1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33 
34 struct cpu_hw_events {
35 	/* Array of events on this cpu. */
36 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
37 
38 	/*
39 	 * Set the bit (indexed by the counter number) when the counter
40 	 * is used for an event.
41 	 */
42 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43 
44 	/*
45 	 * Software copy of the control register for each performance counter.
46 	 * MIPS CPUs vary in performance counters. They use this differently,
47 	 * and even may not use it.
48 	 */
49 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 	.saved_ctrl = {0},
53 };
54 
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57 	unsigned int event_id;
58 	/*
59 	 * MIPS performance counters are indexed starting from 0.
60 	 * CNTR_EVEN indicates the indexes of the counters to be used are
61 	 * even numbers.
62 	 */
63 	unsigned int cntr_mask;
64 	#define CNTR_EVEN	0x55555555
65 	#define CNTR_ODD	0xaaaaaaaa
66 	#define CNTR_ALL	0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68 	enum {
69 		T  = 0,
70 		V  = 1,
71 		P  = 2,
72 	} range;
73 #else
74 	#define T
75 	#define V
76 	#define P
77 #endif
78 };
79 
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82 
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84 
85 struct mips_pmu {
86 	u64		max_period;
87 	u64		valid_count;
88 	u64		overflow;
89 	const char	*name;
90 	int		irq;
91 	u64		(*read_counter)(unsigned int idx);
92 	void		(*write_counter)(unsigned int idx, u64 val);
93 	const struct mips_perf_event *(*map_raw_event)(u64 config);
94 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 	const struct mips_perf_event (*cache_event_map)
96 				[PERF_COUNT_HW_CACHE_MAX]
97 				[PERF_COUNT_HW_CACHE_OP_MAX]
98 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99 	unsigned int	num_counters;
100 };
101 
102 static struct mips_pmu mipspmu;
103 
104 #define M_CONFIG1_PC	(1 << 4)
105 
106 #define M_PERFCTL_EXL			(1      <<  0)
107 #define M_PERFCTL_KERNEL		(1      <<  1)
108 #define M_PERFCTL_SUPERVISOR		(1      <<  2)
109 #define M_PERFCTL_USER			(1      <<  3)
110 #define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
111 #define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
112 #define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
113 
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter)		0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter)		((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119 
120 #define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
121 #define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
122 #define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
124 #define M_PERFCTL_WIDE			(1      << 30)
125 #define M_PERFCTL_MORE			(1      << 31)
126 #define M_PERFCTL_TC			(1      << 30)
127 
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
129 					M_PERFCTL_KERNEL |		\
130 					M_PERFCTL_USER |		\
131 					M_PERFCTL_SUPERVISOR |		\
132 					M_PERFCTL_INTERRUPT_ENABLE)
133 
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK		0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK		0xfe0
140 
141 
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144 
145 static DEFINE_RWLOCK(pmuint_rwlock);
146 
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
149 			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
156 			 0 : smp_processor_id())
157 #endif
158 
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162 	if (num_possible_cpus() > 1)
163 		return 1;
164 
165 	return 0;
166 }
167 
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170 	return counters >> vpe_shift();
171 }
172 
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id()	0
175 
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177 
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182 
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185 	if (vpe_id() == 1)
186 		idx = (idx + 2) & 3;
187 	return idx;
188 }
189 
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
193 
194 	switch (idx) {
195 	case 0:
196 		/*
197 		 * The counters are unsigned, we must cast to truncate
198 		 * off the high bits.
199 		 */
200 		return (u32)read_c0_perfcntr0();
201 	case 1:
202 		return (u32)read_c0_perfcntr1();
203 	case 2:
204 		return (u32)read_c0_perfcntr2();
205 	case 3:
206 		return (u32)read_c0_perfcntr3();
207 	default:
208 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 		return 0;
210 	}
211 }
212 
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
216 
217 	switch (idx) {
218 	case 0:
219 		return read_c0_perfcntr0_64();
220 	case 1:
221 		return read_c0_perfcntr1_64();
222 	case 2:
223 		return read_c0_perfcntr2_64();
224 	case 3:
225 		return read_c0_perfcntr3_64();
226 	default:
227 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 		return 0;
229 	}
230 }
231 
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
235 
236 	switch (idx) {
237 	case 0:
238 		write_c0_perfcntr0(val);
239 		return;
240 	case 1:
241 		write_c0_perfcntr1(val);
242 		return;
243 	case 2:
244 		write_c0_perfcntr2(val);
245 		return;
246 	case 3:
247 		write_c0_perfcntr3(val);
248 		return;
249 	}
250 }
251 
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
255 
256 	switch (idx) {
257 	case 0:
258 		write_c0_perfcntr0_64(val);
259 		return;
260 	case 1:
261 		write_c0_perfcntr1_64(val);
262 		return;
263 	case 2:
264 		write_c0_perfcntr2_64(val);
265 		return;
266 	case 3:
267 		write_c0_perfcntr3_64(val);
268 		return;
269 	}
270 }
271 
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
275 
276 	switch (idx) {
277 	case 0:
278 		return read_c0_perfctrl0();
279 	case 1:
280 		return read_c0_perfctrl1();
281 	case 2:
282 		return read_c0_perfctrl2();
283 	case 3:
284 		return read_c0_perfctrl3();
285 	default:
286 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 		return 0;
288 	}
289 }
290 
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
294 
295 	switch (idx) {
296 	case 0:
297 		write_c0_perfctrl0(val);
298 		return;
299 	case 1:
300 		write_c0_perfctrl1(val);
301 		return;
302 	case 2:
303 		write_c0_perfctrl2(val);
304 		return;
305 	case 3:
306 		write_c0_perfctrl3(val);
307 		return;
308 	}
309 }
310 
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 				    struct hw_perf_event *hwc)
313 {
314 	int i;
315 
316 	/*
317 	 * We only need to care the counter mask. The range has been
318 	 * checked definitely.
319 	 */
320 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321 
322 	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 		/*
324 		 * Note that some MIPS perf events can be counted by both
325 		 * even and odd counters, wheresas many other are only by
326 		 * even _or_ odd counters. This introduces an issue that
327 		 * when the former kind of event takes the counter the
328 		 * latter kind of event wants to use, then the "counter
329 		 * allocation" for the latter event will fail. In fact if
330 		 * they can be dynamically swapped, they both feel happy.
331 		 * But here we leave this issue alone for now.
332 		 */
333 		if (test_bit(i, &cntr_mask) &&
334 			!test_and_set_bit(i, cpuc->used_mask))
335 			return i;
336 	}
337 
338 	return -EAGAIN;
339 }
340 
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
344 
345 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346 
347 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 		/* Make sure interrupt enabled. */
350 		M_PERFCTL_INTERRUPT_ENABLE;
351 	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 		/* enable the counter for the calling thread */
353 		cpuc->saved_ctrl[idx] |=
354 			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
355 
356 	/*
357 	 * We do not actually let the counter run. Leave it until start().
358 	 */
359 }
360 
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
364 	unsigned long flags;
365 
366 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367 
368 	local_irq_save(flags);
369 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 	local_irq_restore(flags);
373 }
374 
375 static int mipspmu_event_set_period(struct perf_event *event,
376 				    struct hw_perf_event *hwc,
377 				    int idx)
378 {
379 	u64 left = local64_read(&hwc->period_left);
380 	u64 period = hwc->sample_period;
381 	int ret = 0;
382 
383 	if (unlikely((left + period) & (1ULL << 63))) {
384 		/* left underflowed by more than period. */
385 		left = period;
386 		local64_set(&hwc->period_left, left);
387 		hwc->last_period = period;
388 		ret = 1;
389 	} else	if (unlikely((left + period) <= period)) {
390 		/* left underflowed by less than period. */
391 		left += period;
392 		local64_set(&hwc->period_left, left);
393 		hwc->last_period = period;
394 		ret = 1;
395 	}
396 
397 	if (left > mipspmu.max_period) {
398 		left = mipspmu.max_period;
399 		local64_set(&hwc->period_left, left);
400 	}
401 
402 	local64_set(&hwc->prev_count, mipspmu.overflow - left);
403 
404 	mipspmu.write_counter(idx, mipspmu.overflow - left);
405 
406 	perf_event_update_userpage(event);
407 
408 	return ret;
409 }
410 
411 static void mipspmu_event_update(struct perf_event *event,
412 				 struct hw_perf_event *hwc,
413 				 int idx)
414 {
415 	u64 prev_raw_count, new_raw_count;
416 	u64 delta;
417 
418 again:
419 	prev_raw_count = local64_read(&hwc->prev_count);
420 	new_raw_count = mipspmu.read_counter(idx);
421 
422 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 				new_raw_count) != prev_raw_count)
424 		goto again;
425 
426 	delta = new_raw_count - prev_raw_count;
427 
428 	local64_add(delta, &event->count);
429 	local64_sub(delta, &hwc->period_left);
430 }
431 
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434 	struct hw_perf_event *hwc = &event->hw;
435 
436 	if (flags & PERF_EF_RELOAD)
437 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438 
439 	hwc->state = 0;
440 
441 	/* Set the period for the event. */
442 	mipspmu_event_set_period(event, hwc, hwc->idx);
443 
444 	/* Enable the event. */
445 	mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447 
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450 	struct hw_perf_event *hwc = &event->hw;
451 
452 	if (!(hwc->state & PERF_HES_STOPPED)) {
453 		/* We are working on a local event. */
454 		mipsxx_pmu_disable_event(hwc->idx);
455 		barrier();
456 		mipspmu_event_update(event, hwc, hwc->idx);
457 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 	}
459 }
460 
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
464 	struct hw_perf_event *hwc = &event->hw;
465 	int idx;
466 	int err = 0;
467 
468 	perf_pmu_disable(event->pmu);
469 
470 	/* To look for a free counter for this event. */
471 	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472 	if (idx < 0) {
473 		err = idx;
474 		goto out;
475 	}
476 
477 	/*
478 	 * If there is an event in the counter we are going to use then
479 	 * make sure it is disabled.
480 	 */
481 	event->hw.idx = idx;
482 	mipsxx_pmu_disable_event(idx);
483 	cpuc->events[idx] = event;
484 
485 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 	if (flags & PERF_EF_START)
487 		mipspmu_start(event, PERF_EF_RELOAD);
488 
489 	/* Propagate our changes to the userspace mapping. */
490 	perf_event_update_userpage(event);
491 
492 out:
493 	perf_pmu_enable(event->pmu);
494 	return err;
495 }
496 
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
500 	struct hw_perf_event *hwc = &event->hw;
501 	int idx = hwc->idx;
502 
503 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504 
505 	mipspmu_stop(event, PERF_EF_UPDATE);
506 	cpuc->events[idx] = NULL;
507 	clear_bit(idx, cpuc->used_mask);
508 
509 	perf_event_update_userpage(event);
510 }
511 
512 static void mipspmu_read(struct perf_event *event)
513 {
514 	struct hw_perf_event *hwc = &event->hw;
515 
516 	/* Don't read disabled counters! */
517 	if (hwc->idx < 0)
518 		return;
519 
520 	mipspmu_event_update(event, hwc, hwc->idx);
521 }
522 
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526 	write_unlock(&pmuint_rwlock);
527 #endif
528 	resume_local_counters();
529 }
530 
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544 	pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546 	write_lock(&pmuint_rwlock);
547 #endif
548 }
549 
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553 
554 static int mipspmu_get_irq(void)
555 {
556 	int err;
557 
558 	if (mipspmu.irq >= 0) {
559 		/* Request my own irq handler. */
560 		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561 			IRQF_PERCPU | IRQF_NOBALANCING,
562 			"mips_perf_pmu", NULL);
563 		if (err) {
564 			pr_warning("Unable to request IRQ%d for MIPS "
565 			   "performance counters!\n", mipspmu.irq);
566 		}
567 	} else if (cp0_perfcount_irq < 0) {
568 		/*
569 		 * We are sharing the irq number with the timer interrupt.
570 		 */
571 		save_perf_irq = perf_irq;
572 		perf_irq = mipsxx_pmu_handle_shared_irq;
573 		err = 0;
574 	} else {
575 		pr_warning("The platform hasn't properly defined its "
576 			"interrupt controller.\n");
577 		err = -ENOENT;
578 	}
579 
580 	return err;
581 }
582 
583 static void mipspmu_free_irq(void)
584 {
585 	if (mipspmu.irq >= 0)
586 		free_irq(mipspmu.irq, NULL);
587 	else if (cp0_perfcount_irq < 0)
588 		perf_irq = save_perf_irq;
589 }
590 
591 /*
592  * mipsxx/rm9000/loongson2 have different performance counters, they have
593  * specific low-level init routines.
594  */
595 static void reset_counters(void *arg);
596 static int __hw_perf_event_init(struct perf_event *event);
597 
598 static void hw_perf_event_destroy(struct perf_event *event)
599 {
600 	if (atomic_dec_and_mutex_lock(&active_events,
601 				&pmu_reserve_mutex)) {
602 		/*
603 		 * We must not call the destroy function with interrupts
604 		 * disabled.
605 		 */
606 		on_each_cpu(reset_counters,
607 			(void *)(long)mipspmu.num_counters, 1);
608 		mipspmu_free_irq();
609 		mutex_unlock(&pmu_reserve_mutex);
610 	}
611 }
612 
613 static int mipspmu_event_init(struct perf_event *event)
614 {
615 	int err = 0;
616 
617 	/* does not support taken branch sampling */
618 	if (has_branch_stack(event))
619 		return -EOPNOTSUPP;
620 
621 	switch (event->attr.type) {
622 	case PERF_TYPE_RAW:
623 	case PERF_TYPE_HARDWARE:
624 	case PERF_TYPE_HW_CACHE:
625 		break;
626 
627 	default:
628 		return -ENOENT;
629 	}
630 
631 	if (event->cpu >= nr_cpumask_bits ||
632 	    (event->cpu >= 0 && !cpu_online(event->cpu)))
633 		return -ENODEV;
634 
635 	if (!atomic_inc_not_zero(&active_events)) {
636 		mutex_lock(&pmu_reserve_mutex);
637 		if (atomic_read(&active_events) == 0)
638 			err = mipspmu_get_irq();
639 
640 		if (!err)
641 			atomic_inc(&active_events);
642 		mutex_unlock(&pmu_reserve_mutex);
643 	}
644 
645 	if (err)
646 		return err;
647 
648 	return __hw_perf_event_init(event);
649 }
650 
651 static struct pmu pmu = {
652 	.pmu_enable	= mipspmu_enable,
653 	.pmu_disable	= mipspmu_disable,
654 	.event_init	= mipspmu_event_init,
655 	.add		= mipspmu_add,
656 	.del		= mipspmu_del,
657 	.start		= mipspmu_start,
658 	.stop		= mipspmu_stop,
659 	.read		= mipspmu_read,
660 };
661 
662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663 {
664 /*
665  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666  * event_id.
667  */
668 #ifdef CONFIG_MIPS_MT_SMP
669 	return ((unsigned int)pev->range << 24) |
670 		(pev->cntr_mask & 0xffff00) |
671 		(pev->event_id & 0xff);
672 #else
673 	return (pev->cntr_mask & 0xffff00) |
674 		(pev->event_id & 0xff);
675 #endif
676 }
677 
678 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679 {
680 
681 	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682 		return ERR_PTR(-EOPNOTSUPP);
683 	return &(*mipspmu.general_event_map)[idx];
684 }
685 
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688 	unsigned int cache_type, cache_op, cache_result;
689 	const struct mips_perf_event *pev;
690 
691 	cache_type = (config >> 0) & 0xff;
692 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693 		return ERR_PTR(-EINVAL);
694 
695 	cache_op = (config >> 8) & 0xff;
696 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697 		return ERR_PTR(-EINVAL);
698 
699 	cache_result = (config >> 16) & 0xff;
700 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 		return ERR_PTR(-EINVAL);
702 
703 	pev = &((*mipspmu.cache_event_map)
704 					[cache_type]
705 					[cache_op]
706 					[cache_result]);
707 
708 	if (pev->cntr_mask == 0)
709 		return ERR_PTR(-EOPNOTSUPP);
710 
711 	return pev;
712 
713 }
714 
715 static int validate_group(struct perf_event *event)
716 {
717 	struct perf_event *sibling, *leader = event->group_leader;
718 	struct cpu_hw_events fake_cpuc;
719 
720 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721 
722 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
723 		return -EINVAL;
724 
725 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
726 		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
727 			return -EINVAL;
728 	}
729 
730 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
731 		return -EINVAL;
732 
733 	return 0;
734 }
735 
736 /* This is needed by specific irq handlers in perf_event_*.c */
737 static void handle_associated_event(struct cpu_hw_events *cpuc,
738 				    int idx, struct perf_sample_data *data,
739 				    struct pt_regs *regs)
740 {
741 	struct perf_event *event = cpuc->events[idx];
742 	struct hw_perf_event *hwc = &event->hw;
743 
744 	mipspmu_event_update(event, hwc, idx);
745 	data->period = event->hw.last_period;
746 	if (!mipspmu_event_set_period(event, hwc, idx))
747 		return;
748 
749 	if (perf_event_overflow(event, data, regs))
750 		mipsxx_pmu_disable_event(idx);
751 }
752 
753 
754 static int __n_counters(void)
755 {
756 	if (!(read_c0_config1() & M_CONFIG1_PC))
757 		return 0;
758 	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
759 		return 1;
760 	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
761 		return 2;
762 	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
763 		return 3;
764 
765 	return 4;
766 }
767 
768 static int n_counters(void)
769 {
770 	int counters;
771 
772 	switch (current_cpu_type()) {
773 	case CPU_R10000:
774 		counters = 2;
775 		break;
776 
777 	case CPU_R12000:
778 	case CPU_R14000:
779 		counters = 4;
780 		break;
781 
782 	default:
783 		counters = __n_counters();
784 	}
785 
786 	return counters;
787 }
788 
789 static void reset_counters(void *arg)
790 {
791 	int counters = (int)(long)arg;
792 	switch (counters) {
793 	case 4:
794 		mipsxx_pmu_write_control(3, 0);
795 		mipspmu.write_counter(3, 0);
796 	case 3:
797 		mipsxx_pmu_write_control(2, 0);
798 		mipspmu.write_counter(2, 0);
799 	case 2:
800 		mipsxx_pmu_write_control(1, 0);
801 		mipspmu.write_counter(1, 0);
802 	case 1:
803 		mipsxx_pmu_write_control(0, 0);
804 		mipspmu.write_counter(0, 0);
805 	}
806 }
807 
808 /* 24K/34K/1004K cores can share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810 				[PERF_COUNT_HW_MAX] = {
811 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
813 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815 };
816 
817 /* 74K core has different branch event code. */
818 static const struct mips_perf_event mipsxx74Kcore_event_map
819 				[PERF_COUNT_HW_MAX] = {
820 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
822 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 };
825 
826 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
829 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
830 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
831 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
832 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
833 	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834 };
835 
836 static const struct mips_perf_event bmips5000_event_map
837 				[PERF_COUNT_HW_MAX] = {
838 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
839 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
840 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841 };
842 
843 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
844 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
846 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
847 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
848 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
849 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
850 };
851 
852 /* 24K/34K/1004K cores can share the same cache event map. */
853 static const struct mips_perf_event mipsxxcore_cache_map
854 				[PERF_COUNT_HW_CACHE_MAX]
855 				[PERF_COUNT_HW_CACHE_OP_MAX]
856 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
857 [C(L1D)] = {
858 	/*
859 	 * Like some other architectures (e.g. ARM), the performance
860 	 * counters don't differentiate between read and write
861 	 * accesses/misses, so this isn't strictly correct, but it's the
862 	 * best we can do. Writes and reads get combined.
863 	 */
864 	[C(OP_READ)] = {
865 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
866 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
867 	},
868 	[C(OP_WRITE)] = {
869 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
870 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
871 	},
872 },
873 [C(L1I)] = {
874 	[C(OP_READ)] = {
875 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
876 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
877 	},
878 	[C(OP_WRITE)] = {
879 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
880 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
881 	},
882 	[C(OP_PREFETCH)] = {
883 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
884 		/*
885 		 * Note that MIPS has only "hit" events countable for
886 		 * the prefetch operation.
887 		 */
888 	},
889 },
890 [C(LL)] = {
891 	[C(OP_READ)] = {
892 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
893 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
894 	},
895 	[C(OP_WRITE)] = {
896 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
897 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
898 	},
899 },
900 [C(DTLB)] = {
901 	[C(OP_READ)] = {
902 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
903 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
904 	},
905 	[C(OP_WRITE)] = {
906 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
907 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
908 	},
909 },
910 [C(ITLB)] = {
911 	[C(OP_READ)] = {
912 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
913 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
914 	},
915 	[C(OP_WRITE)] = {
916 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
917 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
918 	},
919 },
920 [C(BPU)] = {
921 	/* Using the same code for *HW_BRANCH* */
922 	[C(OP_READ)] = {
923 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
924 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
925 	},
926 	[C(OP_WRITE)] = {
927 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
928 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
929 	},
930 },
931 };
932 
933 /* 74K core has completely different cache event map. */
934 static const struct mips_perf_event mipsxx74Kcore_cache_map
935 				[PERF_COUNT_HW_CACHE_MAX]
936 				[PERF_COUNT_HW_CACHE_OP_MAX]
937 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
938 [C(L1D)] = {
939 	/*
940 	 * Like some other architectures (e.g. ARM), the performance
941 	 * counters don't differentiate between read and write
942 	 * accesses/misses, so this isn't strictly correct, but it's the
943 	 * best we can do. Writes and reads get combined.
944 	 */
945 	[C(OP_READ)] = {
946 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
947 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
948 	},
949 	[C(OP_WRITE)] = {
950 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
951 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
952 	},
953 },
954 [C(L1I)] = {
955 	[C(OP_READ)] = {
956 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
957 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
958 	},
959 	[C(OP_WRITE)] = {
960 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
961 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
962 	},
963 	[C(OP_PREFETCH)] = {
964 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
965 		/*
966 		 * Note that MIPS has only "hit" events countable for
967 		 * the prefetch operation.
968 		 */
969 	},
970 },
971 [C(LL)] = {
972 	[C(OP_READ)] = {
973 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
974 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
975 	},
976 	[C(OP_WRITE)] = {
977 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
978 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
979 	},
980 },
981 [C(ITLB)] = {
982 	[C(OP_READ)] = {
983 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
984 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
985 	},
986 	[C(OP_WRITE)] = {
987 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
988 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
989 	},
990 },
991 [C(BPU)] = {
992 	/* Using the same code for *HW_BRANCH* */
993 	[C(OP_READ)] = {
994 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
995 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
996 	},
997 	[C(OP_WRITE)] = {
998 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
999 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1000 	},
1001 },
1002 };
1003 
1004 /* BMIPS5000 */
1005 static const struct mips_perf_event bmips5000_cache_map
1006 				[PERF_COUNT_HW_CACHE_MAX]
1007 				[PERF_COUNT_HW_CACHE_OP_MAX]
1008 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1009 [C(L1D)] = {
1010 	/*
1011 	 * Like some other architectures (e.g. ARM), the performance
1012 	 * counters don't differentiate between read and write
1013 	 * accesses/misses, so this isn't strictly correct, but it's the
1014 	 * best we can do. Writes and reads get combined.
1015 	 */
1016 	[C(OP_READ)] = {
1017 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1018 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1019 	},
1020 	[C(OP_WRITE)] = {
1021 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1022 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1023 	},
1024 },
1025 [C(L1I)] = {
1026 	[C(OP_READ)] = {
1027 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1028 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1029 	},
1030 	[C(OP_WRITE)] = {
1031 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1032 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1033 	},
1034 	[C(OP_PREFETCH)] = {
1035 		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1036 		/*
1037 		 * Note that MIPS has only "hit" events countable for
1038 		 * the prefetch operation.
1039 		 */
1040 	},
1041 },
1042 [C(LL)] = {
1043 	[C(OP_READ)] = {
1044 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1045 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1046 	},
1047 	[C(OP_WRITE)] = {
1048 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1049 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1050 	},
1051 },
1052 [C(BPU)] = {
1053 	/* Using the same code for *HW_BRANCH* */
1054 	[C(OP_READ)] = {
1055 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1056 	},
1057 	[C(OP_WRITE)] = {
1058 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1059 	},
1060 },
1061 };
1062 
1063 
1064 static const struct mips_perf_event octeon_cache_map
1065 				[PERF_COUNT_HW_CACHE_MAX]
1066 				[PERF_COUNT_HW_CACHE_OP_MAX]
1067 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1068 [C(L1D)] = {
1069 	[C(OP_READ)] = {
1070 		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1071 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1072 	},
1073 	[C(OP_WRITE)] = {
1074 		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1075 	},
1076 },
1077 [C(L1I)] = {
1078 	[C(OP_READ)] = {
1079 		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1080 	},
1081 	[C(OP_PREFETCH)] = {
1082 		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1083 	},
1084 },
1085 [C(DTLB)] = {
1086 	/*
1087 	 * Only general DTLB misses are counted use the same event for
1088 	 * read and write.
1089 	 */
1090 	[C(OP_READ)] = {
1091 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1092 	},
1093 	[C(OP_WRITE)] = {
1094 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1095 	},
1096 },
1097 [C(ITLB)] = {
1098 	[C(OP_READ)] = {
1099 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1100 	},
1101 },
1102 };
1103 
1104 static const struct mips_perf_event xlp_cache_map
1105 				[PERF_COUNT_HW_CACHE_MAX]
1106 				[PERF_COUNT_HW_CACHE_OP_MAX]
1107 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1108 [C(L1D)] = {
1109 	[C(OP_READ)] = {
1110 		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1111 		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1112 	},
1113 	[C(OP_WRITE)] = {
1114 		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1115 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1116 	},
1117 },
1118 [C(L1I)] = {
1119 	[C(OP_READ)] = {
1120 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1121 		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1122 	},
1123 },
1124 [C(LL)] = {
1125 	[C(OP_READ)] = {
1126 		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1127 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1128 	},
1129 	[C(OP_WRITE)] = {
1130 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1131 		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1132 	},
1133 },
1134 [C(DTLB)] = {
1135 	/*
1136 	 * Only general DTLB misses are counted use the same event for
1137 	 * read and write.
1138 	 */
1139 	[C(OP_READ)] = {
1140 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1141 	},
1142 	[C(OP_WRITE)] = {
1143 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1144 	},
1145 },
1146 [C(ITLB)] = {
1147 	[C(OP_READ)] = {
1148 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1149 	},
1150 	[C(OP_WRITE)] = {
1151 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1152 	},
1153 },
1154 [C(BPU)] = {
1155 	[C(OP_READ)] = {
1156 		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1157 	},
1158 },
1159 };
1160 
1161 #ifdef CONFIG_MIPS_MT_SMP
1162 static void check_and_calc_range(struct perf_event *event,
1163 				 const struct mips_perf_event *pev)
1164 {
1165 	struct hw_perf_event *hwc = &event->hw;
1166 
1167 	if (event->cpu >= 0) {
1168 		if (pev->range > V) {
1169 			/*
1170 			 * The user selected an event that is processor
1171 			 * wide, while expecting it to be VPE wide.
1172 			 */
1173 			hwc->config_base |= M_TC_EN_ALL;
1174 		} else {
1175 			/*
1176 			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 			 * for both CPUs.
1178 			 */
1179 			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 			hwc->config_base |= M_TC_EN_VPE;
1181 		}
1182 	} else
1183 		hwc->config_base |= M_TC_EN_ALL;
1184 }
1185 #else
1186 static void check_and_calc_range(struct perf_event *event,
1187 				 const struct mips_perf_event *pev)
1188 {
1189 }
1190 #endif
1191 
1192 static int __hw_perf_event_init(struct perf_event *event)
1193 {
1194 	struct perf_event_attr *attr = &event->attr;
1195 	struct hw_perf_event *hwc = &event->hw;
1196 	const struct mips_perf_event *pev;
1197 	int err;
1198 
1199 	/* Returning MIPS event descriptor for generic perf event. */
1200 	if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 		if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 			return -EINVAL;
1203 		pev = mipspmu_map_general_event(event->attr.config);
1204 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 		pev = mipspmu_map_cache_event(event->attr.config);
1206 	} else if (PERF_TYPE_RAW == event->attr.type) {
1207 		/* We are working on the global raw event. */
1208 		mutex_lock(&raw_event_mutex);
1209 		pev = mipspmu.map_raw_event(event->attr.config);
1210 	} else {
1211 		/* The event type is not (yet) supported. */
1212 		return -EOPNOTSUPP;
1213 	}
1214 
1215 	if (IS_ERR(pev)) {
1216 		if (PERF_TYPE_RAW == event->attr.type)
1217 			mutex_unlock(&raw_event_mutex);
1218 		return PTR_ERR(pev);
1219 	}
1220 
1221 	/*
1222 	 * We allow max flexibility on how each individual counter shared
1223 	 * by the single CPU operates (the mode exclusion and the range).
1224 	 */
1225 	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226 
1227 	/* Calculate range bits and validate it. */
1228 	if (num_possible_cpus() > 1)
1229 		check_and_calc_range(event, pev);
1230 
1231 	hwc->event_base = mipspmu_perf_event_encode(pev);
1232 	if (PERF_TYPE_RAW == event->attr.type)
1233 		mutex_unlock(&raw_event_mutex);
1234 
1235 	if (!attr->exclude_user)
1236 		hwc->config_base |= M_PERFCTL_USER;
1237 	if (!attr->exclude_kernel) {
1238 		hwc->config_base |= M_PERFCTL_KERNEL;
1239 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 		hwc->config_base |= M_PERFCTL_EXL;
1241 	}
1242 	if (!attr->exclude_hv)
1243 		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244 
1245 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246 	/*
1247 	 * The event can belong to another cpu. We do not assign a local
1248 	 * counter for it for now.
1249 	 */
1250 	hwc->idx = -1;
1251 	hwc->config = 0;
1252 
1253 	if (!hwc->sample_period) {
1254 		hwc->sample_period  = mipspmu.max_period;
1255 		hwc->last_period    = hwc->sample_period;
1256 		local64_set(&hwc->period_left, hwc->sample_period);
1257 	}
1258 
1259 	err = 0;
1260 	if (event->group_leader != event)
1261 		err = validate_group(event);
1262 
1263 	event->destroy = hw_perf_event_destroy;
1264 
1265 	if (err)
1266 		event->destroy(event);
1267 
1268 	return err;
1269 }
1270 
1271 static void pause_local_counters(void)
1272 {
1273 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 	int ctr = mipspmu.num_counters;
1275 	unsigned long flags;
1276 
1277 	local_irq_save(flags);
1278 	do {
1279 		ctr--;
1280 		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 	} while (ctr > 0);
1284 	local_irq_restore(flags);
1285 }
1286 
1287 static void resume_local_counters(void)
1288 {
1289 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290 	int ctr = mipspmu.num_counters;
1291 
1292 	do {
1293 		ctr--;
1294 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 	} while (ctr > 0);
1296 }
1297 
1298 static int mipsxx_pmu_handle_shared_irq(void)
1299 {
1300 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 	struct perf_sample_data data;
1302 	unsigned int counters = mipspmu.num_counters;
1303 	u64 counter;
1304 	int handled = IRQ_NONE;
1305 	struct pt_regs *regs;
1306 
1307 	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1308 		return handled;
1309 	/*
1310 	 * First we pause the local counters, so that when we are locked
1311 	 * here, the counters are all paused. When it gets locked due to
1312 	 * perf_disable(), the timer interrupt handler will be delayed.
1313 	 *
1314 	 * See also mipsxx_pmu_start().
1315 	 */
1316 	pause_local_counters();
1317 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1318 	read_lock(&pmuint_rwlock);
1319 #endif
1320 
1321 	regs = get_irq_regs();
1322 
1323 	perf_sample_data_init(&data, 0, 0);
1324 
1325 	switch (counters) {
1326 #define HANDLE_COUNTER(n)						\
1327 	case n + 1:							\
1328 		if (test_bit(n, cpuc->used_mask)) {			\
1329 			counter = mipspmu.read_counter(n);		\
1330 			if (counter & mipspmu.overflow) {		\
1331 				handle_associated_event(cpuc, n, &data, regs); \
1332 				handled = IRQ_HANDLED;			\
1333 			}						\
1334 		}
1335 	HANDLE_COUNTER(3)
1336 	HANDLE_COUNTER(2)
1337 	HANDLE_COUNTER(1)
1338 	HANDLE_COUNTER(0)
1339 	}
1340 
1341 	/*
1342 	 * Do all the work for the pending perf events. We can do this
1343 	 * in here because the performance counter interrupt is a regular
1344 	 * interrupt, not NMI.
1345 	 */
1346 	if (handled == IRQ_HANDLED)
1347 		irq_work_run();
1348 
1349 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1350 	read_unlock(&pmuint_rwlock);
1351 #endif
1352 	resume_local_counters();
1353 	return handled;
1354 }
1355 
1356 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357 {
1358 	return mipsxx_pmu_handle_shared_irq();
1359 }
1360 
1361 /* 24K */
1362 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1363 	((b) == 0 || (b) == 1 || (b) == 11)
1364 
1365 /* 34K */
1366 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1367 	((b) == 0 || (b) == 1 || (b) == 11)
1368 #ifdef CONFIG_MIPS_MT_SMP
1369 #define IS_RANGE_P_34K_EVENT(r, b)					\
1370 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1371 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1372 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1373 	 ((b) >= 64 && (b) <= 67))
1374 #define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1375 #endif
1376 
1377 /* 74K */
1378 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1379 	((b) == 0 || (b) == 1)
1380 
1381 /* 1004K */
1382 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1383 	((b) == 0 || (b) == 1 || (b) == 11)
1384 #ifdef CONFIG_MIPS_MT_SMP
1385 #define IS_RANGE_P_1004K_EVENT(r, b)					\
1386 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1387 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1388 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1389 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1390 	 ((b) >= 64 && (b) <= 67))
1391 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1392 #endif
1393 
1394 /* BMIPS5000 */
1395 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1396 	((b) == 0 || (b) == 1)
1397 
1398 
1399 /*
1400  * User can use 0-255 raw events, where 0-127 for the events of even
1401  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1402  * indicate the parity. So, for example, when user wants to take the
1403  * Event Num of 15 for odd counters (by referring to the user manual),
1404  * then 128 needs to be added to 15 as the input for the event config,
1405  * i.e., 143 (0x8F) to be used.
1406  */
1407 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1408 {
1409 	unsigned int raw_id = config & 0xff;
1410 	unsigned int base_id = raw_id & 0x7f;
1411 
1412 	raw_event.event_id = base_id;
1413 
1414 	switch (current_cpu_type()) {
1415 	case CPU_24K:
1416 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1417 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1418 		else
1419 			raw_event.cntr_mask =
1420 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1421 #ifdef CONFIG_MIPS_MT_SMP
1422 		/*
1423 		 * This is actually doing nothing. Non-multithreading
1424 		 * CPUs will not check and calculate the range.
1425 		 */
1426 		raw_event.range = P;
1427 #endif
1428 		break;
1429 	case CPU_34K:
1430 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1431 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1432 		else
1433 			raw_event.cntr_mask =
1434 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1435 #ifdef CONFIG_MIPS_MT_SMP
1436 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1437 			raw_event.range = P;
1438 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1439 			raw_event.range = V;
1440 		else
1441 			raw_event.range = T;
1442 #endif
1443 		break;
1444 	case CPU_74K:
1445 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1446 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1447 		else
1448 			raw_event.cntr_mask =
1449 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1450 #ifdef CONFIG_MIPS_MT_SMP
1451 		raw_event.range = P;
1452 #endif
1453 		break;
1454 	case CPU_1004K:
1455 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1456 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1457 		else
1458 			raw_event.cntr_mask =
1459 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1460 #ifdef CONFIG_MIPS_MT_SMP
1461 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1462 			raw_event.range = P;
1463 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1464 			raw_event.range = V;
1465 		else
1466 			raw_event.range = T;
1467 #endif
1468 		break;
1469 	case CPU_BMIPS5000:
1470 		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1471 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1472 		else
1473 			raw_event.cntr_mask =
1474 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1475 	}
1476 
1477 	return &raw_event;
1478 }
1479 
1480 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1481 {
1482 	unsigned int raw_id = config & 0xff;
1483 	unsigned int base_id = raw_id & 0x7f;
1484 
1485 
1486 	raw_event.cntr_mask = CNTR_ALL;
1487 	raw_event.event_id = base_id;
1488 
1489 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1490 		if (base_id > 0x42)
1491 			return ERR_PTR(-EOPNOTSUPP);
1492 	} else {
1493 		if (base_id > 0x3a)
1494 			return ERR_PTR(-EOPNOTSUPP);
1495 	}
1496 
1497 	switch (base_id) {
1498 	case 0x00:
1499 	case 0x0f:
1500 	case 0x1e:
1501 	case 0x1f:
1502 	case 0x2f:
1503 	case 0x34:
1504 	case 0x3b ... 0x3f:
1505 		return ERR_PTR(-EOPNOTSUPP);
1506 	default:
1507 		break;
1508 	}
1509 
1510 	return &raw_event;
1511 }
1512 
1513 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1514 {
1515 	unsigned int raw_id = config & 0xff;
1516 
1517 	/* Only 1-63 are defined */
1518 	if ((raw_id < 0x01) || (raw_id > 0x3f))
1519 		return ERR_PTR(-EOPNOTSUPP);
1520 
1521 	raw_event.cntr_mask = CNTR_ALL;
1522 	raw_event.event_id = raw_id;
1523 
1524 	return &raw_event;
1525 }
1526 
1527 static int __init
1528 init_hw_perf_events(void)
1529 {
1530 	int counters, irq;
1531 	int counter_bits;
1532 
1533 	pr_info("Performance counters: ");
1534 
1535 	counters = n_counters();
1536 	if (counters == 0) {
1537 		pr_cont("No available PMU.\n");
1538 		return -ENODEV;
1539 	}
1540 
1541 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1542 	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1543 	if (!cpu_has_mipsmt_pertccounters)
1544 		counters = counters_total_to_per_cpu(counters);
1545 #endif
1546 
1547 #ifdef MSC01E_INT_BASE
1548 	if (cpu_has_veic) {
1549 		/*
1550 		 * Using platform specific interrupt controller defines.
1551 		 */
1552 		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1553 	} else {
1554 #endif
1555 		if ((cp0_perfcount_irq >= 0) &&
1556 				(cp0_compare_irq != cp0_perfcount_irq))
1557 			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1558 		else
1559 			irq = -1;
1560 #ifdef MSC01E_INT_BASE
1561 	}
1562 #endif
1563 
1564 	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1565 
1566 	switch (current_cpu_type()) {
1567 	case CPU_24K:
1568 		mipspmu.name = "mips/24K";
1569 		mipspmu.general_event_map = &mipsxxcore_event_map;
1570 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1571 		break;
1572 	case CPU_34K:
1573 		mipspmu.name = "mips/34K";
1574 		mipspmu.general_event_map = &mipsxxcore_event_map;
1575 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1576 		break;
1577 	case CPU_74K:
1578 		mipspmu.name = "mips/74K";
1579 		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1580 		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1581 		break;
1582 	case CPU_1004K:
1583 		mipspmu.name = "mips/1004K";
1584 		mipspmu.general_event_map = &mipsxxcore_event_map;
1585 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1586 		break;
1587 	case CPU_LOONGSON1:
1588 		mipspmu.name = "mips/loongson1";
1589 		mipspmu.general_event_map = &mipsxxcore_event_map;
1590 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1591 		break;
1592 	case CPU_CAVIUM_OCTEON:
1593 	case CPU_CAVIUM_OCTEON_PLUS:
1594 	case CPU_CAVIUM_OCTEON2:
1595 		mipspmu.name = "octeon";
1596 		mipspmu.general_event_map = &octeon_event_map;
1597 		mipspmu.cache_event_map = &octeon_cache_map;
1598 		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1599 		break;
1600 	case CPU_BMIPS5000:
1601 		mipspmu.name = "BMIPS5000";
1602 		mipspmu.general_event_map = &bmips5000_event_map;
1603 		mipspmu.cache_event_map = &bmips5000_cache_map;
1604 		break;
1605 	case CPU_XLP:
1606 		mipspmu.name = "xlp";
1607 		mipspmu.general_event_map = &xlp_event_map;
1608 		mipspmu.cache_event_map = &xlp_cache_map;
1609 		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1610 		break;
1611 	default:
1612 		pr_cont("Either hardware does not support performance "
1613 			"counters, or not yet implemented.\n");
1614 		return -ENODEV;
1615 	}
1616 
1617 	mipspmu.num_counters = counters;
1618 	mipspmu.irq = irq;
1619 
1620 	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1621 		mipspmu.max_period = (1ULL << 63) - 1;
1622 		mipspmu.valid_count = (1ULL << 63) - 1;
1623 		mipspmu.overflow = 1ULL << 63;
1624 		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1625 		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1626 		counter_bits = 64;
1627 	} else {
1628 		mipspmu.max_period = (1ULL << 31) - 1;
1629 		mipspmu.valid_count = (1ULL << 31) - 1;
1630 		mipspmu.overflow = 1ULL << 31;
1631 		mipspmu.read_counter = mipsxx_pmu_read_counter;
1632 		mipspmu.write_counter = mipsxx_pmu_write_counter;
1633 		counter_bits = 32;
1634 	}
1635 
1636 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1637 
1638 	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1639 		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1640 		irq < 0 ? " (share with timer interrupt)" : "");
1641 
1642 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1643 
1644 	return 0;
1645 }
1646 early_initcall(init_hw_perf_events);
1647