_cps_smp_in_use())
154 			return -EINVAL;
155 
156 		core_cfg = &mips_cps_core_bootcfg[core];
157 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
158 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
159 		vpe_cfg->gp = (unsigned long)current_thread_info();
160 		vpe_cfg->sp = 0;
161 	}
162 
163 	/* Indicate that this CPU might not be coherent */
164 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
165 	smp_mb__after_atomic();
166 
167 	/* Create a non-coherent mapping of the core ready_count */
168 	core_ready_count = per_cpu(ready_count, core);
169 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
170 				   (unsigned long)core_ready_count);
171 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
172 	nc_core_ready_count = nc_addr;
173 
174 	/* Ensure ready_count is zero-initialised before the assembly runs */
175 	ACCESS_ONCE(*nc_core_ready_count) = 0;
176 	coupled_barrier(&per_cpu(pm_barrier, core), online);
177 
178 	/* Run the generated entry code */
179 	left = entry(online, nc_core_ready_count);
180 
181 	/* Remove the non-coherent mapping of ready_count */
182 	kunmap_noncoherent();
183 
184 	/* Indicate that this CPU is definitely coherent */
185 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
186 
187 	/*
188 	 * If this VPE is the first to leave the non-coherent wait state then
189 	 * it needs to wake up any coupled VPEs still running their wait
190 	 * instruction so that they return to cpuidle, which can then complete
191 	 * coordination between the coupled VPEs & provide the governor with
192 	 * a chance to reflect on the length of time the VPEs were in the
193 	 * idle state.
194 	 */
195 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
196 		arch_send_call_function_ipi_mask(coupled_mask);
197 
198 	return 0;
199 }
200 
201 static void __init cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
202 					 struct uasm_reloc **pr,
203 					 const struct cache_desc *cache,
204 					 unsigned op, int lbl)
205 {
206 	unsigned cache_size = cache->ways << cache->waybit;
207 	unsigned i;
208 	const unsigned unroll_lines = 32;
209 
210 	/* If the cache isn't present this function has it easy */
211 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
212 		return;
213 
214 	/* Load base address */
215 	UASM_i_LA(pp, t0, (long)CKSEG0);
216 
217 	/* Calculate end address */
218 	if (cache_size < 0x8000)
219 		uasm_i_addiu(pp, t1, t0, cache_size);
220 	else
221 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
222 
223 	/* Start of cache op loop */
224 	uasm_build_label(pl, *pp, lbl);
225 
226 	/* Generate the cache ops */
227 	for (i = 0; i < unroll_lines; i++) {
228 		if (cpu_has_mips_r6) {
229 			uasm_i_cache(pp, op, 0, t0);
230 			uasm_i_addiu(pp, t0, t0, cache->linesz);
231 		} else {
232 			uasm_i_cache(pp, op, i * cache->linesz, t0);
233 		}
234 	}
235 
236 	if (!cpu_has_mips_r6)
237 		/* Update the base address */
238 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
239 
240 	/* Loop if we haven't reached the end address yet */
241 	uasm_il_bne(pp, pr, t0, t1, lbl);
242 	uasm_i_nop(pp);
243 }
244 
245 static int __init cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
246 				    struct uasm_reloc **pr,
247 				    const struct cpuinfo_mips *cpu_info,
248 				    int lbl)
249 {
250 	unsigned i, fsb_size = 8;
251 	unsigned num_loads = (fsb_size * 3) / 2;
252 	unsigned line_stride = 2;
253 	unsigned line_size = cpu_info->dcache.linesz;
254 	unsigned perf_counter, perf_event;
255 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
256 
257 	/*
258 	 * Determine whether this CPU requires an FSB flush, and if so which
259 	 * performance counter/event reflect stalls due to a full FSB.
260 	 */
261 	switch (__get_cpu_type(cpu_info->cputype)) {
262 	case CPU_INTERAPTIV:
263 		perf_counter = 1;
264 		perf_event = 51;
265 		break;
266 
267 	case CPU_PROAPTIV:
268 		/* Newer proAptiv cores don't require this workaround */
269 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
270 			return 0;
271 
272 		/* On older ones it's unavailable */
273 		return -1;
274 
275 	/* CPUs which do not require the workaround */
276 	case CPU_P5600:
277 	case CPU_I6400:
278 		return 0;
279 
280 	default:
281 		WARN_ONCE(1, "pm-cps: FSB flush unsupported for this CPU\n");
282 		return -1;
283 	}
284 
285 	/*
286 	 * Ensure that the fill/store buffer (FSB) is not holding the results
287 	 * of a prefetch, since if it is then the CPC sequencer may become
288 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
289 	 */
290 
291 	/* Preserve perf counter setup */
292 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
293 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
294 
295 	/* Setup perf counter to count FSB full pipeline stalls */
296 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
297 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
298 	uasm_i_ehb(pp);
299 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
300 	uasm_i_ehb(pp);
301 
302 	/* Base address for loads */
303 	UASM_i_LA(pp, t0, (long)CKSEG0);
304 
305 	/* Start of clear loop */
306 	uasm_build_label(pl, *pp, lbl);
307 
308 	/* Perform some loads to fill the FSB */
309 	for (i = 0; i < num_loads; i++)
310 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
311 
312 	/*
313 	 * Invalidate the new D-cache entries so that the cache will need
314 	 * refilling (via the FSB) if the loop is executed again.
315 	 */
316 	for (i = 0; i < num_loads; i++) {
317 		uasm_i_cache(pp, Hit_Invalidate_D,
318 			     i * line_size * line_stride, t0);
319 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
320 			     i * line_size * line_stride, t0);
321 	}
322 
323 	/* Completion barrier */
324 	uasm_i_sync(pp, stype_memory);
325 	uasm_i_ehb(pp);
326 
327 	/* Check whether the pipeline stalled due to the FSB being full */
328 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
329 
330 	/* Loop if it didn't */
331 	uasm_il_beqz(pp, pr, t1, lbl);
332 	uasm_i_nop(pp);
333 
334 	/* Restore perf counter 1. The count may well now be wrong... */
335 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
336 	uasm_i_ehb(pp);
337 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
338 	uasm_i_ehb(pp);
339 
340 	return 0;
341 }
342 
343 static void __init cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
344 				       struct uasm_reloc **pr,
345 				       unsigned r_addr, int lbl)
346 {
347 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
348 	uasm_build_label(pl, *pp, lbl);
349 	uasm_i_ll(pp, t1, 0, r_addr);
350 	uasm_i_or(pp, t1, t1, t0);
351 	uasm_i_sc(pp, t1, 0, r_addr);
352 	uasm_il_beqz(pp, pr, t1, lbl);
353 	uasm_i_nop(pp);
354 }
355 
356 static void * __init cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
357 {
358 	struct uasm_label *l = labels;
359 	struct uasm_reloc *r = relocs;
360 	u32 *buf, *p;
361 	const unsigned r_online = a0;
362 	const unsigned r_nc_count = a1;
363 	const unsigned r_pcohctl = t7;
364 	const unsigned max_instrs = 256;
365 	unsigned cpc_cmd;
366 	int err;
367 	enum {
368 		lbl_incready = 1,
369 		lbl_poll_cont,
370 		lbl_secondary_hang,
371 		lbl_disable_coherence,
372 		lbl_flush_fsb,
373 		lbl_invicache,
374 		lbl_flushdcache,
375 		lbl_hang,
376 		lbl_set_cont,
377 		lbl_secondary_cont,
378 		lbl_decready,
379 	};
380 
381 	/* Allocate a buffer to hold the generated code */
382 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
383 	if (!buf)
384 		return NULL;
385 
386 	/* Clear labels & relocs ready for (re)use */
387 	memset(labels, 0, sizeof(labels));
388 	memset(relocs, 0, sizeof(relocs));
389 
390 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
391 		/* Power gating relies upon CPS SMP */
392 		if (!mips_cps_smp_in_use())
393 			goto out_err;
394 
395 		/*
396 		 * Save CPU state. Note the non-standard calling convention
397 		 * with the return address placed in v0 to avoid clobbering
398 		 * the ra register before it is saved.
399 		 */
400 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
401 		uasm_i_jalr(&p, v0, t0);
402 		uasm_i_nop(&p);
403 	}
404 
405 	/*
406 	 * Load addresses of required CM & CPC registers. This is done early
407 	 * because they're needed in both the enable & disable coherence steps
408 	 * but in the coupled case the enable step will only run on one VPE.
409 	 */
410 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
411 
412 	if (coupled_coherence) {
413 		/* Increment ready_count */
414 		uasm_i_sync(&p, stype_ordering);
415 		uasm_build_label(&l, p, lbl_incready);
416 		uasm_i_ll(&p, t1, 0, r_nc_count);
417 		uasm_i_addiu(&p, t2, t1, 1);
418 		uasm_i_sc(&p, t2, 0, r_nc_count);
419 		uasm_il_beqz(&p, &r, t2, lbl_incready);
420 		uasm_i_addiu(&p, t1, t1, 1);
421 
422 		/* Ordering barrier */
423 		uasm_i_sync(&p, stype_ordering);
424 
425 		/*
426 		 * If this is the last VPE to become ready for non-coherence
427 		 * then it should branch below.
428 		 */
429 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
430 		uasm_i_nop(&p);
431 
432 		if (state < CPS_PM_POWER_GATED) {
433 			/*
434 			 * Otherwise this is not the last VPE to become ready
435 			 * for non-coherence. It needs to wait until coherence
436 			 * has been disabled before proceeding, which it will do
437 			 * by polling for the top bit of ready_count being set.
438 			 */
439 			uasm_i_addiu(&p, t1, zero, -1);
440 			uasm_build_label(&l, p, lbl_poll_cont);
441 			uasm_i_lw(&p, t0, 0, r_nc_count);
442 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
443 			uasm_i_ehb(&p);
444 			uasm_i_yield(&p, zero, t1);
445 			uasm_il_b(&p, &r, lbl_poll_cont);
446 			uasm_i_nop(&p);
447 		} else {
448 			/*
449 			 * The core will lose power & this VPE will not continue
450 			 * so it can simply halt here.
451 			 */
452 			uasm_i_addiu(&p, t0, zero, TCHALT_H);
453 			uasm_i_mtc0(&p, t0, 2, 4);
454 			uasm_build_label(&l, p, lbl_secondary_hang);
455 			uasm_il_b(&p, &r, lbl_secondary_hang);
456 			uasm_i_nop(&p);
457 		}
458 	}
459 
460 	/*
461 	 * This is the point of no return - this VPE will now proceed to
462 	 * disable coherence. At this point we *must* be sure that no other
463 	 * VPE within the core will interfere with the L1 dcache.
464 	 */
465 	uasm_build_label(&l, p, lbl_disable_coherence);
466 
467 	/* Invalidate the L1 icache */
468 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
469 			      Index_Invalidate_I, lbl_invicache);
470 
471 	/* Writeback & invalidate the L1 dcache */
472 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
473 			      Index_Writeback_Inv_D, lbl_flushdcache);
474 
475 	/* Completion barrier */
476 	uasm_i_sync(&p, stype_memory);
477 	uasm_i_ehb(&p);
478 
479 	/*
480 	 * Disable all but self interventions. The load from COHCTL is defined
481 	 * by the interAptiv & proAptiv SUMs as ensuring that the operation
482 	 * resulting from the preceding store is complete.
483 	 */
484 	uasm_i_addiu(&p, t0, zero, 1 << cpu_data[cpu].core);
485 	uasm_i_sw(&p, t0, 0, r_pcohctl);
486 	uasm_i_lw(&p, t0, 0, r_pcohctl);
487 
488 	/* Sync to ensure previous interventions are complete */
489 	uasm_i_sync(&p, stype_intervention);
490 	uasm_i_ehb(&p);
491 
492 	/* Disable coherence */
493 	uasm_i_sw(&p, zero, 0, r_pcohctl);
494 	uasm_i_lw(&p, t0, 0, r_pcohctl);
495 
496 	if (state >= CPS_PM_CLOCK_GATED) {
497 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
498 					lbl_flush_fsb);
499 		if (err)
500 			goto out_err;
501 
502 		/* Determine the CPC command to issue */
503 		switch (state) {
504 		case CPS_PM_CLOCK_GATED:
505 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
506 			break;
507 		case CPS_PM_POWER_GATED:
508 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
509 			break;
510 		default:
511 			BUG();
512 			goto out_err;
513 		}
514 
515 		/* Issue the CPC command */
516 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
517 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
518 		uasm_i_sw(&p, t1, 0, t0);
519 
520 		if (state == CPS_PM_POWER_GATED) {
521 			/* If anything goes wrong just hang */
522 			uasm_build_label(&l, p, lbl_hang);
523 			uasm_il_b(&p, &r, lbl_hang);
524 			uasm_i_nop(&p);
525 
526 			/*
527 			 * There's no point generating more code, the core is
528 			 * powered down & if powered back up will run from the
529 			 * reset vector not from here.
530 			 */
531 			goto gen_done;
532 		}
533 
534 		/* Completion barrier */
535 		uasm_i_sync(&p, stype_memory);
536 		uasm_i_ehb(&p);
537 	}
538 
539 	if (state == CPS_PM_NC_WAIT) {
540 		/*
541 		 * At this point it is safe for all VPEs to proceed with
542 		 * execution. This VPE will set the top bit of ready_count
543 		 * to indicate to the other VPEs that they may continue.
544 		 */
545 		if (coupled_coherence)
546 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
547 					    lbl_set_cont);
548 
549 		/*
550 		 * VPEs which did not disable coherence will continue
551 		 * executing, after coherence has been disabled, from this
552 		 * point.
553 		 */
554 		uasm_build_label(&l, p, lbl_secondary_cont);
555 
556 		/* Now perform our wait */
557 		uasm_i_wait(&p, 0);
558 	}
559 
560 	/*
561 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
562 	 * will run this. The first will actually re-enable coherence & the
563 	 * rest will just be performing a rather unusual nop.
564 	 */
565 	uasm_i_addiu(&p, t0, zero, CM_GCR_Cx_COHERENCE_COHDOMAINEN_MSK);
566 	uasm_i_sw(&p, t0, 0, r_pcohctl);
567 	uasm_i_lw(&p, t0, 0, r_pcohctl);
568 
569 	/* Completion barrier */
570 	uasm_i_sync(&p, stype_memory);
571 	uasm_i_ehb(&p);
572 
573 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
574 		/* Decrement ready_count */
575 		uasm_build_label(&l, p, lbl_decready);
576 		uasm_i_sync(&p, stype_ordering);
577 		uasm_i_ll(&p, t1, 0, r_nc_count);
578 		uasm_i_addiu(&p, t2, t1, -1);
579 		uasm_i_sc(&p, t2, 0, r_nc_count);
580 		uasm_il_beqz(&p, &r, t2, lbl_decready);
581 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
582 
583 		/* Ordering barrier */
584 		uasm_i_sync(&p, stype_ordering);
585 	}
586 
587 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
588 		/*
589 		 * At this point it is safe for all VPEs to proceed with
590 		 * execution. This VPE will set the top bit of ready_count
591 		 * to indicate to the other VPEs that they may continue.
592 		 */
593 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
594 
595 		/*
596 		 * This core will be reliant upon another core sending a
597 		 * power-up command to the CPC in order to resume operation.
598 		 * Thus an arbitrary VPE can't trigger the core leaving the
599 		 * idle state and the one that disables coherence might as well
600 		 * be the one to re-enable it. The rest will continue from here
601 		 * after that has been done.
602 		 */
603 		uasm_build_label(&l, p, lbl_secondary_cont);
604 
605 		/* Ordering barrier */
606 		uasm_i_sync(&p, stype_ordering);
607 	}
608 
609 	/* The core is coherent, time to return to C code */
610 	uasm_i_jr(&p, ra);
611 	uasm_i_nop(&p);
612 
613 gen_done:
614 	/* Ensure the code didn't exceed the resources allocated for it */
615 	BUG_ON((p - buf) > max_instrs);
616 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
617 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
618 
619 	/* Patch branch offsets */
620 	uasm_resolve_relocs(relocs, labels);
621 
622 	/* Flush the icache */
623 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
624 
625 	return buf;
626 out_err:
627 	kfree(buf);
628 	return NULL;
629 }
630 
631 static int __init cps_gen_core_entries(unsigned cpu)
632 {
633 	enum cps_pm_state state;
634 	unsigned core = cpu_data[cpu].core;
635 	unsigned dlinesz = cpu_data[cpu].dcache.linesz;
636 	void *entry_fn, *core_rc;
637 
638 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
639 		if (per_cpu(nc_asm_enter, core)[state])
640 			continue;
641 		if (!test_bit(state, state_support))
642 			continue;
643 
644 		entry_fn = cps_gen_entry_code(cpu, state);
645 		if (!entry_fn) {
646 			pr_err("Failed to generate core %u state %u entry\n",
647 			       core, state);
648 			clear_bit(state, state_support);
649 		}
650 
651 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
652 	}
653 
654 	if (!per_cpu(ready_count, core)) {
655 		core_rc = kmalloc(dlinesz * 2, GFP_KERNEL);
656 		if (!core_rc) {
657 			pr_err("Failed allocate core %u ready_count\n", core);
658 			return -ENOMEM;
659 		}
660 		per_cpu(ready_count_alloc, core) = core_rc;
661 
662 		/* Ensure ready_count is aligned to a cacheline boundary */
663 		core_rc += dlinesz - 1;
664 		core_rc = (void *)((unsigned long)core_rc & ~(dlinesz - 1));
665 		per_cpu(ready_count, core) = core_rc;
666 	}
667 
668 	return 0;
669 }
670 
671 static int __init cps_pm_init(void)
672 {
673 	unsigned cpu;
674 	int err;
675 
676 	/* Detect appropriate sync types for the system */
677 	switch (current_cpu_data.cputype) {
678 	case CPU_INTERAPTIV:
679 	case CPU_PROAPTIV:
680 	case CPU_M5150:
681 	case CPU_P5600:
682 	case CPU_I6400:
683 		stype_intervention = 0x2;
684 		stype_memory = 0x3;
685 		stype_ordering = 0x10;
686 		break;
687 
688 	default:
689 		pr_warn("Power management is using heavyweight sync 0\n");
690 	}
691 
692 	/* A CM is required for all non-coherent states */
693 	if (!mips_cm_present()) {
694 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
695 		goto out;
696 	}
697 
698 	/*
699 	 * If interrupts were enabled whilst running a wait instruction on a
700 	 * non-coherent core then the VPE may end up processing interrupts
701 	 * whilst non-coherent. That would be bad.
702 	 */
703 	if (cpu_wait == r4k_wait_irqoff)
704 		set_bit(CPS_PM_NC_WAIT, state_support);
705 	else
706 		pr_warn("pm-cps: non-coherent wait unavailable\n");
707 
708 	/* Detect whether a CPC is present */
709 	if (mips_cpc_present()) {
710 		/* Detect whether clock gating is implemented */
711 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL_MSK)
712 			set_bit(CPS_PM_CLOCK_GATED, state_support);
713 		else
714 			pr_warn("pm-cps: CPC does not support clock gating\n");
715 
716 		/* Power gating is available with CPS SMP & any CPC */
717 		if (mips_cps_smp_in_use())
718 			set_bit(CPS_PM_POWER_GATED, state_support);
719 		else
720 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
721 	} else {
722 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
723 	}
724 
725 	for_each_present_cpu(cpu) {
726 		err = cps_gen_core_entries(cpu);
727 		if (err)
728 			return err;
729 	}
730 out:
731 	return 0;
732 }
733 arch_initcall(cps_pm_init);
734