1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24 
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29 
30 #define MIPS_MAX_HWEVENTS 4
31 
32 struct cpu_hw_events {
33 	/* Array of events on this cpu. */
34 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
35 
36 	/*
37 	 * Set the bit (indexed by the counter number) when the counter
38 	 * is used for an event.
39 	 */
40 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41 
42 	/*
43 	 * Software copy of the control register for each performance counter.
44 	 * MIPS CPUs vary in performance counters. They use this differently,
45 	 * and even may not use it.
46 	 */
47 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 	.saved_ctrl = {0},
51 };
52 
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 	unsigned int event_id;
56 	/*
57 	 * MIPS performance counters are indexed starting from 0.
58 	 * CNTR_EVEN indicates the indexes of the counters to be used are
59 	 * even numbers.
60 	 */
61 	unsigned int cntr_mask;
62 	#define CNTR_EVEN	0x55555555
63 	#define CNTR_ODD	0xaaaaaaaa
64 	#define CNTR_ALL	0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 	enum {
67 		T  = 0,
68 		V  = 1,
69 		P  = 2,
70 	} range;
71 #else
72 	#define T
73 	#define V
74 	#define P
75 #endif
76 };
77 
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80 
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
83 
84 struct mips_pmu {
85 	u64		max_period;
86 	u64		valid_count;
87 	u64		overflow;
88 	const char	*name;
89 	int		irq;
90 	u64		(*read_counter)(unsigned int idx);
91 	void		(*write_counter)(unsigned int idx, u64 val);
92 	const struct mips_perf_event *(*map_raw_event)(u64 config);
93 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 	const struct mips_perf_event (*cache_event_map)
95 				[PERF_COUNT_HW_CACHE_MAX]
96 				[PERF_COUNT_HW_CACHE_OP_MAX]
97 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
98 	unsigned int	num_counters;
99 };
100 
101 static struct mips_pmu mipspmu;
102 
103 #define M_CONFIG1_PC	(1 << 4)
104 
105 #define M_PERFCTL_EXL			(1      <<  0)
106 #define M_PERFCTL_KERNEL		(1      <<  1)
107 #define M_PERFCTL_SUPERVISOR		(1      <<  2)
108 #define M_PERFCTL_USER			(1      <<  3)
109 #define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
110 #define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
111 #define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
112 #define M_PERFCTL_MT_EN(filter)		((filter) << 20)
113 #define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
114 #define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
115 #define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
117 #define M_PERFCTL_WIDE			(1      << 30)
118 #define M_PERFCTL_MORE			(1      << 31)
119 
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
121 					M_PERFCTL_KERNEL |		\
122 					M_PERFCTL_USER |		\
123 					M_PERFCTL_SUPERVISOR |		\
124 					M_PERFCTL_INTERRUPT_ENABLE)
125 
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK		0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK		0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK		0xfe0
132 
133 
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
136 
137 static DEFINE_RWLOCK(pmuint_rwlock);
138 
139 /*
140  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142  */
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
145 			0 : smp_processor_id())
146 #else
147 #define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
148 			0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
150 
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
153 {
154 	if (num_possible_cpus() > 1)
155 		return 1;
156 
157 	return 0;
158 }
159 
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
161 {
162 	return counters >> vpe_shift();
163 }
164 
165 #else /* !CONFIG_MIPS_MT_SMP */
166 #define vpe_id()	0
167 
168 #endif /* CONFIG_MIPS_MT_SMP */
169 
170 static void resume_local_counters(void);
171 static void pause_local_counters(void);
172 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
173 static int mipsxx_pmu_handle_shared_irq(void);
174 
175 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
176 {
177 	if (vpe_id() == 1)
178 		idx = (idx + 2) & 3;
179 	return idx;
180 }
181 
182 static u64 mipsxx_pmu_read_counter(unsigned int idx)
183 {
184 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
185 
186 	switch (idx) {
187 	case 0:
188 		/*
189 		 * The counters are unsigned, we must cast to truncate
190 		 * off the high bits.
191 		 */
192 		return (u32)read_c0_perfcntr0();
193 	case 1:
194 		return (u32)read_c0_perfcntr1();
195 	case 2:
196 		return (u32)read_c0_perfcntr2();
197 	case 3:
198 		return (u32)read_c0_perfcntr3();
199 	default:
200 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
201 		return 0;
202 	}
203 }
204 
205 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
206 {
207 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
208 
209 	switch (idx) {
210 	case 0:
211 		return read_c0_perfcntr0_64();
212 	case 1:
213 		return read_c0_perfcntr1_64();
214 	case 2:
215 		return read_c0_perfcntr2_64();
216 	case 3:
217 		return read_c0_perfcntr3_64();
218 	default:
219 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
220 		return 0;
221 	}
222 }
223 
224 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
225 {
226 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
227 
228 	switch (idx) {
229 	case 0:
230 		write_c0_perfcntr0(val);
231 		return;
232 	case 1:
233 		write_c0_perfcntr1(val);
234 		return;
235 	case 2:
236 		write_c0_perfcntr2(val);
237 		return;
238 	case 3:
239 		write_c0_perfcntr3(val);
240 		return;
241 	}
242 }
243 
244 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
245 {
246 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
247 
248 	switch (idx) {
249 	case 0:
250 		write_c0_perfcntr0_64(val);
251 		return;
252 	case 1:
253 		write_c0_perfcntr1_64(val);
254 		return;
255 	case 2:
256 		write_c0_perfcntr2_64(val);
257 		return;
258 	case 3:
259 		write_c0_perfcntr3_64(val);
260 		return;
261 	}
262 }
263 
264 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
265 {
266 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
267 
268 	switch (idx) {
269 	case 0:
270 		return read_c0_perfctrl0();
271 	case 1:
272 		return read_c0_perfctrl1();
273 	case 2:
274 		return read_c0_perfctrl2();
275 	case 3:
276 		return read_c0_perfctrl3();
277 	default:
278 		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
279 		return 0;
280 	}
281 }
282 
283 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
284 {
285 	idx = mipsxx_pmu_swizzle_perf_idx(idx);
286 
287 	switch (idx) {
288 	case 0:
289 		write_c0_perfctrl0(val);
290 		return;
291 	case 1:
292 		write_c0_perfctrl1(val);
293 		return;
294 	case 2:
295 		write_c0_perfctrl2(val);
296 		return;
297 	case 3:
298 		write_c0_perfctrl3(val);
299 		return;
300 	}
301 }
302 
303 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
304 				    struct hw_perf_event *hwc)
305 {
306 	int i;
307 
308 	/*
309 	 * We only need to care the counter mask. The range has been
310 	 * checked definitely.
311 	 */
312 	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
313 
314 	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
315 		/*
316 		 * Note that some MIPS perf events can be counted by both
317 		 * even and odd counters, wheresas many other are only by
318 		 * even _or_ odd counters. This introduces an issue that
319 		 * when the former kind of event takes the counter the
320 		 * latter kind of event wants to use, then the "counter
321 		 * allocation" for the latter event will fail. In fact if
322 		 * they can be dynamically swapped, they both feel happy.
323 		 * But here we leave this issue alone for now.
324 		 */
325 		if (test_bit(i, &cntr_mask) &&
326 			!test_and_set_bit(i, cpuc->used_mask))
327 			return i;
328 	}
329 
330 	return -EAGAIN;
331 }
332 
333 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
334 {
335 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
336 
337 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
338 
339 	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
340 		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
341 		/* Make sure interrupt enabled. */
342 		M_PERFCTL_INTERRUPT_ENABLE;
343 	/*
344 	 * We do not actually let the counter run. Leave it until start().
345 	 */
346 }
347 
348 static void mipsxx_pmu_disable_event(int idx)
349 {
350 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
351 	unsigned long flags;
352 
353 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
354 
355 	local_irq_save(flags);
356 	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
357 		~M_PERFCTL_COUNT_EVENT_WHENEVER;
358 	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
359 	local_irq_restore(flags);
360 }
361 
362 static int mipspmu_event_set_period(struct perf_event *event,
363 				    struct hw_perf_event *hwc,
364 				    int idx)
365 {
366 	u64 left = local64_read(&hwc->period_left);
367 	u64 period = hwc->sample_period;
368 	int ret = 0;
369 
370 	if (unlikely((left + period) & (1ULL << 63))) {
371 		/* left underflowed by more than period. */
372 		left = period;
373 		local64_set(&hwc->period_left, left);
374 		hwc->last_period = period;
375 		ret = 1;
376 	} else	if (unlikely((left + period) <= period)) {
377 		/* left underflowed by less than period. */
378 		left += period;
379 		local64_set(&hwc->period_left, left);
380 		hwc->last_period = period;
381 		ret = 1;
382 	}
383 
384 	if (left > mipspmu.max_period) {
385 		left = mipspmu.max_period;
386 		local64_set(&hwc->period_left, left);
387 	}
388 
389 	local64_set(&hwc->prev_count, mipspmu.overflow - left);
390 
391 	mipspmu.write_counter(idx, mipspmu.overflow - left);
392 
393 	perf_event_update_userpage(event);
394 
395 	return ret;
396 }
397 
398 static void mipspmu_event_update(struct perf_event *event,
399 				 struct hw_perf_event *hwc,
400 				 int idx)
401 {
402 	u64 prev_raw_count, new_raw_count;
403 	u64 delta;
404 
405 again:
406 	prev_raw_count = local64_read(&hwc->prev_count);
407 	new_raw_count = mipspmu.read_counter(idx);
408 
409 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
410 				new_raw_count) != prev_raw_count)
411 		goto again;
412 
413 	delta = new_raw_count - prev_raw_count;
414 
415 	local64_add(delta, &event->count);
416 	local64_sub(delta, &hwc->period_left);
417 }
418 
419 static void mipspmu_start(struct perf_event *event, int flags)
420 {
421 	struct hw_perf_event *hwc = &event->hw;
422 
423 	if (flags & PERF_EF_RELOAD)
424 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
425 
426 	hwc->state = 0;
427 
428 	/* Set the period for the event. */
429 	mipspmu_event_set_period(event, hwc, hwc->idx);
430 
431 	/* Enable the event. */
432 	mipsxx_pmu_enable_event(hwc, hwc->idx);
433 }
434 
435 static void mipspmu_stop(struct perf_event *event, int flags)
436 {
437 	struct hw_perf_event *hwc = &event->hw;
438 
439 	if (!(hwc->state & PERF_HES_STOPPED)) {
440 		/* We are working on a local event. */
441 		mipsxx_pmu_disable_event(hwc->idx);
442 		barrier();
443 		mipspmu_event_update(event, hwc, hwc->idx);
444 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
445 	}
446 }
447 
448 static int mipspmu_add(struct perf_event *event, int flags)
449 {
450 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451 	struct hw_perf_event *hwc = &event->hw;
452 	int idx;
453 	int err = 0;
454 
455 	perf_pmu_disable(event->pmu);
456 
457 	/* To look for a free counter for this event. */
458 	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
459 	if (idx < 0) {
460 		err = idx;
461 		goto out;
462 	}
463 
464 	/*
465 	 * If there is an event in the counter we are going to use then
466 	 * make sure it is disabled.
467 	 */
468 	event->hw.idx = idx;
469 	mipsxx_pmu_disable_event(idx);
470 	cpuc->events[idx] = event;
471 
472 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
473 	if (flags & PERF_EF_START)
474 		mipspmu_start(event, PERF_EF_RELOAD);
475 
476 	/* Propagate our changes to the userspace mapping. */
477 	perf_event_update_userpage(event);
478 
479 out:
480 	perf_pmu_enable(event->pmu);
481 	return err;
482 }
483 
484 static void mipspmu_del(struct perf_event *event, int flags)
485 {
486 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
487 	struct hw_perf_event *hwc = &event->hw;
488 	int idx = hwc->idx;
489 
490 	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
491 
492 	mipspmu_stop(event, PERF_EF_UPDATE);
493 	cpuc->events[idx] = NULL;
494 	clear_bit(idx, cpuc->used_mask);
495 
496 	perf_event_update_userpage(event);
497 }
498 
499 static void mipspmu_read(struct perf_event *event)
500 {
501 	struct hw_perf_event *hwc = &event->hw;
502 
503 	/* Don't read disabled counters! */
504 	if (hwc->idx < 0)
505 		return;
506 
507 	mipspmu_event_update(event, hwc, hwc->idx);
508 }
509 
510 static void mipspmu_enable(struct pmu *pmu)
511 {
512 #ifdef CONFIG_MIPS_MT_SMP
513 	write_unlock(&pmuint_rwlock);
514 #endif
515 	resume_local_counters();
516 }
517 
518 /*
519  * MIPS performance counters can be per-TC. The control registers can
520  * not be directly accessed accross CPUs. Hence if we want to do global
521  * control, we need cross CPU calls. on_each_cpu() can help us, but we
522  * can not make sure this function is called with interrupts enabled. So
523  * here we pause local counters and then grab a rwlock and leave the
524  * counters on other CPUs alone. If any counter interrupt raises while
525  * we own the write lock, simply pause local counters on that CPU and
526  * spin in the handler. Also we know we won't be switched to another
527  * CPU after pausing local counters and before grabbing the lock.
528  */
529 static void mipspmu_disable(struct pmu *pmu)
530 {
531 	pause_local_counters();
532 #ifdef CONFIG_MIPS_MT_SMP
533 	write_lock(&pmuint_rwlock);
534 #endif
535 }
536 
537 static atomic_t active_events = ATOMIC_INIT(0);
538 static DEFINE_MUTEX(pmu_reserve_mutex);
539 static int (*save_perf_irq)(void);
540 
541 static int mipspmu_get_irq(void)
542 {
543 	int err;
544 
545 	if (mipspmu.irq >= 0) {
546 		/* Request my own irq handler. */
547 		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
548 			IRQF_PERCPU | IRQF_NOBALANCING,
549 			"mips_perf_pmu", NULL);
550 		if (err) {
551 			pr_warning("Unable to request IRQ%d for MIPS "
552 			   "performance counters!\n", mipspmu.irq);
553 		}
554 	} else if (cp0_perfcount_irq < 0) {
555 		/*
556 		 * We are sharing the irq number with the timer interrupt.
557 		 */
558 		save_perf_irq = perf_irq;
559 		perf_irq = mipsxx_pmu_handle_shared_irq;
560 		err = 0;
561 	} else {
562 		pr_warning("The platform hasn't properly defined its "
563 			"interrupt controller.\n");
564 		err = -ENOENT;
565 	}
566 
567 	return err;
568 }
569 
570 static void mipspmu_free_irq(void)
571 {
572 	if (mipspmu.irq >= 0)
573 		free_irq(mipspmu.irq, NULL);
574 	else if (cp0_perfcount_irq < 0)
575 		perf_irq = save_perf_irq;
576 }
577 
578 /*
579  * mipsxx/rm9000/loongson2 have different performance counters, they have
580  * specific low-level init routines.
581  */
582 static void reset_counters(void *arg);
583 static int __hw_perf_event_init(struct perf_event *event);
584 
585 static void hw_perf_event_destroy(struct perf_event *event)
586 {
587 	if (atomic_dec_and_mutex_lock(&active_events,
588 				&pmu_reserve_mutex)) {
589 		/*
590 		 * We must not call the destroy function with interrupts
591 		 * disabled.
592 		 */
593 		on_each_cpu(reset_counters,
594 			(void *)(long)mipspmu.num_counters, 1);
595 		mipspmu_free_irq();
596 		mutex_unlock(&pmu_reserve_mutex);
597 	}
598 }
599 
600 static int mipspmu_event_init(struct perf_event *event)
601 {
602 	int err = 0;
603 
604 	/* does not support taken branch sampling */
605 	if (has_branch_stack(event))
606 		return -EOPNOTSUPP;
607 
608 	switch (event->attr.type) {
609 	case PERF_TYPE_RAW:
610 	case PERF_TYPE_HARDWARE:
611 	case PERF_TYPE_HW_CACHE:
612 		break;
613 
614 	default:
615 		return -ENOENT;
616 	}
617 
618 	if (event->cpu >= nr_cpumask_bits ||
619 	    (event->cpu >= 0 && !cpu_online(event->cpu)))
620 		return -ENODEV;
621 
622 	if (!atomic_inc_not_zero(&active_events)) {
623 		mutex_lock(&pmu_reserve_mutex);
624 		if (atomic_read(&active_events) == 0)
625 			err = mipspmu_get_irq();
626 
627 		if (!err)
628 			atomic_inc(&active_events);
629 		mutex_unlock(&pmu_reserve_mutex);
630 	}
631 
632 	if (err)
633 		return err;
634 
635 	return __hw_perf_event_init(event);
636 }
637 
638 static struct pmu pmu = {
639 	.pmu_enable	= mipspmu_enable,
640 	.pmu_disable	= mipspmu_disable,
641 	.event_init	= mipspmu_event_init,
642 	.add		= mipspmu_add,
643 	.del		= mipspmu_del,
644 	.start		= mipspmu_start,
645 	.stop		= mipspmu_stop,
646 	.read		= mipspmu_read,
647 };
648 
649 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
650 {
651 /*
652  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
653  * event_id.
654  */
655 #ifdef CONFIG_MIPS_MT_SMP
656 	return ((unsigned int)pev->range << 24) |
657 		(pev->cntr_mask & 0xffff00) |
658 		(pev->event_id & 0xff);
659 #else
660 	return (pev->cntr_mask & 0xffff00) |
661 		(pev->event_id & 0xff);
662 #endif
663 }
664 
665 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
666 {
667 	const struct mips_perf_event *pev;
668 
669 	pev = ((*mipspmu.general_event_map)[idx].event_id ==
670 		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
671 		&(*mipspmu.general_event_map)[idx]);
672 
673 	return pev;
674 }
675 
676 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
677 {
678 	unsigned int cache_type, cache_op, cache_result;
679 	const struct mips_perf_event *pev;
680 
681 	cache_type = (config >> 0) & 0xff;
682 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
683 		return ERR_PTR(-EINVAL);
684 
685 	cache_op = (config >> 8) & 0xff;
686 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
687 		return ERR_PTR(-EINVAL);
688 
689 	cache_result = (config >> 16) & 0xff;
690 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
691 		return ERR_PTR(-EINVAL);
692 
693 	pev = &((*mipspmu.cache_event_map)
694 					[cache_type]
695 					[cache_op]
696 					[cache_result]);
697 
698 	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
699 		return ERR_PTR(-EOPNOTSUPP);
700 
701 	return pev;
702 
703 }
704 
705 static int validate_group(struct perf_event *event)
706 {
707 	struct perf_event *sibling, *leader = event->group_leader;
708 	struct cpu_hw_events fake_cpuc;
709 
710 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
711 
712 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
713 		return -EINVAL;
714 
715 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
716 		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
717 			return -EINVAL;
718 	}
719 
720 	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
721 		return -EINVAL;
722 
723 	return 0;
724 }
725 
726 /* This is needed by specific irq handlers in perf_event_*.c */
727 static void handle_associated_event(struct cpu_hw_events *cpuc,
728 				    int idx, struct perf_sample_data *data,
729 				    struct pt_regs *regs)
730 {
731 	struct perf_event *event = cpuc->events[idx];
732 	struct hw_perf_event *hwc = &event->hw;
733 
734 	mipspmu_event_update(event, hwc, idx);
735 	data->period = event->hw.last_period;
736 	if (!mipspmu_event_set_period(event, hwc, idx))
737 		return;
738 
739 	if (perf_event_overflow(event, data, regs))
740 		mipsxx_pmu_disable_event(idx);
741 }
742 
743 
744 static int __n_counters(void)
745 {
746 	if (!(read_c0_config1() & M_CONFIG1_PC))
747 		return 0;
748 	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
749 		return 1;
750 	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
751 		return 2;
752 	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
753 		return 3;
754 
755 	return 4;
756 }
757 
758 static int n_counters(void)
759 {
760 	int counters;
761 
762 	switch (current_cpu_type()) {
763 	case CPU_R10000:
764 		counters = 2;
765 		break;
766 
767 	case CPU_R12000:
768 	case CPU_R14000:
769 		counters = 4;
770 		break;
771 
772 	default:
773 		counters = __n_counters();
774 	}
775 
776 	return counters;
777 }
778 
779 static void reset_counters(void *arg)
780 {
781 	int counters = (int)(long)arg;
782 	switch (counters) {
783 	case 4:
784 		mipsxx_pmu_write_control(3, 0);
785 		mipspmu.write_counter(3, 0);
786 	case 3:
787 		mipsxx_pmu_write_control(2, 0);
788 		mipspmu.write_counter(2, 0);
789 	case 2:
790 		mipsxx_pmu_write_control(1, 0);
791 		mipspmu.write_counter(1, 0);
792 	case 1:
793 		mipsxx_pmu_write_control(0, 0);
794 		mipspmu.write_counter(0, 0);
795 	}
796 }
797 
798 /* 24K/34K/1004K cores can share the same event map. */
799 static const struct mips_perf_event mipsxxcore_event_map
800 				[PERF_COUNT_HW_MAX] = {
801 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
804 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
805 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
806 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
807 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
808 };
809 
810 /* 74K core has different branch event code. */
811 static const struct mips_perf_event mipsxx74Kcore_event_map
812 				[PERF_COUNT_HW_MAX] = {
813 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815 	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
816 	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
817 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
818 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
819 	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
820 };
821 
822 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
823 	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
824 	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
825 	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
826 	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
827 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
828 	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
829 	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
830 };
831 
832 /* 24K/34K/1004K cores can share the same cache event map. */
833 static const struct mips_perf_event mipsxxcore_cache_map
834 				[PERF_COUNT_HW_CACHE_MAX]
835 				[PERF_COUNT_HW_CACHE_OP_MAX]
836 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
837 [C(L1D)] = {
838 	/*
839 	 * Like some other architectures (e.g. ARM), the performance
840 	 * counters don't differentiate between read and write
841 	 * accesses/misses, so this isn't strictly correct, but it's the
842 	 * best we can do. Writes and reads get combined.
843 	 */
844 	[C(OP_READ)] = {
845 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
846 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
847 	},
848 	[C(OP_WRITE)] = {
849 		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
850 		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
851 	},
852 	[C(OP_PREFETCH)] = {
853 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
854 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
855 	},
856 },
857 [C(L1I)] = {
858 	[C(OP_READ)] = {
859 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
860 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
861 	},
862 	[C(OP_WRITE)] = {
863 		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
864 		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
865 	},
866 	[C(OP_PREFETCH)] = {
867 		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
868 		/*
869 		 * Note that MIPS has only "hit" events countable for
870 		 * the prefetch operation.
871 		 */
872 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
873 	},
874 },
875 [C(LL)] = {
876 	[C(OP_READ)] = {
877 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
878 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
879 	},
880 	[C(OP_WRITE)] = {
881 		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
882 		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
883 	},
884 	[C(OP_PREFETCH)] = {
885 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
886 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
887 	},
888 },
889 [C(DTLB)] = {
890 	[C(OP_READ)] = {
891 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
892 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
893 	},
894 	[C(OP_WRITE)] = {
895 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
896 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
897 	},
898 	[C(OP_PREFETCH)] = {
899 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
900 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
901 	},
902 },
903 [C(ITLB)] = {
904 	[C(OP_READ)] = {
905 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
906 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
907 	},
908 	[C(OP_WRITE)] = {
909 		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
910 		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
911 	},
912 	[C(OP_PREFETCH)] = {
913 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
914 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
915 	},
916 },
917 [C(BPU)] = {
918 	/* Using the same code for *HW_BRANCH* */
919 	[C(OP_READ)] = {
920 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
921 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
922 	},
923 	[C(OP_WRITE)] = {
924 		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
925 		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
926 	},
927 	[C(OP_PREFETCH)] = {
928 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
929 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
930 	},
931 },
932 [C(NODE)] = {
933 	[C(OP_READ)] = {
934 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
935 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
936 	},
937 	[C(OP_WRITE)] = {
938 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
939 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
940 	},
941 	[C(OP_PREFETCH)] = {
942 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
943 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
944 	},
945 },
946 };
947 
948 /* 74K core has completely different cache event map. */
949 static const struct mips_perf_event mipsxx74Kcore_cache_map
950 				[PERF_COUNT_HW_CACHE_MAX]
951 				[PERF_COUNT_HW_CACHE_OP_MAX]
952 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
953 [C(L1D)] = {
954 	/*
955 	 * Like some other architectures (e.g. ARM), the performance
956 	 * counters don't differentiate between read and write
957 	 * accesses/misses, so this isn't strictly correct, but it's the
958 	 * best we can do. Writes and reads get combined.
959 	 */
960 	[C(OP_READ)] = {
961 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
962 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
963 	},
964 	[C(OP_WRITE)] = {
965 		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
966 		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
967 	},
968 	[C(OP_PREFETCH)] = {
969 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
970 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
971 	},
972 },
973 [C(L1I)] = {
974 	[C(OP_READ)] = {
975 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
976 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
977 	},
978 	[C(OP_WRITE)] = {
979 		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
980 		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
981 	},
982 	[C(OP_PREFETCH)] = {
983 		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
984 		/*
985 		 * Note that MIPS has only "hit" events countable for
986 		 * the prefetch operation.
987 		 */
988 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
989 	},
990 },
991 [C(LL)] = {
992 	[C(OP_READ)] = {
993 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
994 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
995 	},
996 	[C(OP_WRITE)] = {
997 		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
998 		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
999 	},
1000 	[C(OP_PREFETCH)] = {
1001 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1002 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1003 	},
1004 },
1005 [C(DTLB)] = {
1006 	/* 74K core does not have specific DTLB events. */
1007 	[C(OP_READ)] = {
1008 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1009 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1010 	},
1011 	[C(OP_WRITE)] = {
1012 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1013 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1014 	},
1015 	[C(OP_PREFETCH)] = {
1016 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1017 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1018 	},
1019 },
1020 [C(ITLB)] = {
1021 	[C(OP_READ)] = {
1022 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1023 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1024 	},
1025 	[C(OP_WRITE)] = {
1026 		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1027 		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1028 	},
1029 	[C(OP_PREFETCH)] = {
1030 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1031 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1032 	},
1033 },
1034 [C(BPU)] = {
1035 	/* Using the same code for *HW_BRANCH* */
1036 	[C(OP_READ)] = {
1037 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1038 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1039 	},
1040 	[C(OP_WRITE)] = {
1041 		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1042 		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1043 	},
1044 	[C(OP_PREFETCH)] = {
1045 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1046 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1047 	},
1048 },
1049 [C(NODE)] = {
1050 	[C(OP_READ)] = {
1051 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1052 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1053 	},
1054 	[C(OP_WRITE)] = {
1055 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1056 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1057 	},
1058 	[C(OP_PREFETCH)] = {
1059 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1060 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1061 	},
1062 },
1063 };
1064 
1065 
1066 static const struct mips_perf_event octeon_cache_map
1067 				[PERF_COUNT_HW_CACHE_MAX]
1068 				[PERF_COUNT_HW_CACHE_OP_MAX]
1069 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070 [C(L1D)] = {
1071 	[C(OP_READ)] = {
1072 		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1073 		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1074 	},
1075 	[C(OP_WRITE)] = {
1076 		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1077 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1078 	},
1079 	[C(OP_PREFETCH)] = {
1080 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1081 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1082 	},
1083 },
1084 [C(L1I)] = {
1085 	[C(OP_READ)] = {
1086 		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1087 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1088 	},
1089 	[C(OP_WRITE)] = {
1090 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1091 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1092 	},
1093 	[C(OP_PREFETCH)] = {
1094 		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1095 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1096 	},
1097 },
1098 [C(LL)] = {
1099 	[C(OP_READ)] = {
1100 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1101 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1102 	},
1103 	[C(OP_WRITE)] = {
1104 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1105 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1106 	},
1107 	[C(OP_PREFETCH)] = {
1108 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1109 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1110 	},
1111 },
1112 [C(DTLB)] = {
1113 	/*
1114 	 * Only general DTLB misses are counted use the same event for
1115 	 * read and write.
1116 	 */
1117 	[C(OP_READ)] = {
1118 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1119 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1120 	},
1121 	[C(OP_WRITE)] = {
1122 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1123 		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1124 	},
1125 	[C(OP_PREFETCH)] = {
1126 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1127 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1128 	},
1129 },
1130 [C(ITLB)] = {
1131 	[C(OP_READ)] = {
1132 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1133 		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1134 	},
1135 	[C(OP_WRITE)] = {
1136 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1137 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1138 	},
1139 	[C(OP_PREFETCH)] = {
1140 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1141 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1142 	},
1143 },
1144 [C(BPU)] = {
1145 	/* Using the same code for *HW_BRANCH* */
1146 	[C(OP_READ)] = {
1147 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1148 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1149 	},
1150 	[C(OP_WRITE)] = {
1151 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1152 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1153 	},
1154 	[C(OP_PREFETCH)] = {
1155 		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1156 		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1157 	},
1158 },
1159 };
1160 
1161 #ifdef CONFIG_MIPS_MT_SMP
1162 static void check_and_calc_range(struct perf_event *event,
1163 				 const struct mips_perf_event *pev)
1164 {
1165 	struct hw_perf_event *hwc = &event->hw;
1166 
1167 	if (event->cpu >= 0) {
1168 		if (pev->range > V) {
1169 			/*
1170 			 * The user selected an event that is processor
1171 			 * wide, while expecting it to be VPE wide.
1172 			 */
1173 			hwc->config_base |= M_TC_EN_ALL;
1174 		} else {
1175 			/*
1176 			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177 			 * for both CPUs.
1178 			 */
1179 			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180 			hwc->config_base |= M_TC_EN_VPE;
1181 		}
1182 	} else
1183 		hwc->config_base |= M_TC_EN_ALL;
1184 }
1185 #else
1186 static void check_and_calc_range(struct perf_event *event,
1187 				 const struct mips_perf_event *pev)
1188 {
1189 }
1190 #endif
1191 
1192 static int __hw_perf_event_init(struct perf_event *event)
1193 {
1194 	struct perf_event_attr *attr = &event->attr;
1195 	struct hw_perf_event *hwc = &event->hw;
1196 	const struct mips_perf_event *pev;
1197 	int err;
1198 
1199 	/* Returning MIPS event descriptor for generic perf event. */
1200 	if (PERF_TYPE_HARDWARE == event->attr.type) {
1201 		if (event->attr.config >= PERF_COUNT_HW_MAX)
1202 			return -EINVAL;
1203 		pev = mipspmu_map_general_event(event->attr.config);
1204 	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205 		pev = mipspmu_map_cache_event(event->attr.config);
1206 	} else if (PERF_TYPE_RAW == event->attr.type) {
1207 		/* We are working on the global raw event. */
1208 		mutex_lock(&raw_event_mutex);
1209 		pev = mipspmu.map_raw_event(event->attr.config);
1210 	} else {
1211 		/* The event type is not (yet) supported. */
1212 		return -EOPNOTSUPP;
1213 	}
1214 
1215 	if (IS_ERR(pev)) {
1216 		if (PERF_TYPE_RAW == event->attr.type)
1217 			mutex_unlock(&raw_event_mutex);
1218 		return PTR_ERR(pev);
1219 	}
1220 
1221 	/*
1222 	 * We allow max flexibility on how each individual counter shared
1223 	 * by the single CPU operates (the mode exclusion and the range).
1224 	 */
1225 	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226 
1227 	/* Calculate range bits and validate it. */
1228 	if (num_possible_cpus() > 1)
1229 		check_and_calc_range(event, pev);
1230 
1231 	hwc->event_base = mipspmu_perf_event_encode(pev);
1232 	if (PERF_TYPE_RAW == event->attr.type)
1233 		mutex_unlock(&raw_event_mutex);
1234 
1235 	if (!attr->exclude_user)
1236 		hwc->config_base |= M_PERFCTL_USER;
1237 	if (!attr->exclude_kernel) {
1238 		hwc->config_base |= M_PERFCTL_KERNEL;
1239 		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240 		hwc->config_base |= M_PERFCTL_EXL;
1241 	}
1242 	if (!attr->exclude_hv)
1243 		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244 
1245 	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246 	/*
1247 	 * The event can belong to another cpu. We do not assign a local
1248 	 * counter for it for now.
1249 	 */
1250 	hwc->idx = -1;
1251 	hwc->config = 0;
1252 
1253 	if (!hwc->sample_period) {
1254 		hwc->sample_period  = mipspmu.max_period;
1255 		hwc->last_period    = hwc->sample_period;
1256 		local64_set(&hwc->period_left, hwc->sample_period);
1257 	}
1258 
1259 	err = 0;
1260 	if (event->group_leader != event)
1261 		err = validate_group(event);
1262 
1263 	event->destroy = hw_perf_event_destroy;
1264 
1265 	if (err)
1266 		event->destroy(event);
1267 
1268 	return err;
1269 }
1270 
1271 static void pause_local_counters(void)
1272 {
1273 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274 	int ctr = mipspmu.num_counters;
1275 	unsigned long flags;
1276 
1277 	local_irq_save(flags);
1278 	do {
1279 		ctr--;
1280 		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282 					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283 	} while (ctr > 0);
1284 	local_irq_restore(flags);
1285 }
1286 
1287 static void resume_local_counters(void)
1288 {
1289 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290 	int ctr = mipspmu.num_counters;
1291 
1292 	do {
1293 		ctr--;
1294 		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295 	} while (ctr > 0);
1296 }
1297 
1298 static int mipsxx_pmu_handle_shared_irq(void)
1299 {
1300 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301 	struct perf_sample_data data;
1302 	unsigned int counters = mipspmu.num_counters;
1303 	u64 counter;
1304 	int handled = IRQ_NONE;
1305 	struct pt_regs *regs;
1306 
1307 	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308 		return handled;
1309 	/*
1310 	 * First we pause the local counters, so that when we are locked
1311 	 * here, the counters are all paused. When it gets locked due to
1312 	 * perf_disable(), the timer interrupt handler will be delayed.
1313 	 *
1314 	 * See also mipsxx_pmu_start().
1315 	 */
1316 	pause_local_counters();
1317 #ifdef CONFIG_MIPS_MT_SMP
1318 	read_lock(&pmuint_rwlock);
1319 #endif
1320 
1321 	regs = get_irq_regs();
1322 
1323 	perf_sample_data_init(&data, 0, 0);
1324 
1325 	switch (counters) {
1326 #define HANDLE_COUNTER(n)						\
1327 	case n + 1:							\
1328 		if (test_bit(n, cpuc->used_mask)) {			\
1329 			counter = mipspmu.read_counter(n);		\
1330 			if (counter & mipspmu.overflow) {		\
1331 				handle_associated_event(cpuc, n, &data, regs); \
1332 				handled = IRQ_HANDLED;			\
1333 			}						\
1334 		}
1335 	HANDLE_COUNTER(3)
1336 	HANDLE_COUNTER(2)
1337 	HANDLE_COUNTER(1)
1338 	HANDLE_COUNTER(0)
1339 	}
1340 
1341 	/*
1342 	 * Do all the work for the pending perf events. We can do this
1343 	 * in here because the performance counter interrupt is a regular
1344 	 * interrupt, not NMI.
1345 	 */
1346 	if (handled == IRQ_HANDLED)
1347 		irq_work_run();
1348 
1349 #ifdef CONFIG_MIPS_MT_SMP
1350 	read_unlock(&pmuint_rwlock);
1351 #endif
1352 	resume_local_counters();
1353 	return handled;
1354 }
1355 
1356 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357 {
1358 	return mipsxx_pmu_handle_shared_irq();
1359 }
1360 
1361 /* 24K */
1362 #define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1363 	((b) == 0 || (b) == 1 || (b) == 11)
1364 
1365 /* 34K */
1366 #define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1367 	((b) == 0 || (b) == 1 || (b) == 11)
1368 #ifdef CONFIG_MIPS_MT_SMP
1369 #define IS_RANGE_P_34K_EVENT(r, b)					\
1370 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1371 	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1372 	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1373 	 ((b) >= 64 && (b) <= 67))
1374 #define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1375 #endif
1376 
1377 /* 74K */
1378 #define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1379 	((b) == 0 || (b) == 1)
1380 
1381 /* 1004K */
1382 #define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1383 	((b) == 0 || (b) == 1 || (b) == 11)
1384 #ifdef CONFIG_MIPS_MT_SMP
1385 #define IS_RANGE_P_1004K_EVENT(r, b)					\
1386 	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1387 	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1388 	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1389 	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1390 	 ((b) >= 64 && (b) <= 67))
1391 #define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1392 #endif
1393 
1394 /*
1395  * User can use 0-255 raw events, where 0-127 for the events of even
1396  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397  * indicate the parity. So, for example, when user wants to take the
1398  * Event Num of 15 for odd counters (by referring to the user manual),
1399  * then 128 needs to be added to 15 as the input for the event config,
1400  * i.e., 143 (0x8F) to be used.
1401  */
1402 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1403 {
1404 	unsigned int raw_id = config & 0xff;
1405 	unsigned int base_id = raw_id & 0x7f;
1406 
1407 	raw_event.event_id = base_id;
1408 
1409 	switch (current_cpu_type()) {
1410 	case CPU_24K:
1411 		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413 		else
1414 			raw_event.cntr_mask =
1415 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416 #ifdef CONFIG_MIPS_MT_SMP
1417 		/*
1418 		 * This is actually doing nothing. Non-multithreading
1419 		 * CPUs will not check and calculate the range.
1420 		 */
1421 		raw_event.range = P;
1422 #endif
1423 		break;
1424 	case CPU_34K:
1425 		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427 		else
1428 			raw_event.cntr_mask =
1429 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430 #ifdef CONFIG_MIPS_MT_SMP
1431 		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432 			raw_event.range = P;
1433 		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434 			raw_event.range = V;
1435 		else
1436 			raw_event.range = T;
1437 #endif
1438 		break;
1439 	case CPU_74K:
1440 		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442 		else
1443 			raw_event.cntr_mask =
1444 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445 #ifdef CONFIG_MIPS_MT_SMP
1446 		raw_event.range = P;
1447 #endif
1448 		break;
1449 	case CPU_1004K:
1450 		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451 			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452 		else
1453 			raw_event.cntr_mask =
1454 				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455 #ifdef CONFIG_MIPS_MT_SMP
1456 		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457 			raw_event.range = P;
1458 		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459 			raw_event.range = V;
1460 		else
1461 			raw_event.range = T;
1462 #endif
1463 		break;
1464 	}
1465 
1466 	return &raw_event;
1467 }
1468 
1469 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1470 {
1471 	unsigned int raw_id = config & 0xff;
1472 	unsigned int base_id = raw_id & 0x7f;
1473 
1474 
1475 	raw_event.cntr_mask = CNTR_ALL;
1476 	raw_event.event_id = base_id;
1477 
1478 	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479 		if (base_id > 0x42)
1480 			return ERR_PTR(-EOPNOTSUPP);
1481 	} else {
1482 		if (base_id > 0x3a)
1483 			return ERR_PTR(-EOPNOTSUPP);
1484 	}
1485 
1486 	switch (base_id) {
1487 	case 0x00:
1488 	case 0x0f:
1489 	case 0x1e:
1490 	case 0x1f:
1491 	case 0x2f:
1492 	case 0x34:
1493 	case 0x3b ... 0x3f:
1494 		return ERR_PTR(-EOPNOTSUPP);
1495 	default:
1496 		break;
1497 	}
1498 
1499 	return &raw_event;
1500 }
1501 
1502 static int __init
1503 init_hw_perf_events(void)
1504 {
1505 	int counters, irq;
1506 	int counter_bits;
1507 
1508 	pr_info("Performance counters: ");
1509 
1510 	counters = n_counters();
1511 	if (counters == 0) {
1512 		pr_cont("No available PMU.\n");
1513 		return -ENODEV;
1514 	}
1515 
1516 #ifdef CONFIG_MIPS_MT_SMP
1517 	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518 	if (!cpu_has_mipsmt_pertccounters)
1519 		counters = counters_total_to_per_cpu(counters);
1520 #endif
1521 
1522 #ifdef MSC01E_INT_BASE
1523 	if (cpu_has_veic) {
1524 		/*
1525 		 * Using platform specific interrupt controller defines.
1526 		 */
1527 		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528 	} else {
1529 #endif
1530 		if ((cp0_perfcount_irq >= 0) &&
1531 				(cp0_compare_irq != cp0_perfcount_irq))
1532 			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533 		else
1534 			irq = -1;
1535 #ifdef MSC01E_INT_BASE
1536 	}
1537 #endif
1538 
1539 	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1540 
1541 	switch (current_cpu_type()) {
1542 	case CPU_24K:
1543 		mipspmu.name = "mips/24K";
1544 		mipspmu.general_event_map = &mipsxxcore_event_map;
1545 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1546 		break;
1547 	case CPU_34K:
1548 		mipspmu.name = "mips/34K";
1549 		mipspmu.general_event_map = &mipsxxcore_event_map;
1550 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551 		break;
1552 	case CPU_74K:
1553 		mipspmu.name = "mips/74K";
1554 		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555 		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1556 		break;
1557 	case CPU_1004K:
1558 		mipspmu.name = "mips/1004K";
1559 		mipspmu.general_event_map = &mipsxxcore_event_map;
1560 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561 		break;
1562 	case CPU_LOONGSON1:
1563 		mipspmu.name = "mips/loongson1";
1564 		mipspmu.general_event_map = &mipsxxcore_event_map;
1565 		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1566 		break;
1567 	case CPU_CAVIUM_OCTEON:
1568 	case CPU_CAVIUM_OCTEON_PLUS:
1569 	case CPU_CAVIUM_OCTEON2:
1570 		mipspmu.name = "octeon";
1571 		mipspmu.general_event_map = &octeon_event_map;
1572 		mipspmu.cache_event_map = &octeon_cache_map;
1573 		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1574 		break;
1575 	default:
1576 		pr_cont("Either hardware does not support performance "
1577 			"counters, or not yet implemented.\n");
1578 		return -ENODEV;
1579 	}
1580 
1581 	mipspmu.num_counters = counters;
1582 	mipspmu.irq = irq;
1583 
1584 	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1585 		mipspmu.max_period = (1ULL << 63) - 1;
1586 		mipspmu.valid_count = (1ULL << 63) - 1;
1587 		mipspmu.overflow = 1ULL << 63;
1588 		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1589 		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1590 		counter_bits = 64;
1591 	} else {
1592 		mipspmu.max_period = (1ULL << 31) - 1;
1593 		mipspmu.valid_count = (1ULL << 31) - 1;
1594 		mipspmu.overflow = 1ULL << 31;
1595 		mipspmu.read_counter = mipsxx_pmu_read_counter;
1596 		mipspmu.write_counter = mipsxx_pmu_write_counter;
1597 		counter_bits = 32;
1598 	}
1599 
1600 	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1601 
1602 	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1603 		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1604 		irq < 0 ? " (share with timer interrupt)" : "");
1605 
1606 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1607 
1608 	return 0;
1609 }
1610 early_initcall(init_hw_perf_events);
1611