1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33 
34 struct cpu_hw_events {
35 	/* Array of events on this cpu. */
36 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
37 
38 	/*
39 	 * Set the bit (indexed by the counter number) when the counter
40 	 * is used for an event.
41 	 */
42 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43 
44 	/*
45 	 * Software copy of the control register for each performance counter.
46 	 * MIPS CPUs vary in performance counters. They use this differently,
47 	 * and even may not use it.
48 	 */
49 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 	.saved_ctrl = {0},
53 };
54 
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57 	unsigned int event_id;
58 	/*
59 	 * MIPS performance counters are indexed starting from 0.
60 	 * CNTR_EVEN indicates the indexes of the counters to be used are
61 	 * even numbers.
62 	 */
63 	unsigned int cntr_mask;
64 	#define CNTR_EVEN	0x55555555
65 	#define CNTR_ODD	0xaaaaaaaa
66 	#define CNTR_ALL	0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68 	enum {
69 		T  = 0,
70 		V  = 1,
71 		P  = 2,
72 	} range;
73 #else
74 	#define T
75 	#define V
76 	#define P
77 #endif
78 };
79 
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82 
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84 
85 struct mips_pmu {
86 	u64		max_period;
87 	u64		valid_count;
88 	u64		overflow;
89 	const char	*name;
90 	int		irq;
91 	u64		(*read_counter)(unsigned int idx);
92 	void		(*write_counter)(unsigned int idx, u64 val);
93 	const struct mips_perf_event *(*map_raw_event)(u64 config);
94 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 	const struct mips_perf_event (*cache_event_map)
96 				[PERF_COUNT_HW_CACHE_MAX]
97 				[PERF_COUNT_HW_CACHE_OP_MAX]
98 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
99 	unsigned int	num_counters;
100 };
101 
102 static struct mips_pmu mipspmu;
103 
104 #define M_PERFCTL_EVENT(event)		(((event) << MIPS_PERFCTRL_EVENT_S) & \
105 					 MIPS_PERFCTRL_EVENT)
106 #define M_PERFCTL_VPEID(vpe)		((vpe)	  << MIPS_PERFCTRL_VPEID_S)
107 
108 #ifdef CONFIG_CPU_BMIPS5000
109 #define M_PERFCTL_MT_EN(filter)		0
110 #else /* !CONFIG_CPU_BMIPS5000 */
111 #define M_PERFCTL_MT_EN(filter)		(filter)
112 #endif /* CONFIG_CPU_BMIPS5000 */
113 
114 #define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
115 #define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
116 #define	   M_TC_EN_TC			M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
117 
118 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(MIPS_PERFCTRL_EXL |		\
119 					 MIPS_PERFCTRL_K |		\
120 					 MIPS_PERFCTRL_U |		\
121 					 MIPS_PERFCTRL_S |		\
122 					 MIPS_PERFCTRL_IE)
123 
124 #ifdef CONFIG_MIPS_MT_SMP
125 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
126 #else
127 #define M_PERFCTL_CONFIG_MASK		0x1f
128 #endif
129 
130 
131 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
132 static DEFINE_RWLOCK(pmuint_rwlock);
133 
134 #if defined(CONFIG_CPU_BMIPS5000)
135 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
136 			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
137 #else
138 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
139 			 0 : cpu_vpe_id(&current_cpu_data))
140 #endif
141 
142 /* Copied from op_model_mipsxx.c */
143 static unsigned int vpe_shift(void)
144 {
145 	if (num_possible_cpus() > 1)
146 		return 1;
147 
148 	return 0;
149 }
150 
151 static unsigned int counters_total_to_per_cpu(unsigned int counters)
152 {
153 	return counters >> vpe_shift();
154 }
155 
156 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
157 #define vpe_id()	0
158 
159 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
160 
161 static void resume_local_counters(void);
162 static void pause_local_counters(void);
163 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
164 static int mipsxx_pmu_handle_shared_irq(void);
165 
166 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
167 {
168 	if (vpe_id() == 1)
169 		idx = (idx + 2) & 3;
170 	return idx;
171 }
172 
173 static u64 mipsxx_pmu_read_counter(unsigned int idx)
174 {
175 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
176 
177 	switch (idx) {
178 	case 0:
179 		/*
180 		 * The counters are unsigned, we must cast to truncate
181 		 * off the high bits.
182 		 */
183 		return (u32)read_c0_perfcntr0();
184 	case 1:
185 		return (u32)read_c0_perfcntr1();
186 	case 2:
187 		return (u32)read_c0_perfcntr2();
188 	case 3:
189 		return (u32)read_c0_perfcntr3();
190 	default:
191 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192 		return 0;
193 	}
194 }
195 
196 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
197 {
198 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
199 
200 	switch (idx) {
201 	case 0:
202 		return read_c0_perfcntr0_64();
203 	case 1:
204 		return read_c0_perfcntr1_64();
205 	case 2:
206 		return read_c0_perfcntr2_64();
207 	case 3:
208 		return read_c0_perfcntr3_64();
209 	default:
210 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
211 		return 0;
212 	}
213 }
214 
215 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
216 {
217 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
218 
219 	switch (idx) {
220 	case 0:
221 		write_c0_perfcntr0(val);
222 		return;
223 	case 1:
224 		write_c0_perfcntr1(val);
225 		return;
226 	case 2:
227 		write_c0_perfcntr2(val);
228 		return;
229 	case 3:
230 		write_c0_perfcntr3(val);
231 		return;
232 	}
233 }
234 
235 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
236 {
237 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
238 
239 	switch (idx) {
240 	case 0:
241 		write_c0_perfcntr0_64(val);
242 		return;
243 	case 1:
244 		write_c0_perfcntr1_64(val);
245 		return;
246 	case 2:
247 		write_c0_perfcntr2_64(val);
248 		return;
249 	case 3:
250 		write_c0_perfcntr3_64(val);
251 		return;
252 	}
253 }
254 
255 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
256 {
257 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
258 
259 	switch (idx) {
260 	case 0:
261 		return read_c0_perfctrl0();
262 	case 1:
263 		return read_c0_perfctrl1();
264 	case 2:
265 		return read_c0_perfctrl2();
266 	case 3:
267 		return read_c0_perfctrl3();
268 	default:
269 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
270 		return 0;
271 	}
272 }
273 
274 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
275 {
276 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
277 
278 	switch (idx) {
279 	case 0:
280 		write_c0_perfctrl0(val);
281 		return;
282 	case 1:
283 		write_c0_perfctrl1(val);
284 		return;
285 	case 2:
286 		write_c0_perfctrl2(val);
287 		return;
288 	case 3:
289 		write_c0_perfctrl3(val);
290 		return;
291 	}
292 }
293 
294 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
295 				    struct hw_perf_event *hwc)
296 {
297 	int i;
298 
299 	/*
300 	 * We only need to care the counter mask. The range has been
301 	 * checked definitely.
302 	 */
303 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
304 
305 	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
306 		/*
307 		 * Note that some MIPS perf events can be counted by both
308 		 * even and odd counters, wheresas many other are only by
309 		 * even _or_ odd counters. This introduces an issue that
310 		 * when the former kind of event takes the counter the
311 		 * latter kind of event wants to use, then the "counter
312 		 * allocation" for the latter event will fail. In fact if
313 		 * they can be dynamically swapped, they both feel happy.
314 		 * But here we leave this issue alone for now.
315 		 */
316 		if (test_bit(i, &cntr_mask) &&
317 			!test_and_set_bit(i, cpuc->used_mask))
318 			return i;
319 	}
320 
321 	return -EAGAIN;
322 }
323 
324 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
325 {
326 	struct perf_event *event = container_of(evt, struct perf_event, hw);
327 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
328 #ifdef CONFIG_MIPS_MT_SMP
329 	unsigned int range = evt->event_base >> 24;
330 #endif /* CONFIG_MIPS_MT_SMP */
331 
332 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
333 
334 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
335 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
336 		/* Make sure interrupt enabled. */
337 		MIPS_PERFCTRL_IE;
338 
339 #ifdef CONFIG_CPU_BMIPS5000
340 	{
341 		/* enable the counter for the calling thread */
342 		cpuc->saved_ctrl[idx] |=
343 			(1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
344 	}
345 #else
346 #ifdef CONFIG_MIPS_MT_SMP
347 	if (range > V) {
348 		/* The counter is processor wide. Set it up to count all TCs. */
349 		pr_debug("Enabling perf counter for all TCs\n");
350 		cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
351 	} else
352 #endif /* CONFIG_MIPS_MT_SMP */
353 	{
354 		unsigned int cpu, ctrl;
355 
356 		/*
357 		 * Set up the counter for a particular CPU when event->cpu is
358 		 * a valid CPU number. Otherwise set up the counter for the CPU
359 		 * scheduling this thread.
360 		 */
361 		cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
362 
363 		ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
364 		ctrl |= M_TC_EN_VPE;
365 		cpuc->saved_ctrl[idx] |= ctrl;
366 		pr_debug("Enabling perf counter for CPU%d\n", cpu);
367 	}
368 #endif /* CONFIG_CPU_BMIPS5000 */
369 	/*
370 	 * We do not actually let the counter run. Leave it until start().
371 	 */
372 }
373 
374 static void mipsxx_pmu_disable_event(int idx)
375 {
376 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
377 	unsigned long flags;
378 
379 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
380 
381 	local_irq_save(flags);
382 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
383 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
384 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
385 	local_irq_restore(flags);
386 }
387 
388 static int mipspmu_event_set_period(struct perf_event *event,
389 				    struct hw_perf_event *hwc,
390 				    int idx)
391 {
392 	u64 left = local64_read(&hwc->period_left);
393 	u64 period = hwc->sample_period;
394 	int ret = 0;
395 
396 	if (unlikely((left + period) & (1ULL << 63))) {
397 		/* left underflowed by more than period. */
398 		left = period;
399 		local64_set(&hwc->period_left, left);
400 		hwc->last_period = period;
401 		ret = 1;
402 	} else	if (unlikely((left + period) <= period)) {
403 		/* left underflowed by less than period. */
404 		left += period;
405 		local64_set(&hwc->period_left, left);
406 		hwc->last_period = period;
407 		ret = 1;
408 	}
409 
410 	if (left > mipspmu.max_period) {
411 		left = mipspmu.max_period;
412 		local64_set(&hwc->period_left, left);
413 	}
414 
415 	local64_set(&hwc->prev_count, mipspmu.overflow - left);
416 
417 	mipspmu.write_counter(idx, mipspmu.overflow - left);
418 
419 	perf_event_update_userpage(event);
420 
421 	return ret;
422 }
423 
424 static void mipspmu_event_update(struct perf_event *event,
425 				 struct hw_perf_event *hwc,
426 				 int idx)
427 {
428 	u64 prev_raw_count, new_raw_count;
429 	u64 delta;
430 
431 again:
432 	prev_raw_count = local64_read(&hwc->prev_count);
433 	new_raw_count = mipspmu.read_counter(idx);
434 
435 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
436 				new_raw_count) != prev_raw_count)
437 		goto again;
438 
439 	delta = new_raw_count - prev_raw_count;
440 
441 	local64_add(delta, &event->count);
442 	local64_sub(delta, &hwc->period_left);
443 }
444 
445 static void mipspmu_start(struct perf_event *event, int flags)
446 {
447 	struct hw_perf_event *hwc = &event->hw;
448 
449 	if (flags & PERF_EF_RELOAD)
450 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
451 
452 	hwc->state = 0;
453 
454 	/* Set the period for the event. */
455 	mipspmu_event_set_period(event, hwc, hwc->idx);
456 
457 	/* Enable the event. */
458 	mipsxx_pmu_enable_event(hwc, hwc->idx);
459 }
460 
461 static void mipspmu_stop(struct perf_event *event, int flags)
462 {
463 	struct hw_perf_event *hwc = &event->hw;
464 
465 	if (!(hwc->state & PERF_HES_STOPPED)) {
466 		/* We are working on a local event. */
467 		mipsxx_pmu_disable_event(hwc->idx);
468 		barrier();
469 		mipspmu_event_update(event, hwc, hwc->idx);
470 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
471 	}
472 }
473 
474 static int mipspmu_add(struct perf_event *event, int flags)
475 {
476 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
477 	struct hw_perf_event *hwc = &event->hw;
478 	int idx;
479 	int err = 0;
480 
481 	perf_pmu_disable(event->pmu);
482 
483 	/* To look for a free counter for this event. */
484 	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
485 	if (idx < 0) {
486 		err = idx;
487 		goto out;
488 	}
489 
490 	/*
491 	 * If there is an event in the counter we are going to use then
492 	 * make sure it is disabled.
493 	 */
494 	event->hw.idx = idx;
495 	mipsxx_pmu_disable_event(idx);
496 	cpuc->events[idx] = event;
497 
498 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
499 	if (flags & PERF_EF_START)
500 		mipspmu_start(event, PERF_EF_RELOAD);
501 
502 	/* Propagate our changes to the userspace mapping. */
503 	perf_event_update_userpage(event);
504 
505 out:
506 	perf_pmu_enable(event->pmu);
507 	return err;
508 }
509 
510 static void mipspmu_del(struct perf_event *event, int flags)
511 {
512 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
513 	struct hw_perf_event *hwc = &event->hw;
514 	int idx = hwc->idx;
515 
516 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
517 
518 	mipspmu_stop(event, PERF_EF_UPDATE);
519 	cpuc->events[idx] = NULL;
520 	clear_bit(idx, cpuc->used_mask);
521 
522 	perf_event_update_userpage(event);
523 }
524 
525 static void mipspmu_read(struct perf_event *event)
526 {
527 	struct hw_perf_event *hwc = &event->hw;
528 
529 	/* Don't read disabled counters! */
530 	if (hwc->idx < 0)
531 		return;
532 
533 	mipspmu_event_update(event, hwc, hwc->idx);
534 }
535 
536 static void mipspmu_enable(struct pmu *pmu)
537 {
538 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
539 	write_unlock(&pmuint_rwlock);
540 #endif
541 	resume_local_counters();
542 }
543 
544 /*
545  * MIPS performance counters can be per-TC. The control registers can
546  * not be directly accessed across CPUs. Hence if we want to do global
547  * control, we need cross CPU calls. on_each_cpu() can help us, but we
548  * can not make sure this function is called with interrupts enabled. So
549  * here we pause local counters and then grab a rwlock and leave the
550  * counters on other CPUs alone. If any counter interrupt raises while
551  * we own the write lock, simply pause local counters on that CPU and
552  * spin in the handler. Also we know we won't be switched to another
553  * CPU after pausing local counters and before grabbing the lock.
554  */
555 static void mipspmu_disable(struct pmu *pmu)
556 {
557 	pause_local_counters();
558 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
559 	write_lock(&pmuint_rwlock);
560 #endif
561 }
562 
563 static atomic_t active_events = ATOMIC_INIT(0);
564 static DEFINE_MUTEX(pmu_reserve_mutex);
565 static int (*save_perf_irq)(void);
566 
567 static int mipspmu_get_irq(void)
568 {
569 	int err;
570 
571 	if (mipspmu.irq >= 0) {
572 		/* Request my own irq handler. */
573 		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
574 				  IRQF_PERCPU | IRQF_NOBALANCING |
575 				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
576 				  IRQF_SHARED,
577 				  "mips_perf_pmu", &mipspmu);
578 		if (err) {
579 			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
580 				mipspmu.irq);
581 		}
582 	} else if (cp0_perfcount_irq < 0) {
583 		/*
584 		 * We are sharing the irq number with the timer interrupt.
585 		 */
586 		save_perf_irq = perf_irq;
587 		perf_irq = mipsxx_pmu_handle_shared_irq;
588 		err = 0;
589 	} else {
590 		pr_warn("The platform hasn't properly defined its interrupt controller\n");
591 		err = -ENOENT;
592 	}
593 
594 	return err;
595 }
596 
597 static void mipspmu_free_irq(void)
598 {
599 	if (mipspmu.irq >= 0)
600 		free_irq(mipspmu.irq, &mipspmu);
601 	else if (cp0_perfcount_irq < 0)
602 		perf_irq = save_perf_irq;
603 }
604 
605 /*
606  * mipsxx/rm9000/loongson2 have different performance counters, they have
607  * specific low-level init routines.
608  */
609 static void reset_counters(void *arg);
610 static int __hw_perf_event_init(struct perf_event *event);
611 
612 static void hw_perf_event_destroy(struct perf_event *event)
613 {
614 	if (atomic_dec_and_mutex_lock(&active_events,
615 				&pmu_reserve_mutex)) {
616 		/*
617 		 * We must not call the destroy function with interrupts
618 		 * disabled.
619 		 */
620 		on_each_cpu(reset_counters,
621 			(void *)(long)mipspmu.num_counters, 1);
622 		mipspmu_free_irq();
623 		mutex_unlock(&pmu_reserve_mutex);
624 	}
625 }
626 
627 static int mipspmu_event_init(struct perf_event *event)
628 {
629 	int err = 0;
630 
631 	/* does not support taken branch sampling */
632 	if (has_branch_stack(event))
633 		return -EOPNOTSUPP;
634 
635 	switch (event->attr.type) {
636 	case PERF_TYPE_RAW:
637 	case PERF_TYPE_HARDWARE:
638 	case PERF_TYPE_HW_CACHE:
639 		break;
640 
641 	default:
642 		return -ENOENT;
643 	}
644 
645 	if (event->cpu >= 0 && !cpu_online(event->cpu))
646 		return -ENODEV;
647 
648 	if (!atomic_inc_not_zero(&active_events)) {
649 		mutex_lock(&pmu_reserve_mutex);
650 		if (atomic_read(&active_events) == 0)
651 			err = mipspmu_get_irq();
652 
653 		if (!err)
654 			atomic_inc(&active_events);
655 		mutex_unlock(&pmu_reserve_mutex);
656 	}
657 
658 	if (err)
659 		return err;
660 
661 	return __hw_perf_event_init(event);
662 }
663 
664 static struct pmu pmu = {
665 	.pmu_enable	= mipspmu_enable,
666 	.pmu_disable	= mipspmu_disable,
667 	.event_init	= mipspmu_event_init,
668 	.add		= mipspmu_add,
669 	.del		= mipspmu_del,
670 	.start		= mipspmu_start,
671 	.stop		= mipspmu_stop,
672 	.read		= mipspmu_read,
673 };
674 
675 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
676 {
677 /*
678  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
679  * event_id.
680  */
681 #ifdef CONFIG_MIPS_MT_SMP
682 	if (num_possible_cpus() > 1)
683 		return ((unsigned int)pev->range << 24) |
684 			(pev->cntr_mask & 0xffff00) |
685 			(pev->event_id & 0xff);
686 	else
687 #endif /* CONFIG_MIPS_MT_SMP */
688 		return ((pev->cntr_mask & 0xffff00) |
689 			(pev->event_id & 0xff));
690 }
691 
692 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
693 {
694 
695 	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
696 		return ERR_PTR(-EOPNOTSUPP);
697 	return &(*mipspmu.general_event_map)[idx];
698 }
699 
700 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
701 {
702 	unsigned int cache_type, cache_op, cache_result;
703 	const struct mips_perf_event *pev;
704 
705 	cache_type = (config >> 0) & 0xff;
706 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
707 		return ERR_PTR(-EINVAL);
708 
709 	cache_op = (config >> 8) & 0xff;
710 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
711 		return ERR_PTR(-EINVAL);
712 
713 	cache_result = (config >> 16) & 0xff;
714 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
715 		return ERR_PTR(-EINVAL);
716 
717 	pev = &((*mipspmu.cache_event_map)
718 					[cache_type]
719 					[cache_op]
720 					[cache_result]);
721 
722 	if (pev->cntr_mask == 0)
723 		return ERR_PTR(-EOPNOTSUPP);
724 
725 	return pev;
726 
727 }
728 
729 static int validate_group(struct perf_event *event)
730 {
731 	struct perf_event *sibling, *leader = event->group_leader;
732 	struct cpu_hw_events fake_cpuc;
733 
734 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
735 
736 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
737 		return -EINVAL;
738 
739 	for_each_sibling_event(sibling, leader) {
740 		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
741 			return -EINVAL;
742 	}
743 
744 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
745 		return -EINVAL;
746 
747 	return 0;
748 }
749 
750 /* This is needed by specific irq handlers in perf_event_*.c */
751 static void handle_associated_event(struct cpu_hw_events *cpuc,
752 				    int idx, struct perf_sample_data *data,
753 				    struct pt_regs *regs)
754 {
755 	struct perf_event *event = cpuc->events[idx];
756 	struct hw_perf_event *hwc = &event->hw;
757 
758 	mipspmu_event_update(event, hwc, idx);
759 	data->period = event->hw.last_period;
760 	if (!mipspmu_event_set_period(event, hwc, idx))
761 		return;
762 
763 	if (perf_event_overflow(event, data, regs))
764 		mipsxx_pmu_disable_event(idx);
765 }
766 
767 
768 static int __n_counters(void)
769 {
770 	if (!cpu_has_perf)
771 		return 0;
772 	if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
773 		return 1;
774 	if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
775 		return 2;
776 	if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
777 		return 3;
778 
779 	return 4;
780 }
781 
782 static int n_counters(void)
783 {
784 	int counters;
785 
786 	switch (current_cpu_type()) {
787 	case CPU_R10000:
788 		counters = 2;
789 		break;
790 
791 	case CPU_R12000:
792 	case CPU_R14000:
793 	case CPU_R16000:
794 		counters = 4;
795 		break;
796 
797 	default:
798 		counters = __n_counters();
799 	}
800 
801 	return counters;
802 }
803 
804 static void reset_counters(void *arg)
805 {
806 	int counters = (int)(long)arg;
807 	switch (counters) {
808 	case 4:
809 		mipsxx_pmu_write_control(3, 0);
810 		mipspmu.write_counter(3, 0);
811 	case 3:
812 		mipsxx_pmu_write_control(2, 0);
813 		mipspmu.write_counter(2, 0);
814 	case 2:
815 		mipsxx_pmu_write_control(1, 0);
816 		mipspmu.write_counter(1, 0);
817 	case 1:
818 		mipsxx_pmu_write_control(0, 0);
819 		mipspmu.write_counter(0, 0);
820 	}
821 }
822 
823 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
824 static const struct mips_perf_event mipsxxcore_event_map
825 				[PERF_COUNT_HW_MAX] = {
826 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
827 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
828 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
829 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
830 };
831 
832 /* 74K/proAptiv core has different branch event code. */
833 static const struct mips_perf_event mipsxxcore_event_map2
834 				[PERF_COUNT_HW_MAX] = {
835 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
838 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
839 };
840 
841 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
842 	[PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
843 	[PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
844 	/* These only count dcache, not icache */
845 	[PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
846 	[PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
847 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
848 	[PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
849 };
850 
851 static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
852 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
853 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
854 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
855 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
856 };
857 
858 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
859 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
860 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
861 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
862 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
863 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
864 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
865 	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
866 };
867 
868 static const struct mips_perf_event bmips5000_event_map
869 				[PERF_COUNT_HW_MAX] = {
870 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
871 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
872 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
873 };
874 
875 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
876 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
877 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
878 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
879 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
880 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
881 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
882 };
883 
884 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
885 static const struct mips_perf_event mipsxxcore_cache_map
886 				[PERF_COUNT_HW_CACHE_MAX]
887 				[PERF_COUNT_HW_CACHE_OP_MAX]
888 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
889 [C(L1D)] = {
890 	/*
891 	 * Like some other architectures (e.g. ARM), the performance
892 	 * counters don't differentiate between read and write
893 	 * accesses/misses, so this isn't strictly correct, but it's the
894 	 * best we can do. Writes and reads get combined.
895 	 */
896 	[C(OP_READ)] = {
897 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
898 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
899 	},
900 	[C(OP_WRITE)] = {
901 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
902 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
903 	},
904 },
905 [C(L1I)] = {
906 	[C(OP_READ)] = {
907 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
908 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
909 	},
910 	[C(OP_WRITE)] = {
911 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
912 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
913 	},
914 	[C(OP_PREFETCH)] = {
915 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
916 		/*
917 		 * Note that MIPS has only "hit" events countable for
918 		 * the prefetch operation.
919 		 */
920 	},
921 },
922 [C(LL)] = {
923 	[C(OP_READ)] = {
924 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
925 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
926 	},
927 	[C(OP_WRITE)] = {
928 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
929 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
930 	},
931 },
932 [C(DTLB)] = {
933 	[C(OP_READ)] = {
934 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
935 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
936 	},
937 	[C(OP_WRITE)] = {
938 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
939 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
940 	},
941 },
942 [C(ITLB)] = {
943 	[C(OP_READ)] = {
944 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
945 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
946 	},
947 	[C(OP_WRITE)] = {
948 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
949 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
950 	},
951 },
952 [C(BPU)] = {
953 	/* Using the same code for *HW_BRANCH* */
954 	[C(OP_READ)] = {
955 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
956 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
957 	},
958 	[C(OP_WRITE)] = {
959 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
960 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
961 	},
962 },
963 };
964 
965 /* 74K/proAptiv core has completely different cache event map. */
966 static const struct mips_perf_event mipsxxcore_cache_map2
967 				[PERF_COUNT_HW_CACHE_MAX]
968 				[PERF_COUNT_HW_CACHE_OP_MAX]
969 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
970 [C(L1D)] = {
971 	/*
972 	 * Like some other architectures (e.g. ARM), the performance
973 	 * counters don't differentiate between read and write
974 	 * accesses/misses, so this isn't strictly correct, but it's the
975 	 * best we can do. Writes and reads get combined.
976 	 */
977 	[C(OP_READ)] = {
978 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
979 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
980 	},
981 	[C(OP_WRITE)] = {
982 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
983 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
984 	},
985 },
986 [C(L1I)] = {
987 	[C(OP_READ)] = {
988 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
989 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
990 	},
991 	[C(OP_WRITE)] = {
992 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
993 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
994 	},
995 	[C(OP_PREFETCH)] = {
996 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
997 		/*
998 		 * Note that MIPS has only "hit" events countable for
999 		 * the prefetch operation.
1000 		 */
1001 	},
1002 },
1003 [C(LL)] = {
1004 	[C(OP_READ)] = {
1005 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1006 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1007 	},
1008 	[C(OP_WRITE)] = {
1009 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1010 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
1011 	},
1012 },
1013 /*
1014  * 74K core does not have specific DTLB events. proAptiv core has
1015  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1016  * not included here. One can use raw events if really needed.
1017  */
1018 [C(ITLB)] = {
1019 	[C(OP_READ)] = {
1020 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1021 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1022 	},
1023 	[C(OP_WRITE)] = {
1024 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1025 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1026 	},
1027 },
1028 [C(BPU)] = {
1029 	/* Using the same code for *HW_BRANCH* */
1030 	[C(OP_READ)] = {
1031 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1032 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1033 	},
1034 	[C(OP_WRITE)] = {
1035 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1036 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1037 	},
1038 },
1039 };
1040 
1041 static const struct mips_perf_event i6x00_cache_map
1042 				[PERF_COUNT_HW_CACHE_MAX]
1043 				[PERF_COUNT_HW_CACHE_OP_MAX]
1044 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1045 [C(L1D)] = {
1046 	[C(OP_READ)] = {
1047 		[C(RESULT_ACCESS)]	= { 0x46, CNTR_EVEN | CNTR_ODD },
1048 		[C(RESULT_MISS)]	= { 0x49, CNTR_EVEN | CNTR_ODD },
1049 	},
1050 	[C(OP_WRITE)] = {
1051 		[C(RESULT_ACCESS)]	= { 0x47, CNTR_EVEN | CNTR_ODD },
1052 		[C(RESULT_MISS)]	= { 0x4a, CNTR_EVEN | CNTR_ODD },
1053 	},
1054 },
1055 [C(L1I)] = {
1056 	[C(OP_READ)] = {
1057 		[C(RESULT_ACCESS)]	= { 0x84, CNTR_EVEN | CNTR_ODD },
1058 		[C(RESULT_MISS)]	= { 0x85, CNTR_EVEN | CNTR_ODD },
1059 	},
1060 },
1061 [C(DTLB)] = {
1062 	/* Can't distinguish read & write */
1063 	[C(OP_READ)] = {
1064 		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1065 		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1066 	},
1067 	[C(OP_WRITE)] = {
1068 		[C(RESULT_ACCESS)]	= { 0x40, CNTR_EVEN | CNTR_ODD },
1069 		[C(RESULT_MISS)]	= { 0x41, CNTR_EVEN | CNTR_ODD },
1070 	},
1071 },
1072 [C(BPU)] = {
1073 	/* Conditional branches / mispredicted */
1074 	[C(OP_READ)] = {
1075 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_EVEN | CNTR_ODD },
1076 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN | CNTR_ODD },
1077 	},
1078 },
1079 };
1080 
1081 static const struct mips_perf_event loongson3_cache_map
1082 				[PERF_COUNT_HW_CACHE_MAX]
1083 				[PERF_COUNT_HW_CACHE_OP_MAX]
1084 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1085 [C(L1D)] = {
1086 	/*
1087 	 * Like some other architectures (e.g. ARM), the performance
1088 	 * counters don't differentiate between read and write
1089 	 * accesses/misses, so this isn't strictly correct, but it's the
1090 	 * best we can do. Writes and reads get combined.
1091 	 */
1092 	[C(OP_READ)] = {
1093 		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1094 	},
1095 	[C(OP_WRITE)] = {
1096 		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1097 	},
1098 },
1099 [C(L1I)] = {
1100 	[C(OP_READ)] = {
1101 		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1102 	},
1103 	[C(OP_WRITE)] = {
1104 		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1105 	},
1106 },
1107 [C(DTLB)] = {
1108 	[C(OP_READ)] = {
1109 		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1110 	},
1111 	[C(OP_WRITE)] = {
1112 		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1113 	},
1114 },
1115 [C(ITLB)] = {
1116 	[C(OP_READ)] = {
1117 		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1118 	},
1119 	[C(OP_WRITE)] = {
1120 		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1121 	},
1122 },
1123 [C(BPU)] = {
1124 	/* Using the same code for *HW_BRANCH* */
1125 	[C(OP_READ)] = {
1126 		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1127 		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1128 	},
1129 	[C(OP_WRITE)] = {
1130 		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1131 		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1132 	},
1133 },
1134 };
1135 
1136 /* BMIPS5000 */
1137 static const struct mips_perf_event bmips5000_cache_map
1138 				[PERF_COUNT_HW_CACHE_MAX]
1139 				[PERF_COUNT_HW_CACHE_OP_MAX]
1140 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1141 [C(L1D)] = {
1142 	/*
1143 	 * Like some other architectures (e.g. ARM), the performance
1144 	 * counters don't differentiate between read and write
1145 	 * accesses/misses, so this isn't strictly correct, but it's the
1146 	 * best we can do. Writes and reads get combined.
1147 	 */
1148 	[C(OP_READ)] = {
1149 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1150 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1151 	},
1152 	[C(OP_WRITE)] = {
1153 		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1154 		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1155 	},
1156 },
1157 [C(L1I)] = {
1158 	[C(OP_READ)] = {
1159 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1160 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1161 	},
1162 	[C(OP_WRITE)] = {
1163 		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1164 		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1165 	},
1166 	[C(OP_PREFETCH)] = {
1167 		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1168 		/*
1169 		 * Note that MIPS has only "hit" events countable for
1170 		 * the prefetch operation.
1171 		 */
1172 	},
1173 },
1174 [C(LL)] = {
1175 	[C(OP_READ)] = {
1176 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1177 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1178 	},
1179 	[C(OP_WRITE)] = {
1180 		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1181 		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1182 	},
1183 },
1184 [C(BPU)] = {
1185 	/* Using the same code for *HW_BRANCH* */
1186 	[C(OP_READ)] = {
1187 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1188 	},
1189 	[C(OP_WRITE)] = {
1190 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1191 	},
1192 },
1193 };
1194 
1195 
1196 static const struct mips_perf_event octeon_cache_map
1197 				[PERF_COUNT_HW_CACHE_MAX]
1198 				[PERF_COUNT_HW_CACHE_OP_MAX]
1199 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1200 [C(L1D)] = {
1201 	[C(OP_READ)] = {
1202 		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1203 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1204 	},
1205 	[C(OP_WRITE)] = {
1206 		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1207 	},
1208 },
1209 [C(L1I)] = {
1210 	[C(OP_READ)] = {
1211 		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1212 	},
1213 	[C(OP_PREFETCH)] = {
1214 		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1215 	},
1216 },
1217 [C(DTLB)] = {
1218 	/*
1219 	 * Only general DTLB misses are counted use the same event for
1220 	 * read and write.
1221 	 */
1222 	[C(OP_READ)] = {
1223 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1224 	},
1225 	[C(OP_WRITE)] = {
1226 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1227 	},
1228 },
1229 [C(ITLB)] = {
1230 	[C(OP_READ)] = {
1231 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1232 	},
1233 },
1234 };
1235 
1236 static const struct mips_perf_event xlp_cache_map
1237 				[PERF_COUNT_HW_CACHE_MAX]
1238 				[PERF_COUNT_HW_CACHE_OP_MAX]
1239 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1240 [C(L1D)] = {
1241 	[C(OP_READ)] = {
1242 		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1243 		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1244 	},
1245 	[C(OP_WRITE)] = {
1246 		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1247 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1248 	},
1249 },
1250 [C(L1I)] = {
1251 	[C(OP_READ)] = {
1252 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1253 		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1254 	},
1255 },
1256 [C(LL)] = {
1257 	[C(OP_READ)] = {
1258 		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1259 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1260 	},
1261 	[C(OP_WRITE)] = {
1262 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1263 		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1264 	},
1265 },
1266 [C(DTLB)] = {
1267 	/*
1268 	 * Only general DTLB misses are counted use the same event for
1269 	 * read and write.
1270 	 */
1271 	[C(OP_READ)] = {
1272 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1273 	},
1274 	[C(OP_WRITE)] = {
1275 		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1276 	},
1277 },
1278 [C(ITLB)] = {
1279 	[C(OP_READ)] = {
1280 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1281 	},
1282 	[C(OP_WRITE)] = {
1283 		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1284 	},
1285 },
1286 [C(BPU)] = {
1287 	[C(OP_READ)] = {
1288 		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1289 	},
1290 },
1291 };
1292 
1293 static int __hw_perf_event_init(struct perf_event *event)
1294 {
1295 	struct perf_event_attr *attr = &event->attr;
1296 	struct hw_perf_event *hwc = &event->hw;
1297 	const struct mips_perf_event *pev;
1298 	int err;
1299 
1300 	/* Returning MIPS event descriptor for generic perf event. */
1301 	if (PERF_TYPE_HARDWARE == event->attr.type) {
1302 		if (event->attr.config >= PERF_COUNT_HW_MAX)
1303 			return -EINVAL;
1304 		pev = mipspmu_map_general_event(event->attr.config);
1305 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1306 		pev = mipspmu_map_cache_event(event->attr.config);
1307 	} else if (PERF_TYPE_RAW == event->attr.type) {
1308 		/* We are working on the global raw event. */
1309 		mutex_lock(&raw_event_mutex);
1310 		pev = mipspmu.map_raw_event(event->attr.config);
1311 	} else {
1312 		/* The event type is not (yet) supported. */
1313 		return -EOPNOTSUPP;
1314 	}
1315 
1316 	if (IS_ERR(pev)) {
1317 		if (PERF_TYPE_RAW == event->attr.type)
1318 			mutex_unlock(&raw_event_mutex);
1319 		return PTR_ERR(pev);
1320 	}
1321 
1322 	/*
1323 	 * We allow max flexibility on how each individual counter shared
1324 	 * by the single CPU operates (the mode exclusion and the range).
1325 	 */
1326 	hwc->config_base = MIPS_PERFCTRL_IE;
1327 
1328 	hwc->event_base = mipspmu_perf_event_encode(pev);
1329 	if (PERF_TYPE_RAW == event->attr.type)
1330 		mutex_unlock(&raw_event_mutex);
1331 
1332 	if (!attr->exclude_user)
1333 		hwc->config_base |= MIPS_PERFCTRL_U;
1334 	if (!attr->exclude_kernel) {
1335 		hwc->config_base |= MIPS_PERFCTRL_K;
1336 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1337 		hwc->config_base |= MIPS_PERFCTRL_EXL;
1338 	}
1339 	if (!attr->exclude_hv)
1340 		hwc->config_base |= MIPS_PERFCTRL_S;
1341 
1342 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1343 	/*
1344 	 * The event can belong to another cpu. We do not assign a local
1345 	 * counter for it for now.
1346 	 */
1347 	hwc->idx = -1;
1348 	hwc->config = 0;
1349 
1350 	if (!hwc->sample_period) {
1351 		hwc->sample_period  = mipspmu.max_period;
1352 		hwc->last_period    = hwc->sample_period;
1353 		local64_set(&hwc->period_left, hwc->sample_period);
1354 	}
1355 
1356 	err = 0;
1357 	if (event->group_leader != event)
1358 		err = validate_group(event);
1359 
1360 	event->destroy = hw_perf_event_destroy;
1361 
1362 	if (err)
1363 		event->destroy(event);
1364 
1365 	return err;
1366 }
1367 
1368 static void pause_local_counters(void)
1369 {
1370 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1371 	int ctr = mipspmu.num_counters;
1372 	unsigned long flags;
1373 
1374 	local_irq_save(flags);
1375 	do {
1376 		ctr--;
1377 		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1378 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1379 					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1380 	} while (ctr > 0);
1381 	local_irq_restore(flags);
1382 }
1383 
1384 static void resume_local_counters(void)
1385 {
1386 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1387 	int ctr = mipspmu.num_counters;
1388 
1389 	do {
1390 		ctr--;
1391 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1392 	} while (ctr > 0);
1393 }
1394 
1395 static int mipsxx_pmu_handle_shared_irq(void)
1396 {
1397 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1398 	struct perf_sample_data data;
1399 	unsigned int counters = mipspmu.num_counters;
1400 	u64 counter;
1401 	int handled = IRQ_NONE;
1402 	struct pt_regs *regs;
1403 
1404 	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1405 		return handled;
1406 	/*
1407 	 * First we pause the local counters, so that when we are locked
1408 	 * here, the counters are all paused. When it gets locked due to
1409 	 * perf_disable(), the timer interrupt handler will be delayed.
1410 	 *
1411 	 * See also mipsxx_pmu_start().
1412 	 */
1413 	pause_local_counters();
1414 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1415 	read_lock(&pmuint_rwlock);
1416 #endif
1417 
1418 	regs = get_irq_regs();
1419 
1420 	perf_sample_data_init(&data, 0, 0);
1421 
1422 	switch (counters) {
1423 #define HANDLE_COUNTER(n)						\
1424 	case n + 1:							\
1425 		if (test_bit(n, cpuc->used_mask)) {			\
1426 			counter = mipspmu.read_counter(n);		\
1427 			if (counter & mipspmu.overflow) {		\
1428 				handle_associated_event(cpuc, n, &data, regs); \
1429 				handled = IRQ_HANDLED;			\
1430 			}						\
1431 		}
1432 	HANDLE_COUNTER(3)
1433 	HANDLE_COUNTER(2)
1434 	HANDLE_COUNTER(1)
1435 	HANDLE_COUNTER(0)
1436 	}
1437 
1438 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1439 	read_unlock(&pmuint_rwlock);
1440 #endif
1441 	resume_local_counters();
1442 
1443 	/*
1444 	 * Do all the work for the pending perf events. We can do this
1445 	 * in here because the performance counter interrupt is a regular
1446 	 * interrupt, not NMI.
1447 	 */
1448 	if (handled == IRQ_HANDLED)
1449 		irq_work_run();
1450 
1451 	return handled;
1452 }
1453 
1454 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1455 {
1456 	return mipsxx_pmu_handle_shared_irq();
1457 }
1458 
1459 /* 24K */
1460 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1461 	((b) == 0 || (b) == 1 || (b) == 11)
1462 
1463 /* 34K */
1464 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1465 	((b) == 0 || (b) == 1 || (b) == 11)
1466 #ifdef CONFIG_MIPS_MT_SMP
1467 #define IS_RANGE_P_34K_EVENT(r, b)					\
1468 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1469 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1470 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1471 	 ((b) >= 64 && (b) <= 67))
1472 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1473 #endif
1474 
1475 /* 74K */
1476 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1477 	((b) == 0 || (b) == 1)
1478 
1479 /* proAptiv */
1480 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1481 	((b) == 0 || (b) == 1)
1482 /* P5600 */
1483 #define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1484 	((b) == 0 || (b) == 1)
1485 
1486 /* 1004K */
1487 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1488 	((b) == 0 || (b) == 1 || (b) == 11)
1489 #ifdef CONFIG_MIPS_MT_SMP
1490 #define IS_RANGE_P_1004K_EVENT(r, b)					\
1491 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1492 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1493 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1494 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1495 	 ((b) >= 64 && (b) <= 67))
1496 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1497 #endif
1498 
1499 /* interAptiv */
1500 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1501 	((b) == 0 || (b) == 1 || (b) == 11)
1502 #ifdef CONFIG_MIPS_MT_SMP
1503 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1504 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1505 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1506 	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1507 	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1508 	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1509 	 ((b) >= 64 && (b) <= 67))
1510 #define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1511 #endif
1512 
1513 /* BMIPS5000 */
1514 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1515 	((b) == 0 || (b) == 1)
1516 
1517 
1518 /*
1519  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1520  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1521  * indicate the even/odd bank selector. So, for example, when user wants to take
1522  * the Event Num of 15 for odd counters (by referring to the user manual), then
1523  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1524  * to be used.
1525  *
1526  * Some newer cores have even more events, in which case the user can use raw
1527  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1528  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1529  */
1530 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1531 {
1532 	/* currently most cores have 7-bit event numbers */
1533 	unsigned int raw_id = config & 0xff;
1534 	unsigned int base_id = raw_id & 0x7f;
1535 
1536 	switch (current_cpu_type()) {
1537 	case CPU_24K:
1538 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1539 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1540 		else
1541 			raw_event.cntr_mask =
1542 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1543 #ifdef CONFIG_MIPS_MT_SMP
1544 		/*
1545 		 * This is actually doing nothing. Non-multithreading
1546 		 * CPUs will not check and calculate the range.
1547 		 */
1548 		raw_event.range = P;
1549 #endif
1550 		break;
1551 	case CPU_34K:
1552 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1553 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1554 		else
1555 			raw_event.cntr_mask =
1556 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1557 #ifdef CONFIG_MIPS_MT_SMP
1558 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1559 			raw_event.range = P;
1560 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1561 			raw_event.range = V;
1562 		else
1563 			raw_event.range = T;
1564 #endif
1565 		break;
1566 	case CPU_74K:
1567 	case CPU_1074K:
1568 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1569 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1570 		else
1571 			raw_event.cntr_mask =
1572 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1573 #ifdef CONFIG_MIPS_MT_SMP
1574 		raw_event.range = P;
1575 #endif
1576 		break;
1577 	case CPU_PROAPTIV:
1578 		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1579 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1580 		else
1581 			raw_event.cntr_mask =
1582 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1583 #ifdef CONFIG_MIPS_MT_SMP
1584 		raw_event.range = P;
1585 #endif
1586 		break;
1587 	case CPU_P5600:
1588 	case CPU_P6600:
1589 		/* 8-bit event numbers */
1590 		raw_id = config & 0x1ff;
1591 		base_id = raw_id & 0xff;
1592 		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1593 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1594 		else
1595 			raw_event.cntr_mask =
1596 				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1597 #ifdef CONFIG_MIPS_MT_SMP
1598 		raw_event.range = P;
1599 #endif
1600 		break;
1601 	case CPU_I6400:
1602 	case CPU_I6500:
1603 		/* 8-bit event numbers */
1604 		base_id = config & 0xff;
1605 		raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1606 		break;
1607 	case CPU_1004K:
1608 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1609 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1610 		else
1611 			raw_event.cntr_mask =
1612 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1613 #ifdef CONFIG_MIPS_MT_SMP
1614 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1615 			raw_event.range = P;
1616 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1617 			raw_event.range = V;
1618 		else
1619 			raw_event.range = T;
1620 #endif
1621 		break;
1622 	case CPU_INTERAPTIV:
1623 		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1624 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1625 		else
1626 			raw_event.cntr_mask =
1627 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628 #ifdef CONFIG_MIPS_MT_SMP
1629 		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1630 			raw_event.range = P;
1631 		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1632 			raw_event.range = V;
1633 		else
1634 			raw_event.range = T;
1635 #endif
1636 		break;
1637 	case CPU_BMIPS5000:
1638 		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1639 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1640 		else
1641 			raw_event.cntr_mask =
1642 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1643 		break;
1644 	case CPU_LOONGSON3:
1645 		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1646 	break;
1647 	}
1648 
1649 	raw_event.event_id = base_id;
1650 
1651 	return &raw_event;
1652 }
1653 
1654 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1655 {
1656 	unsigned int raw_id = config & 0xff;
1657 	unsigned int base_id = raw_id & 0x7f;
1658 
1659 
1660 	raw_event.cntr_mask = CNTR_ALL;
1661 	raw_event.event_id = base_id;
1662 
1663 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1664 		if (base_id > 0x42)
1665 			return ERR_PTR(-EOPNOTSUPP);
1666 	} else {
1667 		if (base_id > 0x3a)
1668 			return ERR_PTR(-EOPNOTSUPP);
1669 	}
1670 
1671 	switch (base_id) {
1672 	case 0x00:
1673 	case 0x0f:
1674 	case 0x1e:
1675 	case 0x1f:
1676 	case 0x2f:
1677 	case 0x34:
1678 	case 0x3b ... 0x3f:
1679 		return ERR_PTR(-EOPNOTSUPP);
1680 	default:
1681 		break;
1682 	}
1683 
1684 	return &raw_event;
1685 }
1686 
1687 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1688 {
1689 	unsigned int raw_id = config & 0xff;
1690 
1691 	/* Only 1-63 are defined */
1692 	if ((raw_id < 0x01) || (raw_id > 0x3f))
1693 		return ERR_PTR(-EOPNOTSUPP);
1694 
1695 	raw_event.cntr_mask = CNTR_ALL;
1696 	raw_event.event_id = raw_id;
1697 
1698 	return &raw_event;
1699 }
1700 
1701 static int __init
1702 init_hw_perf_events(void)
1703 {
1704 	int counters, irq;
1705 	int counter_bits;
1706 
1707 	pr_info("Performance counters: ");
1708 
1709 	counters = n_counters();
1710 	if (counters == 0) {
1711 		pr_cont("No available PMU.\n");
1712 		return -ENODEV;
1713 	}
1714 
1715 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1716 	if (!cpu_has_mipsmt_pertccounters)
1717 		counters = counters_total_to_per_cpu(counters);
1718 #endif
1719 
1720 	if (get_c0_perfcount_int)
1721 		irq = get_c0_perfcount_int();
1722 	else if (cp0_perfcount_irq >= 0)
1723 		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1724 	else
1725 		irq = -1;
1726 
1727 	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1728 
1729 	switch (current_cpu_type()) {
1730 	case CPU_24K:
1731 		mipspmu.name = "mips/24K";
1732 		mipspmu.general_event_map = &mipsxxcore_event_map;
1733 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1734 		break;
1735 	case CPU_34K:
1736 		mipspmu.name = "mips/34K";
1737 		mipspmu.general_event_map = &mipsxxcore_event_map;
1738 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1739 		break;
1740 	case CPU_74K:
1741 		mipspmu.name = "mips/74K";
1742 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1743 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1744 		break;
1745 	case CPU_PROAPTIV:
1746 		mipspmu.name = "mips/proAptiv";
1747 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1748 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1749 		break;
1750 	case CPU_P5600:
1751 		mipspmu.name = "mips/P5600";
1752 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1753 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1754 		break;
1755 	case CPU_P6600:
1756 		mipspmu.name = "mips/P6600";
1757 		mipspmu.general_event_map = &mipsxxcore_event_map2;
1758 		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1759 		break;
1760 	case CPU_I6400:
1761 		mipspmu.name = "mips/I6400";
1762 		mipspmu.general_event_map = &i6x00_event_map;
1763 		mipspmu.cache_event_map = &i6x00_cache_map;
1764 		break;
1765 	case CPU_I6500:
1766 		mipspmu.name = "mips/I6500";
1767 		mipspmu.general_event_map = &i6x00_event_map;
1768 		mipspmu.cache_event_map = &i6x00_cache_map;
1769 		break;
1770 	case CPU_1004K:
1771 		mipspmu.name = "mips/1004K";
1772 		mipspmu.general_event_map = &mipsxxcore_event_map;
1773 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1774 		break;
1775 	case CPU_1074K:
1776 		mipspmu.name = "mips/1074K";
1777 		mipspmu.general_event_map = &mipsxxcore_event_map;
1778 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1779 		break;
1780 	case CPU_INTERAPTIV:
1781 		mipspmu.name = "mips/interAptiv";
1782 		mipspmu.general_event_map = &mipsxxcore_event_map;
1783 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1784 		break;
1785 	case CPU_LOONGSON1:
1786 		mipspmu.name = "mips/loongson1";
1787 		mipspmu.general_event_map = &mipsxxcore_event_map;
1788 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1789 		break;
1790 	case CPU_LOONGSON3:
1791 		mipspmu.name = "mips/loongson3";
1792 		mipspmu.general_event_map = &loongson3_event_map;
1793 		mipspmu.cache_event_map = &loongson3_cache_map;
1794 		break;
1795 	case CPU_CAVIUM_OCTEON:
1796 	case CPU_CAVIUM_OCTEON_PLUS:
1797 	case CPU_CAVIUM_OCTEON2:
1798 		mipspmu.name = "octeon";
1799 		mipspmu.general_event_map = &octeon_event_map;
1800 		mipspmu.cache_event_map = &octeon_cache_map;
1801 		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1802 		break;
1803 	case CPU_BMIPS5000:
1804 		mipspmu.name = "BMIPS5000";
1805 		mipspmu.general_event_map = &bmips5000_event_map;
1806 		mipspmu.cache_event_map = &bmips5000_cache_map;
1807 		break;
1808 	case CPU_XLP:
1809 		mipspmu.name = "xlp";
1810 		mipspmu.general_event_map = &xlp_event_map;
1811 		mipspmu.cache_event_map = &xlp_cache_map;
1812 		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1813 		break;
1814 	default:
1815 		pr_cont("Either hardware does not support performance "
1816 			"counters, or not yet implemented.\n");
1817 		return -ENODEV;
1818 	}
1819 
1820 	mipspmu.num_counters = counters;
1821 	mipspmu.irq = irq;
1822 
1823 	if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1824 		mipspmu.max_period = (1ULL << 63) - 1;
1825 		mipspmu.valid_count = (1ULL << 63) - 1;
1826 		mipspmu.overflow = 1ULL << 63;
1827 		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1828 		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1829 		counter_bits = 64;
1830 	} else {
1831 		mipspmu.max_period = (1ULL << 31) - 1;
1832 		mipspmu.valid_count = (1ULL << 31) - 1;
1833 		mipspmu.overflow = 1ULL << 31;
1834 		mipspmu.read_counter = mipsxx_pmu_read_counter;
1835 		mipspmu.write_counter = mipsxx_pmu_write_counter;
1836 		counter_bits = 32;
1837 	}
1838 
1839 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1840 
1841 	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1842 		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1843 		irq < 0 ? " (share with timer interrupt)" : "");
1844 
1845 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1846 
1847 	return 0;
1848 }
1849 early_initcall(init_hw_perf_events);
1850