xref: /openbmc/linux/arch/mips/kernel/perf_event_mipsxx.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
2     defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)
3 
4 #define M_CONFIG1_PC	(1 << 4)
5 
6 #define M_PERFCTL_EXL			(1UL      <<  0)
7 #define M_PERFCTL_KERNEL		(1UL      <<  1)
8 #define M_PERFCTL_SUPERVISOR		(1UL      <<  2)
9 #define M_PERFCTL_USER			(1UL      <<  3)
10 #define M_PERFCTL_INTERRUPT_ENABLE	(1UL      <<  4)
11 #define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
12 #define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
13 #define M_PERFCTL_MT_EN(filter)		((filter) << 20)
14 #define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
15 #define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
16 #define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
17 #define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
18 #define M_PERFCTL_WIDE			(1UL      << 30)
19 #define M_PERFCTL_MORE			(1UL      << 31)
20 
21 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
22 					M_PERFCTL_KERNEL |		\
23 					M_PERFCTL_USER |		\
24 					M_PERFCTL_SUPERVISOR |		\
25 					M_PERFCTL_INTERRUPT_ENABLE)
26 
27 #ifdef CONFIG_MIPS_MT_SMP
28 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
29 #else
30 #define M_PERFCTL_CONFIG_MASK		0x1f
31 #endif
32 #define M_PERFCTL_EVENT_MASK		0xfe0
33 
34 #define M_COUNTER_OVERFLOW		(1UL      << 31)
35 
36 #ifdef CONFIG_MIPS_MT_SMP
37 static int cpu_has_mipsmt_pertccounters;
38 
39 /*
40  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
41  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
42  */
43 #if defined(CONFIG_HW_PERF_EVENTS)
44 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
45 			0 : smp_processor_id())
46 #else
47 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
48 			0 : cpu_data[smp_processor_id()].vpe_id)
49 #endif
50 
51 /* Copied from op_model_mipsxx.c */
52 static inline unsigned int vpe_shift(void)
53 {
54 	if (num_possible_cpus() > 1)
55 		return 1;
56 
57 	return 0;
58 }
59 #else /* !CONFIG_MIPS_MT_SMP */
60 #define vpe_id()	0
61 
62 static inline unsigned int vpe_shift(void)
63 {
64 	return 0;
65 }
66 #endif /* CONFIG_MIPS_MT_SMP */
67 
68 static inline unsigned int
69 counters_total_to_per_cpu(unsigned int counters)
70 {
71 	return counters >> vpe_shift();
72 }
73 
74 static inline unsigned int
75 counters_per_cpu_to_total(unsigned int counters)
76 {
77 	return counters << vpe_shift();
78 }
79 
80 #define __define_perf_accessors(r, n, np)				\
81 									\
82 static inline unsigned int r_c0_ ## r ## n(void)			\
83 {									\
84 	unsigned int cpu = vpe_id();					\
85 									\
86 	switch (cpu) {							\
87 	case 0:								\
88 		return read_c0_ ## r ## n();				\
89 	case 1:								\
90 		return read_c0_ ## r ## np();				\
91 	default:							\
92 		BUG();							\
93 	}								\
94 	return 0;							\
95 }									\
96 									\
97 static inline void w_c0_ ## r ## n(unsigned int value)			\
98 {									\
99 	unsigned int cpu = vpe_id();					\
100 									\
101 	switch (cpu) {							\
102 	case 0:								\
103 		write_c0_ ## r ## n(value);				\
104 		return;							\
105 	case 1:								\
106 		write_c0_ ## r ## np(value);				\
107 		return;							\
108 	default:							\
109 		BUG();							\
110 	}								\
111 	return;								\
112 }									\
113 
114 __define_perf_accessors(perfcntr, 0, 2)
115 __define_perf_accessors(perfcntr, 1, 3)
116 __define_perf_accessors(perfcntr, 2, 0)
117 __define_perf_accessors(perfcntr, 3, 1)
118 
119 __define_perf_accessors(perfctrl, 0, 2)
120 __define_perf_accessors(perfctrl, 1, 3)
121 __define_perf_accessors(perfctrl, 2, 0)
122 __define_perf_accessors(perfctrl, 3, 1)
123 
124 static inline int __n_counters(void)
125 {
126 	if (!(read_c0_config1() & M_CONFIG1_PC))
127 		return 0;
128 	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
129 		return 1;
130 	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
131 		return 2;
132 	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
133 		return 3;
134 
135 	return 4;
136 }
137 
138 static inline int n_counters(void)
139 {
140 	int counters;
141 
142 	switch (current_cpu_type()) {
143 	case CPU_R10000:
144 		counters = 2;
145 		break;
146 
147 	case CPU_R12000:
148 	case CPU_R14000:
149 		counters = 4;
150 		break;
151 
152 	default:
153 		counters = __n_counters();
154 	}
155 
156 	return counters;
157 }
158 
159 static void reset_counters(void *arg)
160 {
161 	int counters = (int)(long)arg;
162 	switch (counters) {
163 	case 4:
164 		w_c0_perfctrl3(0);
165 		w_c0_perfcntr3(0);
166 	case 3:
167 		w_c0_perfctrl2(0);
168 		w_c0_perfcntr2(0);
169 	case 2:
170 		w_c0_perfctrl1(0);
171 		w_c0_perfcntr1(0);
172 	case 1:
173 		w_c0_perfctrl0(0);
174 		w_c0_perfcntr0(0);
175 	}
176 }
177 
178 static inline u64
179 mipsxx_pmu_read_counter(unsigned int idx)
180 {
181 	switch (idx) {
182 	case 0:
183 		return r_c0_perfcntr0();
184 	case 1:
185 		return r_c0_perfcntr1();
186 	case 2:
187 		return r_c0_perfcntr2();
188 	case 3:
189 		return r_c0_perfcntr3();
190 	default:
191 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192 		return 0;
193 	}
194 }
195 
196 static inline void
197 mipsxx_pmu_write_counter(unsigned int idx, u64 val)
198 {
199 	switch (idx) {
200 	case 0:
201 		w_c0_perfcntr0(val);
202 		return;
203 	case 1:
204 		w_c0_perfcntr1(val);
205 		return;
206 	case 2:
207 		w_c0_perfcntr2(val);
208 		return;
209 	case 3:
210 		w_c0_perfcntr3(val);
211 		return;
212 	}
213 }
214 
215 static inline unsigned int
216 mipsxx_pmu_read_control(unsigned int idx)
217 {
218 	switch (idx) {
219 	case 0:
220 		return r_c0_perfctrl0();
221 	case 1:
222 		return r_c0_perfctrl1();
223 	case 2:
224 		return r_c0_perfctrl2();
225 	case 3:
226 		return r_c0_perfctrl3();
227 	default:
228 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
229 		return 0;
230 	}
231 }
232 
233 static inline void
234 mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
235 {
236 	switch (idx) {
237 	case 0:
238 		w_c0_perfctrl0(val);
239 		return;
240 	case 1:
241 		w_c0_perfctrl1(val);
242 		return;
243 	case 2:
244 		w_c0_perfctrl2(val);
245 		return;
246 	case 3:
247 		w_c0_perfctrl3(val);
248 		return;
249 	}
250 }
251 
252 #ifdef CONFIG_MIPS_MT_SMP
253 static DEFINE_RWLOCK(pmuint_rwlock);
254 #endif
255 
256 /* 24K/34K/1004K cores can share the same event map. */
257 static const struct mips_perf_event mipsxxcore_event_map
258 				[PERF_COUNT_HW_MAX] = {
259 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
260 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
261 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
262 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
263 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
264 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
265 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
266 };
267 
268 /* 74K core has different branch event code. */
269 static const struct mips_perf_event mipsxx74Kcore_event_map
270 				[PERF_COUNT_HW_MAX] = {
271 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
272 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
273 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
274 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
275 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
276 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
277 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
278 };
279 
280 /* 24K/34K/1004K cores can share the same cache event map. */
281 static const struct mips_perf_event mipsxxcore_cache_map
282 				[PERF_COUNT_HW_CACHE_MAX]
283 				[PERF_COUNT_HW_CACHE_OP_MAX]
284 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
285 [C(L1D)] = {
286 	/*
287 	 * Like some other architectures (e.g. ARM), the performance
288 	 * counters don't differentiate between read and write
289 	 * accesses/misses, so this isn't strictly correct, but it's the
290 	 * best we can do. Writes and reads get combined.
291 	 */
292 	[C(OP_READ)] = {
293 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
294 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
295 	},
296 	[C(OP_WRITE)] = {
297 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
298 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
299 	},
300 	[C(OP_PREFETCH)] = {
301 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
302 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
303 	},
304 },
305 [C(L1I)] = {
306 	[C(OP_READ)] = {
307 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
308 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
309 	},
310 	[C(OP_WRITE)] = {
311 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
312 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
313 	},
314 	[C(OP_PREFETCH)] = {
315 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
316 		/*
317 		 * Note that MIPS has only "hit" events countable for
318 		 * the prefetch operation.
319 		 */
320 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
321 	},
322 },
323 [C(LL)] = {
324 	[C(OP_READ)] = {
325 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
326 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
327 	},
328 	[C(OP_WRITE)] = {
329 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
330 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
331 	},
332 	[C(OP_PREFETCH)] = {
333 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
334 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
335 	},
336 },
337 [C(DTLB)] = {
338 	[C(OP_READ)] = {
339 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
340 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
341 	},
342 	[C(OP_WRITE)] = {
343 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
344 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
345 	},
346 	[C(OP_PREFETCH)] = {
347 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
348 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
349 	},
350 },
351 [C(ITLB)] = {
352 	[C(OP_READ)] = {
353 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
354 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
355 	},
356 	[C(OP_WRITE)] = {
357 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
358 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
359 	},
360 	[C(OP_PREFETCH)] = {
361 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
362 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
363 	},
364 },
365 [C(BPU)] = {
366 	/* Using the same code for *HW_BRANCH* */
367 	[C(OP_READ)] = {
368 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
369 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
370 	},
371 	[C(OP_WRITE)] = {
372 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
373 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
374 	},
375 	[C(OP_PREFETCH)] = {
376 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
377 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
378 	},
379 },
380 };
381 
382 /* 74K core has completely different cache event map. */
383 static const struct mips_perf_event mipsxx74Kcore_cache_map
384 				[PERF_COUNT_HW_CACHE_MAX]
385 				[PERF_COUNT_HW_CACHE_OP_MAX]
386 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
387 [C(L1D)] = {
388 	/*
389 	 * Like some other architectures (e.g. ARM), the performance
390 	 * counters don't differentiate between read and write
391 	 * accesses/misses, so this isn't strictly correct, but it's the
392 	 * best we can do. Writes and reads get combined.
393 	 */
394 	[C(OP_READ)] = {
395 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
396 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
397 	},
398 	[C(OP_WRITE)] = {
399 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
400 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
401 	},
402 	[C(OP_PREFETCH)] = {
403 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
404 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
405 	},
406 },
407 [C(L1I)] = {
408 	[C(OP_READ)] = {
409 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
410 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
411 	},
412 	[C(OP_WRITE)] = {
413 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
414 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
415 	},
416 	[C(OP_PREFETCH)] = {
417 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
418 		/*
419 		 * Note that MIPS has only "hit" events countable for
420 		 * the prefetch operation.
421 		 */
422 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
423 	},
424 },
425 [C(LL)] = {
426 	[C(OP_READ)] = {
427 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
428 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
429 	},
430 	[C(OP_WRITE)] = {
431 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
432 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
433 	},
434 	[C(OP_PREFETCH)] = {
435 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
436 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
437 	},
438 },
439 [C(DTLB)] = {
440 	/* 74K core does not have specific DTLB events. */
441 	[C(OP_READ)] = {
442 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
443 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
444 	},
445 	[C(OP_WRITE)] = {
446 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
447 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
448 	},
449 	[C(OP_PREFETCH)] = {
450 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
451 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
452 	},
453 },
454 [C(ITLB)] = {
455 	[C(OP_READ)] = {
456 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
457 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
458 	},
459 	[C(OP_WRITE)] = {
460 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
461 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
462 	},
463 	[C(OP_PREFETCH)] = {
464 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
465 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
466 	},
467 },
468 [C(BPU)] = {
469 	/* Using the same code for *HW_BRANCH* */
470 	[C(OP_READ)] = {
471 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
472 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
473 	},
474 	[C(OP_WRITE)] = {
475 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
476 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
477 	},
478 	[C(OP_PREFETCH)] = {
479 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
480 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
481 	},
482 },
483 };
484 
485 #ifdef CONFIG_MIPS_MT_SMP
486 static void
487 check_and_calc_range(struct perf_event *event,
488 			const struct mips_perf_event *pev)
489 {
490 	struct hw_perf_event *hwc = &event->hw;
491 
492 	if (event->cpu >= 0) {
493 		if (pev->range > V) {
494 			/*
495 			 * The user selected an event that is processor
496 			 * wide, while expecting it to be VPE wide.
497 			 */
498 			hwc->config_base |= M_TC_EN_ALL;
499 		} else {
500 			/*
501 			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
502 			 * for both CPUs.
503 			 */
504 			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
505 			hwc->config_base |= M_TC_EN_VPE;
506 		}
507 	} else
508 		hwc->config_base |= M_TC_EN_ALL;
509 }
510 #else
511 static void
512 check_and_calc_range(struct perf_event *event,
513 			const struct mips_perf_event *pev)
514 {
515 }
516 #endif
517 
518 static int __hw_perf_event_init(struct perf_event *event)
519 {
520 	struct perf_event_attr *attr = &event->attr;
521 	struct hw_perf_event *hwc = &event->hw;
522 	const struct mips_perf_event *pev;
523 	int err;
524 
525 	/* Returning MIPS event descriptor for generic perf event. */
526 	if (PERF_TYPE_HARDWARE == event->attr.type) {
527 		if (event->attr.config >= PERF_COUNT_HW_MAX)
528 			return -EINVAL;
529 		pev = mipspmu_map_general_event(event->attr.config);
530 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
531 		pev = mipspmu_map_cache_event(event->attr.config);
532 	} else if (PERF_TYPE_RAW == event->attr.type) {
533 		/* We are working on the global raw event. */
534 		mutex_lock(&raw_event_mutex);
535 		pev = mipspmu->map_raw_event(event->attr.config);
536 	} else {
537 		/* The event type is not (yet) supported. */
538 		return -EOPNOTSUPP;
539 	}
540 
541 	if (IS_ERR(pev)) {
542 		if (PERF_TYPE_RAW == event->attr.type)
543 			mutex_unlock(&raw_event_mutex);
544 		return PTR_ERR(pev);
545 	}
546 
547 	/*
548 	 * We allow max flexibility on how each individual counter shared
549 	 * by the single CPU operates (the mode exclusion and the range).
550 	 */
551 	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
552 
553 	/* Calculate range bits and validate it. */
554 	if (num_possible_cpus() > 1)
555 		check_and_calc_range(event, pev);
556 
557 	hwc->event_base = mipspmu_perf_event_encode(pev);
558 	if (PERF_TYPE_RAW == event->attr.type)
559 		mutex_unlock(&raw_event_mutex);
560 
561 	if (!attr->exclude_user)
562 		hwc->config_base |= M_PERFCTL_USER;
563 	if (!attr->exclude_kernel) {
564 		hwc->config_base |= M_PERFCTL_KERNEL;
565 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
566 		hwc->config_base |= M_PERFCTL_EXL;
567 	}
568 	if (!attr->exclude_hv)
569 		hwc->config_base |= M_PERFCTL_SUPERVISOR;
570 
571 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
572 	/*
573 	 * The event can belong to another cpu. We do not assign a local
574 	 * counter for it for now.
575 	 */
576 	hwc->idx = -1;
577 	hwc->config = 0;
578 
579 	if (!hwc->sample_period) {
580 		hwc->sample_period  = MAX_PERIOD;
581 		hwc->last_period    = hwc->sample_period;
582 		local64_set(&hwc->period_left, hwc->sample_period);
583 	}
584 
585 	err = 0;
586 	if (event->group_leader != event) {
587 		err = validate_group(event);
588 		if (err)
589 			return -EINVAL;
590 	}
591 
592 	event->destroy = hw_perf_event_destroy;
593 
594 	return err;
595 }
596 
597 static void pause_local_counters(void)
598 {
599 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
600 	int counters = mipspmu->num_counters;
601 	unsigned long flags;
602 
603 	local_irq_save(flags);
604 	switch (counters) {
605 	case 4:
606 		cpuc->saved_ctrl[3] = r_c0_perfctrl3();
607 		w_c0_perfctrl3(cpuc->saved_ctrl[3] &
608 			~M_PERFCTL_COUNT_EVENT_WHENEVER);
609 	case 3:
610 		cpuc->saved_ctrl[2] = r_c0_perfctrl2();
611 		w_c0_perfctrl2(cpuc->saved_ctrl[2] &
612 			~M_PERFCTL_COUNT_EVENT_WHENEVER);
613 	case 2:
614 		cpuc->saved_ctrl[1] = r_c0_perfctrl1();
615 		w_c0_perfctrl1(cpuc->saved_ctrl[1] &
616 			~M_PERFCTL_COUNT_EVENT_WHENEVER);
617 	case 1:
618 		cpuc->saved_ctrl[0] = r_c0_perfctrl0();
619 		w_c0_perfctrl0(cpuc->saved_ctrl[0] &
620 			~M_PERFCTL_COUNT_EVENT_WHENEVER);
621 	}
622 	local_irq_restore(flags);
623 }
624 
625 static void resume_local_counters(void)
626 {
627 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
628 	int counters = mipspmu->num_counters;
629 	unsigned long flags;
630 
631 	local_irq_save(flags);
632 	switch (counters) {
633 	case 4:
634 		w_c0_perfctrl3(cpuc->saved_ctrl[3]);
635 	case 3:
636 		w_c0_perfctrl2(cpuc->saved_ctrl[2]);
637 	case 2:
638 		w_c0_perfctrl1(cpuc->saved_ctrl[1]);
639 	case 1:
640 		w_c0_perfctrl0(cpuc->saved_ctrl[0]);
641 	}
642 	local_irq_restore(flags);
643 }
644 
645 static int mipsxx_pmu_handle_shared_irq(void)
646 {
647 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
648 	struct perf_sample_data data;
649 	unsigned int counters = mipspmu->num_counters;
650 	unsigned int counter;
651 	int handled = IRQ_NONE;
652 	struct pt_regs *regs;
653 
654 	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
655 		return handled;
656 
657 	/*
658 	 * First we pause the local counters, so that when we are locked
659 	 * here, the counters are all paused. When it gets locked due to
660 	 * perf_disable(), the timer interrupt handler will be delayed.
661 	 *
662 	 * See also mipsxx_pmu_start().
663 	 */
664 	pause_local_counters();
665 #ifdef CONFIG_MIPS_MT_SMP
666 	read_lock(&pmuint_rwlock);
667 #endif
668 
669 	regs = get_irq_regs();
670 
671 	perf_sample_data_init(&data, 0);
672 
673 	switch (counters) {
674 #define HANDLE_COUNTER(n)						\
675 	case n + 1:							\
676 		if (test_bit(n, cpuc->used_mask)) {			\
677 			counter = r_c0_perfcntr ## n();			\
678 			if (counter & M_COUNTER_OVERFLOW) {		\
679 				w_c0_perfcntr ## n(counter &		\
680 						VALID_COUNT);		\
681 				if (test_and_change_bit(n, cpuc->msbs))	\
682 					handle_associated_event(cpuc,	\
683 						n, &data, regs);	\
684 				handled = IRQ_HANDLED;			\
685 			}						\
686 		}
687 	HANDLE_COUNTER(3)
688 	HANDLE_COUNTER(2)
689 	HANDLE_COUNTER(1)
690 	HANDLE_COUNTER(0)
691 	}
692 
693 	/*
694 	 * Do all the work for the pending perf events. We can do this
695 	 * in here because the performance counter interrupt is a regular
696 	 * interrupt, not NMI.
697 	 */
698 	if (handled == IRQ_HANDLED)
699 		perf_event_do_pending();
700 
701 #ifdef CONFIG_MIPS_MT_SMP
702 	read_unlock(&pmuint_rwlock);
703 #endif
704 	resume_local_counters();
705 	return handled;
706 }
707 
708 static irqreturn_t
709 mipsxx_pmu_handle_irq(int irq, void *dev)
710 {
711 	return mipsxx_pmu_handle_shared_irq();
712 }
713 
714 static void mipsxx_pmu_start(void)
715 {
716 #ifdef CONFIG_MIPS_MT_SMP
717 	write_unlock(&pmuint_rwlock);
718 #endif
719 	resume_local_counters();
720 }
721 
722 /*
723  * MIPS performance counters can be per-TC. The control registers can
724  * not be directly accessed accross CPUs. Hence if we want to do global
725  * control, we need cross CPU calls. on_each_cpu() can help us, but we
726  * can not make sure this function is called with interrupts enabled. So
727  * here we pause local counters and then grab a rwlock and leave the
728  * counters on other CPUs alone. If any counter interrupt raises while
729  * we own the write lock, simply pause local counters on that CPU and
730  * spin in the handler. Also we know we won't be switched to another
731  * CPU after pausing local counters and before grabbing the lock.
732  */
733 static void mipsxx_pmu_stop(void)
734 {
735 	pause_local_counters();
736 #ifdef CONFIG_MIPS_MT_SMP
737 	write_lock(&pmuint_rwlock);
738 #endif
739 }
740 
741 static int
742 mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
743 			struct hw_perf_event *hwc)
744 {
745 	int i;
746 
747 	/*
748 	 * We only need to care the counter mask. The range has been
749 	 * checked definitely.
750 	 */
751 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
752 
753 	for (i = mipspmu->num_counters - 1; i >= 0; i--) {
754 		/*
755 		 * Note that some MIPS perf events can be counted by both
756 		 * even and odd counters, wheresas many other are only by
757 		 * even _or_ odd counters. This introduces an issue that
758 		 * when the former kind of event takes the counter the
759 		 * latter kind of event wants to use, then the "counter
760 		 * allocation" for the latter event will fail. In fact if
761 		 * they can be dynamically swapped, they both feel happy.
762 		 * But here we leave this issue alone for now.
763 		 */
764 		if (test_bit(i, &cntr_mask) &&
765 			!test_and_set_bit(i, cpuc->used_mask))
766 			return i;
767 	}
768 
769 	return -EAGAIN;
770 }
771 
772 static void
773 mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
774 {
775 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
776 	unsigned long flags;
777 
778 	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
779 
780 	local_irq_save(flags);
781 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
782 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
783 		/* Make sure interrupt enabled. */
784 		M_PERFCTL_INTERRUPT_ENABLE;
785 	/*
786 	 * We do not actually let the counter run. Leave it until start().
787 	 */
788 	local_irq_restore(flags);
789 }
790 
791 static void
792 mipsxx_pmu_disable_event(int idx)
793 {
794 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
795 	unsigned long flags;
796 
797 	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
798 
799 	local_irq_save(flags);
800 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
801 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
802 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
803 	local_irq_restore(flags);
804 }
805 
806 /* 24K */
807 #define IS_UNSUPPORTED_24K_EVENT(r, b)					\
808 	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
809 	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
810 	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
811 	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
812 	 ((b) >= 68 && (b) <= 127))
813 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
814 	((b) == 0 || (b) == 1 || (b) == 11)
815 
816 /* 34K */
817 #define IS_UNSUPPORTED_34K_EVENT(r, b)					\
818 	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
819 	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
820 	 ((b) >= 68 && (b) <= 127))
821 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
822 	((b) == 0 || (b) == 1 || (b) == 11)
823 #ifdef CONFIG_MIPS_MT_SMP
824 #define IS_RANGE_P_34K_EVENT(r, b)					\
825 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
826 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
827 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
828 	 ((b) >= 64 && (b) <= 67))
829 #define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
830 #endif
831 
832 /* 74K */
833 #define IS_UNSUPPORTED_74K_EVENT(r, b)					\
834 	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
835 	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
836 	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
837 	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
838 	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
839 	 ((b) >= 64 && (b) <= 127))
840 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
841 	((b) == 0 || (b) == 1)
842 
843 /* 1004K */
844 #define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
845 	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
846 	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
847 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
848 	((b) == 0 || (b) == 1 || (b) == 11)
849 #ifdef CONFIG_MIPS_MT_SMP
850 #define IS_RANGE_P_1004K_EVENT(r, b)					\
851 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
852 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
853 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
854 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
855 	 ((b) >= 64 && (b) <= 67))
856 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
857 #endif
858 
859 /*
860  * User can use 0-255 raw events, where 0-127 for the events of even
861  * counters, and 128-255 for odd counters. Note that bit 7 is used to
862  * indicate the parity. So, for example, when user wants to take the
863  * Event Num of 15 for odd counters (by referring to the user manual),
864  * then 128 needs to be added to 15 as the input for the event config,
865  * i.e., 143 (0x8F) to be used.
866  */
867 static const struct mips_perf_event *
868 mipsxx_pmu_map_raw_event(u64 config)
869 {
870 	unsigned int raw_id = config & 0xff;
871 	unsigned int base_id = raw_id & 0x7f;
872 
873 	switch (current_cpu_type()) {
874 	case CPU_24K:
875 		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
876 			return ERR_PTR(-EOPNOTSUPP);
877 		raw_event.event_id = base_id;
878 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
879 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
880 		else
881 			raw_event.cntr_mask =
882 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
883 #ifdef CONFIG_MIPS_MT_SMP
884 		/*
885 		 * This is actually doing nothing. Non-multithreading
886 		 * CPUs will not check and calculate the range.
887 		 */
888 		raw_event.range = P;
889 #endif
890 		break;
891 	case CPU_34K:
892 		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
893 			return ERR_PTR(-EOPNOTSUPP);
894 		raw_event.event_id = base_id;
895 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
896 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
897 		else
898 			raw_event.cntr_mask =
899 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
900 #ifdef CONFIG_MIPS_MT_SMP
901 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
902 			raw_event.range = P;
903 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
904 			raw_event.range = V;
905 		else
906 			raw_event.range = T;
907 #endif
908 		break;
909 	case CPU_74K:
910 		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
911 			return ERR_PTR(-EOPNOTSUPP);
912 		raw_event.event_id = base_id;
913 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
914 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
915 		else
916 			raw_event.cntr_mask =
917 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
918 #ifdef CONFIG_MIPS_MT_SMP
919 		raw_event.range = P;
920 #endif
921 		break;
922 	case CPU_1004K:
923 		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
924 			return ERR_PTR(-EOPNOTSUPP);
925 		raw_event.event_id = base_id;
926 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
927 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
928 		else
929 			raw_event.cntr_mask =
930 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
931 #ifdef CONFIG_MIPS_MT_SMP
932 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
933 			raw_event.range = P;
934 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
935 			raw_event.range = V;
936 		else
937 			raw_event.range = T;
938 #endif
939 		break;
940 	}
941 
942 	return &raw_event;
943 }
944 
945 static struct mips_pmu mipsxxcore_pmu = {
946 	.handle_irq = mipsxx_pmu_handle_irq,
947 	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
948 	.start = mipsxx_pmu_start,
949 	.stop = mipsxx_pmu_stop,
950 	.alloc_counter = mipsxx_pmu_alloc_counter,
951 	.read_counter = mipsxx_pmu_read_counter,
952 	.write_counter = mipsxx_pmu_write_counter,
953 	.enable_event = mipsxx_pmu_enable_event,
954 	.disable_event = mipsxx_pmu_disable_event,
955 	.map_raw_event = mipsxx_pmu_map_raw_event,
956 	.general_event_map = &mipsxxcore_event_map,
957 	.cache_event_map = &mipsxxcore_cache_map,
958 };
959 
960 static struct mips_pmu mipsxx74Kcore_pmu = {
961 	.handle_irq = mipsxx_pmu_handle_irq,
962 	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
963 	.start = mipsxx_pmu_start,
964 	.stop = mipsxx_pmu_stop,
965 	.alloc_counter = mipsxx_pmu_alloc_counter,
966 	.read_counter = mipsxx_pmu_read_counter,
967 	.write_counter = mipsxx_pmu_write_counter,
968 	.enable_event = mipsxx_pmu_enable_event,
969 	.disable_event = mipsxx_pmu_disable_event,
970 	.map_raw_event = mipsxx_pmu_map_raw_event,
971 	.general_event_map = &mipsxx74Kcore_event_map,
972 	.cache_event_map = &mipsxx74Kcore_cache_map,
973 };
974 
975 static int __init
976 init_hw_perf_events(void)
977 {
978 	int counters, irq;
979 
980 	pr_info("Performance counters: ");
981 
982 	counters = n_counters();
983 	if (counters == 0) {
984 		pr_cont("No available PMU.\n");
985 		return -ENODEV;
986 	}
987 
988 #ifdef CONFIG_MIPS_MT_SMP
989 	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
990 	if (!cpu_has_mipsmt_pertccounters)
991 		counters = counters_total_to_per_cpu(counters);
992 #endif
993 
994 #ifdef MSC01E_INT_BASE
995 	if (cpu_has_veic) {
996 		/*
997 		 * Using platform specific interrupt controller defines.
998 		 */
999 		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1000 	} else {
1001 #endif
1002 		if (cp0_perfcount_irq >= 0)
1003 			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1004 		else
1005 			irq = -1;
1006 #ifdef MSC01E_INT_BASE
1007 	}
1008 #endif
1009 
1010 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1011 
1012 	switch (current_cpu_type()) {
1013 	case CPU_24K:
1014 		mipsxxcore_pmu.name = "mips/24K";
1015 		mipsxxcore_pmu.num_counters = counters;
1016 		mipsxxcore_pmu.irq = irq;
1017 		mipspmu = &mipsxxcore_pmu;
1018 		break;
1019 	case CPU_34K:
1020 		mipsxxcore_pmu.name = "mips/34K";
1021 		mipsxxcore_pmu.num_counters = counters;
1022 		mipsxxcore_pmu.irq = irq;
1023 		mipspmu = &mipsxxcore_pmu;
1024 		break;
1025 	case CPU_74K:
1026 		mipsxx74Kcore_pmu.name = "mips/74K";
1027 		mipsxx74Kcore_pmu.num_counters = counters;
1028 		mipsxx74Kcore_pmu.irq = irq;
1029 		mipspmu = &mipsxx74Kcore_pmu;
1030 		break;
1031 	case CPU_1004K:
1032 		mipsxxcore_pmu.name = "mips/1004K";
1033 		mipsxxcore_pmu.num_counters = counters;
1034 		mipsxxcore_pmu.irq = irq;
1035 		mipspmu = &mipsxxcore_pmu;
1036 		break;
1037 	default:
1038 		pr_cont("Either hardware does not support performance "
1039 			"counters, or not yet implemented.\n");
1040 		return -ENODEV;
1041 	}
1042 
1043 	if (mipspmu)
1044 		pr_cont("%s PMU enabled, %d counters available to each "
1045 			"CPU, irq %d%s\n", mipspmu->name, counters, irq,
1046 			irq < 0 ? " (share with timer interrupt)" : "");
1047 
1048 	return 0;
1049 }
1050 early_initcall(init_hw_perf_events);
1051 
1052 #endif /* defined(CONFIG_CPU_MIPS32)... */
1053