1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Linux performance counter support for MIPS. 4 * 5 * Copyright (C) 2010 MIPS Technologies, Inc. 6 * Copyright (C) 2011 Cavium Networks, Inc. 7 * Author: Deng-Cheng Zhu 8 * 9 * This code is based on the implementation for ARM, which is in turn 10 * based on the sparc64 perf event code and the x86 code. Performance 11 * counter access is based on the MIPS Oprofile code. And the callchain 12 * support references the code of MIPS stacktrace.c. 13 */ 14 15 #include <linux/cpumask.h> 16 #include <linux/interrupt.h> 17 #include <linux/smp.h> 18 #include <linux/kernel.h> 19 #include <linux/perf_event.h> 20 #include <linux/uaccess.h> 21 22 #include <asm/irq.h> 23 #include <asm/irq_regs.h> 24 #include <asm/stacktrace.h> 25 #include <asm/time.h> /* For perf_irq */ 26 27 #define MIPS_MAX_HWEVENTS 4 28 #define MIPS_TCS_PER_COUNTER 2 29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1) 30 31 struct cpu_hw_events { 32 /* Array of events on this cpu. */ 33 struct perf_event *events[MIPS_MAX_HWEVENTS]; 34 35 /* 36 * Set the bit (indexed by the counter number) when the counter 37 * is used for an event. 38 */ 39 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 40 41 /* 42 * Software copy of the control register for each performance counter. 43 * MIPS CPUs vary in performance counters. They use this differently, 44 * and even may not use it. 45 */ 46 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; 47 }; 48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 49 .saved_ctrl = {0}, 50 }; 51 52 /* The description of MIPS performance events. */ 53 struct mips_perf_event { 54 unsigned int event_id; 55 /* 56 * MIPS performance counters are indexed starting from 0. 57 * CNTR_EVEN indicates the indexes of the counters to be used are 58 * even numbers. 59 */ 60 unsigned int cntr_mask; 61 #define CNTR_EVEN 0x55555555 62 #define CNTR_ODD 0xaaaaaaaa 63 #define CNTR_ALL 0xffffffff 64 enum { 65 T = 0, 66 V = 1, 67 P = 2, 68 } range; 69 }; 70 71 static struct mips_perf_event raw_event; 72 static DEFINE_MUTEX(raw_event_mutex); 73 74 #define C(x) PERF_COUNT_HW_CACHE_##x 75 76 struct mips_pmu { 77 u64 max_period; 78 u64 valid_count; 79 u64 overflow; 80 const char *name; 81 int irq; 82 u64 (*read_counter)(unsigned int idx); 83 void (*write_counter)(unsigned int idx, u64 val); 84 const struct mips_perf_event *(*map_raw_event)(u64 config); 85 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; 86 const struct mips_perf_event (*cache_event_map) 87 [PERF_COUNT_HW_CACHE_MAX] 88 [PERF_COUNT_HW_CACHE_OP_MAX] 89 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 90 unsigned int num_counters; 91 }; 92 93 static int counter_bits; 94 static struct mips_pmu mipspmu; 95 96 #define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \ 97 MIPS_PERFCTRL_EVENT) 98 #define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S) 99 100 #ifdef CONFIG_CPU_BMIPS5000 101 #define M_PERFCTL_MT_EN(filter) 0 102 #else /* !CONFIG_CPU_BMIPS5000 */ 103 #define M_PERFCTL_MT_EN(filter) (filter) 104 #endif /* CONFIG_CPU_BMIPS5000 */ 105 106 #define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL) 107 #define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE) 108 #define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC) 109 110 #define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \ 111 MIPS_PERFCTRL_K | \ 112 MIPS_PERFCTRL_U | \ 113 MIPS_PERFCTRL_S | \ 114 MIPS_PERFCTRL_IE) 115 116 #ifdef CONFIG_MIPS_MT_SMP 117 #define M_PERFCTL_CONFIG_MASK 0x3fff801f 118 #else 119 #define M_PERFCTL_CONFIG_MASK 0x1f 120 #endif 121 122 #define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 123 124 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 125 static DEFINE_RWLOCK(pmuint_rwlock); 126 127 #if defined(CONFIG_CPU_BMIPS5000) 128 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 129 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK)) 130 #else 131 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \ 132 0 : cpu_vpe_id(¤t_cpu_data)) 133 #endif 134 135 /* Copied from op_model_mipsxx.c */ 136 static unsigned int vpe_shift(void) 137 { 138 if (num_possible_cpus() > 1) 139 return 1; 140 141 return 0; 142 } 143 144 static unsigned int counters_total_to_per_cpu(unsigned int counters) 145 { 146 return counters >> vpe_shift(); 147 } 148 149 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ 150 #define vpe_id() 0 151 152 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */ 153 154 static void resume_local_counters(void); 155 static void pause_local_counters(void); 156 static irqreturn_t mipsxx_pmu_handle_irq(int, void *); 157 static int mipsxx_pmu_handle_shared_irq(void); 158 159 /* 0: Not Loongson-3 160 * 1: Loongson-3A1000/3B1000/3B1500 161 * 2: Loongson-3A2000/3A3000 162 * 3: Loongson-3A4000+ 163 */ 164 165 #define LOONGSON_PMU_TYPE0 0 166 #define LOONGSON_PMU_TYPE1 1 167 #define LOONGSON_PMU_TYPE2 2 168 #define LOONGSON_PMU_TYPE3 3 169 170 static inline int get_loongson3_pmu_type(void) 171 { 172 if (boot_cpu_type() != CPU_LOONGSON64) 173 return LOONGSON_PMU_TYPE0; 174 if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY) 175 return LOONGSON_PMU_TYPE1; 176 if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C) 177 return LOONGSON_PMU_TYPE2; 178 if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G) 179 return LOONGSON_PMU_TYPE3; 180 181 return LOONGSON_PMU_TYPE0; 182 } 183 184 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx) 185 { 186 if (vpe_id() == 1) 187 idx = (idx + 2) & 3; 188 return idx; 189 } 190 191 static u64 mipsxx_pmu_read_counter(unsigned int idx) 192 { 193 idx = mipsxx_pmu_swizzle_perf_idx(idx); 194 195 switch (idx) { 196 case 0: 197 /* 198 * The counters are unsigned, we must cast to truncate 199 * off the high bits. 200 */ 201 return (u32)read_c0_perfcntr0(); 202 case 1: 203 return (u32)read_c0_perfcntr1(); 204 case 2: 205 return (u32)read_c0_perfcntr2(); 206 case 3: 207 return (u32)read_c0_perfcntr3(); 208 default: 209 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 210 return 0; 211 } 212 } 213 214 static u64 mipsxx_pmu_read_counter_64(unsigned int idx) 215 { 216 u64 mask = CNTR_BIT_MASK(counter_bits); 217 idx = mipsxx_pmu_swizzle_perf_idx(idx); 218 219 switch (idx) { 220 case 0: 221 return read_c0_perfcntr0_64() & mask; 222 case 1: 223 return read_c0_perfcntr1_64() & mask; 224 case 2: 225 return read_c0_perfcntr2_64() & mask; 226 case 3: 227 return read_c0_perfcntr3_64() & mask; 228 default: 229 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 230 return 0; 231 } 232 } 233 234 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val) 235 { 236 idx = mipsxx_pmu_swizzle_perf_idx(idx); 237 238 switch (idx) { 239 case 0: 240 write_c0_perfcntr0(val); 241 return; 242 case 1: 243 write_c0_perfcntr1(val); 244 return; 245 case 2: 246 write_c0_perfcntr2(val); 247 return; 248 case 3: 249 write_c0_perfcntr3(val); 250 return; 251 } 252 } 253 254 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val) 255 { 256 val &= CNTR_BIT_MASK(counter_bits); 257 idx = mipsxx_pmu_swizzle_perf_idx(idx); 258 259 switch (idx) { 260 case 0: 261 write_c0_perfcntr0_64(val); 262 return; 263 case 1: 264 write_c0_perfcntr1_64(val); 265 return; 266 case 2: 267 write_c0_perfcntr2_64(val); 268 return; 269 case 3: 270 write_c0_perfcntr3_64(val); 271 return; 272 } 273 } 274 275 static unsigned int mipsxx_pmu_read_control(unsigned int idx) 276 { 277 idx = mipsxx_pmu_swizzle_perf_idx(idx); 278 279 switch (idx) { 280 case 0: 281 return read_c0_perfctrl0(); 282 case 1: 283 return read_c0_perfctrl1(); 284 case 2: 285 return read_c0_perfctrl2(); 286 case 3: 287 return read_c0_perfctrl3(); 288 default: 289 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx); 290 return 0; 291 } 292 } 293 294 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val) 295 { 296 idx = mipsxx_pmu_swizzle_perf_idx(idx); 297 298 switch (idx) { 299 case 0: 300 write_c0_perfctrl0(val); 301 return; 302 case 1: 303 write_c0_perfctrl1(val); 304 return; 305 case 2: 306 write_c0_perfctrl2(val); 307 return; 308 case 3: 309 write_c0_perfctrl3(val); 310 return; 311 } 312 } 313 314 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc, 315 struct hw_perf_event *hwc) 316 { 317 int i; 318 unsigned long cntr_mask; 319 320 /* 321 * We only need to care the counter mask. The range has been 322 * checked definitely. 323 */ 324 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) 325 cntr_mask = (hwc->event_base >> 10) & 0xffff; 326 else 327 cntr_mask = (hwc->event_base >> 8) & 0xffff; 328 329 for (i = mipspmu.num_counters - 1; i >= 0; i--) { 330 /* 331 * Note that some MIPS perf events can be counted by both 332 * even and odd counters, wheresas many other are only by 333 * even _or_ odd counters. This introduces an issue that 334 * when the former kind of event takes the counter the 335 * latter kind of event wants to use, then the "counter 336 * allocation" for the latter event will fail. In fact if 337 * they can be dynamically swapped, they both feel happy. 338 * But here we leave this issue alone for now. 339 */ 340 if (test_bit(i, &cntr_mask) && 341 !test_and_set_bit(i, cpuc->used_mask)) 342 return i; 343 } 344 345 return -EAGAIN; 346 } 347 348 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx) 349 { 350 struct perf_event *event = container_of(evt, struct perf_event, hw); 351 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 352 unsigned int range = evt->event_base >> 24; 353 354 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 355 356 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) 357 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) | 358 (evt->config_base & M_PERFCTL_CONFIG_MASK) | 359 /* Make sure interrupt enabled. */ 360 MIPS_PERFCTRL_IE; 361 else 362 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) | 363 (evt->config_base & M_PERFCTL_CONFIG_MASK) | 364 /* Make sure interrupt enabled. */ 365 MIPS_PERFCTRL_IE; 366 367 if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) { 368 /* enable the counter for the calling thread */ 369 cpuc->saved_ctrl[idx] |= 370 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC; 371 } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) { 372 /* The counter is processor wide. Set it up to count all TCs. */ 373 pr_debug("Enabling perf counter for all TCs\n"); 374 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL; 375 } else { 376 unsigned int cpu, ctrl; 377 378 /* 379 * Set up the counter for a particular CPU when event->cpu is 380 * a valid CPU number. Otherwise set up the counter for the CPU 381 * scheduling this thread. 382 */ 383 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id(); 384 385 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu])); 386 ctrl |= M_TC_EN_VPE; 387 cpuc->saved_ctrl[idx] |= ctrl; 388 pr_debug("Enabling perf counter for CPU%d\n", cpu); 389 } 390 /* 391 * We do not actually let the counter run. Leave it until start(). 392 */ 393 } 394 395 static void mipsxx_pmu_disable_event(int idx) 396 { 397 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 398 unsigned long flags; 399 400 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 401 402 local_irq_save(flags); 403 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) & 404 ~M_PERFCTL_COUNT_EVENT_WHENEVER; 405 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]); 406 local_irq_restore(flags); 407 } 408 409 static int mipspmu_event_set_period(struct perf_event *event, 410 struct hw_perf_event *hwc, 411 int idx) 412 { 413 u64 left = local64_read(&hwc->period_left); 414 u64 period = hwc->sample_period; 415 int ret = 0; 416 417 if (unlikely((left + period) & (1ULL << 63))) { 418 /* left underflowed by more than period. */ 419 left = period; 420 local64_set(&hwc->period_left, left); 421 hwc->last_period = period; 422 ret = 1; 423 } else if (unlikely((left + period) <= period)) { 424 /* left underflowed by less than period. */ 425 left += period; 426 local64_set(&hwc->period_left, left); 427 hwc->last_period = period; 428 ret = 1; 429 } 430 431 if (left > mipspmu.max_period) { 432 left = mipspmu.max_period; 433 local64_set(&hwc->period_left, left); 434 } 435 436 local64_set(&hwc->prev_count, mipspmu.overflow - left); 437 438 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) 439 mipsxx_pmu_write_control(idx, 440 M_PERFCTL_EVENT(hwc->event_base & 0x3ff)); 441 442 mipspmu.write_counter(idx, mipspmu.overflow - left); 443 444 perf_event_update_userpage(event); 445 446 return ret; 447 } 448 449 static void mipspmu_event_update(struct perf_event *event, 450 struct hw_perf_event *hwc, 451 int idx) 452 { 453 u64 prev_raw_count, new_raw_count; 454 u64 delta; 455 456 again: 457 prev_raw_count = local64_read(&hwc->prev_count); 458 new_raw_count = mipspmu.read_counter(idx); 459 460 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 461 new_raw_count) != prev_raw_count) 462 goto again; 463 464 delta = new_raw_count - prev_raw_count; 465 466 local64_add(delta, &event->count); 467 local64_sub(delta, &hwc->period_left); 468 } 469 470 static void mipspmu_start(struct perf_event *event, int flags) 471 { 472 struct hw_perf_event *hwc = &event->hw; 473 474 if (flags & PERF_EF_RELOAD) 475 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 476 477 hwc->state = 0; 478 479 /* Set the period for the event. */ 480 mipspmu_event_set_period(event, hwc, hwc->idx); 481 482 /* Enable the event. */ 483 mipsxx_pmu_enable_event(hwc, hwc->idx); 484 } 485 486 static void mipspmu_stop(struct perf_event *event, int flags) 487 { 488 struct hw_perf_event *hwc = &event->hw; 489 490 if (!(hwc->state & PERF_HES_STOPPED)) { 491 /* We are working on a local event. */ 492 mipsxx_pmu_disable_event(hwc->idx); 493 barrier(); 494 mipspmu_event_update(event, hwc, hwc->idx); 495 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 496 } 497 } 498 499 static int mipspmu_add(struct perf_event *event, int flags) 500 { 501 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 502 struct hw_perf_event *hwc = &event->hw; 503 int idx; 504 int err = 0; 505 506 perf_pmu_disable(event->pmu); 507 508 /* To look for a free counter for this event. */ 509 idx = mipsxx_pmu_alloc_counter(cpuc, hwc); 510 if (idx < 0) { 511 err = idx; 512 goto out; 513 } 514 515 /* 516 * If there is an event in the counter we are going to use then 517 * make sure it is disabled. 518 */ 519 event->hw.idx = idx; 520 mipsxx_pmu_disable_event(idx); 521 cpuc->events[idx] = event; 522 523 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 524 if (flags & PERF_EF_START) 525 mipspmu_start(event, PERF_EF_RELOAD); 526 527 /* Propagate our changes to the userspace mapping. */ 528 perf_event_update_userpage(event); 529 530 out: 531 perf_pmu_enable(event->pmu); 532 return err; 533 } 534 535 static void mipspmu_del(struct perf_event *event, int flags) 536 { 537 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 538 struct hw_perf_event *hwc = &event->hw; 539 int idx = hwc->idx; 540 541 WARN_ON(idx < 0 || idx >= mipspmu.num_counters); 542 543 mipspmu_stop(event, PERF_EF_UPDATE); 544 cpuc->events[idx] = NULL; 545 clear_bit(idx, cpuc->used_mask); 546 547 perf_event_update_userpage(event); 548 } 549 550 static void mipspmu_read(struct perf_event *event) 551 { 552 struct hw_perf_event *hwc = &event->hw; 553 554 /* Don't read disabled counters! */ 555 if (hwc->idx < 0) 556 return; 557 558 mipspmu_event_update(event, hwc, hwc->idx); 559 } 560 561 static void mipspmu_enable(struct pmu *pmu) 562 { 563 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 564 write_unlock(&pmuint_rwlock); 565 #endif 566 resume_local_counters(); 567 } 568 569 /* 570 * MIPS performance counters can be per-TC. The control registers can 571 * not be directly accessed across CPUs. Hence if we want to do global 572 * control, we need cross CPU calls. on_each_cpu() can help us, but we 573 * can not make sure this function is called with interrupts enabled. So 574 * here we pause local counters and then grab a rwlock and leave the 575 * counters on other CPUs alone. If any counter interrupt raises while 576 * we own the write lock, simply pause local counters on that CPU and 577 * spin in the handler. Also we know we won't be switched to another 578 * CPU after pausing local counters and before grabbing the lock. 579 */ 580 static void mipspmu_disable(struct pmu *pmu) 581 { 582 pause_local_counters(); 583 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 584 write_lock(&pmuint_rwlock); 585 #endif 586 } 587 588 static atomic_t active_events = ATOMIC_INIT(0); 589 static DEFINE_MUTEX(pmu_reserve_mutex); 590 static int (*save_perf_irq)(void); 591 592 static int mipspmu_get_irq(void) 593 { 594 int err; 595 596 if (mipspmu.irq >= 0) { 597 /* Request my own irq handler. */ 598 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq, 599 IRQF_PERCPU | IRQF_NOBALANCING | 600 IRQF_NO_THREAD | IRQF_NO_SUSPEND | 601 IRQF_SHARED, 602 "mips_perf_pmu", &mipspmu); 603 if (err) { 604 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n", 605 mipspmu.irq); 606 } 607 } else if (cp0_perfcount_irq < 0) { 608 /* 609 * We are sharing the irq number with the timer interrupt. 610 */ 611 save_perf_irq = perf_irq; 612 perf_irq = mipsxx_pmu_handle_shared_irq; 613 err = 0; 614 } else { 615 pr_warn("The platform hasn't properly defined its interrupt controller\n"); 616 err = -ENOENT; 617 } 618 619 return err; 620 } 621 622 static void mipspmu_free_irq(void) 623 { 624 if (mipspmu.irq >= 0) 625 free_irq(mipspmu.irq, &mipspmu); 626 else if (cp0_perfcount_irq < 0) 627 perf_irq = save_perf_irq; 628 } 629 630 /* 631 * mipsxx/rm9000/loongson2 have different performance counters, they have 632 * specific low-level init routines. 633 */ 634 static void reset_counters(void *arg); 635 static int __hw_perf_event_init(struct perf_event *event); 636 637 static void hw_perf_event_destroy(struct perf_event *event) 638 { 639 if (atomic_dec_and_mutex_lock(&active_events, 640 &pmu_reserve_mutex)) { 641 /* 642 * We must not call the destroy function with interrupts 643 * disabled. 644 */ 645 on_each_cpu(reset_counters, 646 (void *)(long)mipspmu.num_counters, 1); 647 mipspmu_free_irq(); 648 mutex_unlock(&pmu_reserve_mutex); 649 } 650 } 651 652 static int mipspmu_event_init(struct perf_event *event) 653 { 654 int err = 0; 655 656 /* does not support taken branch sampling */ 657 if (has_branch_stack(event)) 658 return -EOPNOTSUPP; 659 660 switch (event->attr.type) { 661 case PERF_TYPE_RAW: 662 case PERF_TYPE_HARDWARE: 663 case PERF_TYPE_HW_CACHE: 664 break; 665 666 default: 667 return -ENOENT; 668 } 669 670 if (event->cpu >= 0 && !cpu_online(event->cpu)) 671 return -ENODEV; 672 673 if (!atomic_inc_not_zero(&active_events)) { 674 mutex_lock(&pmu_reserve_mutex); 675 if (atomic_read(&active_events) == 0) 676 err = mipspmu_get_irq(); 677 678 if (!err) 679 atomic_inc(&active_events); 680 mutex_unlock(&pmu_reserve_mutex); 681 } 682 683 if (err) 684 return err; 685 686 return __hw_perf_event_init(event); 687 } 688 689 static struct pmu pmu = { 690 .pmu_enable = mipspmu_enable, 691 .pmu_disable = mipspmu_disable, 692 .event_init = mipspmu_event_init, 693 .add = mipspmu_add, 694 .del = mipspmu_del, 695 .start = mipspmu_start, 696 .stop = mipspmu_stop, 697 .read = mipspmu_read, 698 }; 699 700 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev) 701 { 702 /* 703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for 704 * event_id. 705 */ 706 #ifdef CONFIG_MIPS_MT_SMP 707 if (num_possible_cpus() > 1) 708 return ((unsigned int)pev->range << 24) | 709 (pev->cntr_mask & 0xffff00) | 710 (pev->event_id & 0xff); 711 else 712 #endif /* CONFIG_MIPS_MT_SMP */ 713 { 714 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) 715 return (pev->cntr_mask & 0xfffc00) | 716 (pev->event_id & 0x3ff); 717 else 718 return (pev->cntr_mask & 0xffff00) | 719 (pev->event_id & 0xff); 720 } 721 } 722 723 static const struct mips_perf_event *mipspmu_map_general_event(int idx) 724 { 725 726 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0) 727 return ERR_PTR(-EOPNOTSUPP); 728 return &(*mipspmu.general_event_map)[idx]; 729 } 730 731 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config) 732 { 733 unsigned int cache_type, cache_op, cache_result; 734 const struct mips_perf_event *pev; 735 736 cache_type = (config >> 0) & 0xff; 737 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 738 return ERR_PTR(-EINVAL); 739 740 cache_op = (config >> 8) & 0xff; 741 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 742 return ERR_PTR(-EINVAL); 743 744 cache_result = (config >> 16) & 0xff; 745 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 746 return ERR_PTR(-EINVAL); 747 748 pev = &((*mipspmu.cache_event_map) 749 [cache_type] 750 [cache_op] 751 [cache_result]); 752 753 if (pev->cntr_mask == 0) 754 return ERR_PTR(-EOPNOTSUPP); 755 756 return pev; 757 758 } 759 760 static int validate_group(struct perf_event *event) 761 { 762 struct perf_event *sibling, *leader = event->group_leader; 763 struct cpu_hw_events fake_cpuc; 764 765 memset(&fake_cpuc, 0, sizeof(fake_cpuc)); 766 767 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0) 768 return -EINVAL; 769 770 for_each_sibling_event(sibling, leader) { 771 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0) 772 return -EINVAL; 773 } 774 775 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0) 776 return -EINVAL; 777 778 return 0; 779 } 780 781 /* This is needed by specific irq handlers in perf_event_*.c */ 782 static void handle_associated_event(struct cpu_hw_events *cpuc, 783 int idx, struct perf_sample_data *data, 784 struct pt_regs *regs) 785 { 786 struct perf_event *event = cpuc->events[idx]; 787 struct hw_perf_event *hwc = &event->hw; 788 789 mipspmu_event_update(event, hwc, idx); 790 data->period = event->hw.last_period; 791 if (!mipspmu_event_set_period(event, hwc, idx)) 792 return; 793 794 if (perf_event_overflow(event, data, regs)) 795 mipsxx_pmu_disable_event(idx); 796 } 797 798 799 static int __n_counters(void) 800 { 801 if (!cpu_has_perf) 802 return 0; 803 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M)) 804 return 1; 805 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M)) 806 return 2; 807 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M)) 808 return 3; 809 810 return 4; 811 } 812 813 static int n_counters(void) 814 { 815 int counters; 816 817 switch (current_cpu_type()) { 818 case CPU_R10000: 819 counters = 2; 820 break; 821 822 case CPU_R12000: 823 case CPU_R14000: 824 case CPU_R16000: 825 counters = 4; 826 break; 827 828 default: 829 counters = __n_counters(); 830 } 831 832 return counters; 833 } 834 835 static void loongson3_reset_counters(void *arg) 836 { 837 int counters = (int)(long)arg; 838 839 switch (counters) { 840 case 4: 841 mipsxx_pmu_write_control(3, 0); 842 mipspmu.write_counter(3, 0); 843 mipsxx_pmu_write_control(3, 127<<5); 844 mipspmu.write_counter(3, 0); 845 mipsxx_pmu_write_control(3, 191<<5); 846 mipspmu.write_counter(3, 0); 847 mipsxx_pmu_write_control(3, 255<<5); 848 mipspmu.write_counter(3, 0); 849 mipsxx_pmu_write_control(3, 319<<5); 850 mipspmu.write_counter(3, 0); 851 mipsxx_pmu_write_control(3, 383<<5); 852 mipspmu.write_counter(3, 0); 853 mipsxx_pmu_write_control(3, 575<<5); 854 mipspmu.write_counter(3, 0); 855 fallthrough; 856 case 3: 857 mipsxx_pmu_write_control(2, 0); 858 mipspmu.write_counter(2, 0); 859 mipsxx_pmu_write_control(2, 127<<5); 860 mipspmu.write_counter(2, 0); 861 mipsxx_pmu_write_control(2, 191<<5); 862 mipspmu.write_counter(2, 0); 863 mipsxx_pmu_write_control(2, 255<<5); 864 mipspmu.write_counter(2, 0); 865 mipsxx_pmu_write_control(2, 319<<5); 866 mipspmu.write_counter(2, 0); 867 mipsxx_pmu_write_control(2, 383<<5); 868 mipspmu.write_counter(2, 0); 869 mipsxx_pmu_write_control(2, 575<<5); 870 mipspmu.write_counter(2, 0); 871 fallthrough; 872 case 2: 873 mipsxx_pmu_write_control(1, 0); 874 mipspmu.write_counter(1, 0); 875 mipsxx_pmu_write_control(1, 127<<5); 876 mipspmu.write_counter(1, 0); 877 mipsxx_pmu_write_control(1, 191<<5); 878 mipspmu.write_counter(1, 0); 879 mipsxx_pmu_write_control(1, 255<<5); 880 mipspmu.write_counter(1, 0); 881 mipsxx_pmu_write_control(1, 319<<5); 882 mipspmu.write_counter(1, 0); 883 mipsxx_pmu_write_control(1, 383<<5); 884 mipspmu.write_counter(1, 0); 885 mipsxx_pmu_write_control(1, 575<<5); 886 mipspmu.write_counter(1, 0); 887 fallthrough; 888 case 1: 889 mipsxx_pmu_write_control(0, 0); 890 mipspmu.write_counter(0, 0); 891 mipsxx_pmu_write_control(0, 127<<5); 892 mipspmu.write_counter(0, 0); 893 mipsxx_pmu_write_control(0, 191<<5); 894 mipspmu.write_counter(0, 0); 895 mipsxx_pmu_write_control(0, 255<<5); 896 mipspmu.write_counter(0, 0); 897 mipsxx_pmu_write_control(0, 319<<5); 898 mipspmu.write_counter(0, 0); 899 mipsxx_pmu_write_control(0, 383<<5); 900 mipspmu.write_counter(0, 0); 901 mipsxx_pmu_write_control(0, 575<<5); 902 mipspmu.write_counter(0, 0); 903 break; 904 } 905 } 906 907 static void reset_counters(void *arg) 908 { 909 int counters = (int)(long)arg; 910 911 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { 912 loongson3_reset_counters(arg); 913 return; 914 } 915 916 switch (counters) { 917 case 4: 918 mipsxx_pmu_write_control(3, 0); 919 mipspmu.write_counter(3, 0); 920 fallthrough; 921 case 3: 922 mipsxx_pmu_write_control(2, 0); 923 mipspmu.write_counter(2, 0); 924 fallthrough; 925 case 2: 926 mipsxx_pmu_write_control(1, 0); 927 mipspmu.write_counter(1, 0); 928 fallthrough; 929 case 1: 930 mipsxx_pmu_write_control(0, 0); 931 mipspmu.write_counter(0, 0); 932 break; 933 } 934 } 935 936 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */ 937 static const struct mips_perf_event mipsxxcore_event_map 938 [PERF_COUNT_HW_MAX] = { 939 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, 940 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 941 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T }, 942 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, 943 }; 944 945 /* 74K/proAptiv core has different branch event code. */ 946 static const struct mips_perf_event mipsxxcore_event_map2 947 [PERF_COUNT_HW_MAX] = { 948 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P }, 949 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 950 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T }, 951 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T }, 952 }; 953 954 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = { 955 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD }, 956 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD }, 957 /* These only count dcache, not icache */ 958 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD }, 959 [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD }, 960 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD }, 961 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD }, 962 }; 963 964 static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = { 965 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN }, 966 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD }, 967 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN }, 968 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD }, 969 }; 970 971 static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = { 972 [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL }, 973 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL }, 974 [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL }, 975 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL }, 976 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL }, 977 }; 978 979 static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = { 980 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL }, 981 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL }, 982 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL }, 983 [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL }, 984 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL }, 985 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL }, 986 }; 987 988 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = { 989 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, 990 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL }, 991 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL }, 992 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL }, 993 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL }, 994 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL }, 995 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL }, 996 }; 997 998 static const struct mips_perf_event bmips5000_event_map 999 [PERF_COUNT_HW_MAX] = { 1000 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T }, 1001 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T }, 1002 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T }, 1003 }; 1004 1005 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = { 1006 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL }, 1007 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */ 1008 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ 1009 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ 1010 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */ 1011 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */ 1012 }; 1013 1014 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */ 1015 static const struct mips_perf_event mipsxxcore_cache_map 1016 [PERF_COUNT_HW_CACHE_MAX] 1017 [PERF_COUNT_HW_CACHE_OP_MAX] 1018 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1019 [C(L1D)] = { 1020 /* 1021 * Like some other architectures (e.g. ARM), the performance 1022 * counters don't differentiate between read and write 1023 * accesses/misses, so this isn't strictly correct, but it's the 1024 * best we can do. Writes and reads get combined. 1025 */ 1026 [C(OP_READ)] = { 1027 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, 1028 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, 1029 }, 1030 [C(OP_WRITE)] = { 1031 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T }, 1032 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T }, 1033 }, 1034 }, 1035 [C(L1I)] = { 1036 [C(OP_READ)] = { 1037 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, 1038 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, 1039 }, 1040 [C(OP_WRITE)] = { 1041 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T }, 1042 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T }, 1043 }, 1044 [C(OP_PREFETCH)] = { 1045 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T }, 1046 /* 1047 * Note that MIPS has only "hit" events countable for 1048 * the prefetch operation. 1049 */ 1050 }, 1051 }, 1052 [C(LL)] = { 1053 [C(OP_READ)] = { 1054 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, 1055 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, 1056 }, 1057 [C(OP_WRITE)] = { 1058 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P }, 1059 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P }, 1060 }, 1061 }, 1062 [C(DTLB)] = { 1063 [C(OP_READ)] = { 1064 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 1065 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 1066 }, 1067 [C(OP_WRITE)] = { 1068 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 1069 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 1070 }, 1071 }, 1072 [C(ITLB)] = { 1073 [C(OP_READ)] = { 1074 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, 1075 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, 1076 }, 1077 [C(OP_WRITE)] = { 1078 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T }, 1079 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T }, 1080 }, 1081 }, 1082 [C(BPU)] = { 1083 /* Using the same code for *HW_BRANCH* */ 1084 [C(OP_READ)] = { 1085 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, 1086 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1087 }, 1088 [C(OP_WRITE)] = { 1089 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T }, 1090 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1091 }, 1092 }, 1093 }; 1094 1095 /* 74K/proAptiv core has completely different cache event map. */ 1096 static const struct mips_perf_event mipsxxcore_cache_map2 1097 [PERF_COUNT_HW_CACHE_MAX] 1098 [PERF_COUNT_HW_CACHE_OP_MAX] 1099 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1100 [C(L1D)] = { 1101 /* 1102 * Like some other architectures (e.g. ARM), the performance 1103 * counters don't differentiate between read and write 1104 * accesses/misses, so this isn't strictly correct, but it's the 1105 * best we can do. Writes and reads get combined. 1106 */ 1107 [C(OP_READ)] = { 1108 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, 1109 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, 1110 }, 1111 [C(OP_WRITE)] = { 1112 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T }, 1113 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T }, 1114 }, 1115 }, 1116 [C(L1I)] = { 1117 [C(OP_READ)] = { 1118 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 1119 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 1120 }, 1121 [C(OP_WRITE)] = { 1122 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T }, 1123 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T }, 1124 }, 1125 [C(OP_PREFETCH)] = { 1126 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T }, 1127 /* 1128 * Note that MIPS has only "hit" events countable for 1129 * the prefetch operation. 1130 */ 1131 }, 1132 }, 1133 [C(LL)] = { 1134 [C(OP_READ)] = { 1135 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, 1136 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, 1137 }, 1138 [C(OP_WRITE)] = { 1139 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P }, 1140 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P }, 1141 }, 1142 }, 1143 /* 1144 * 74K core does not have specific DTLB events. proAptiv core has 1145 * "speculative" DTLB events which are numbered 0x63 (even/odd) and 1146 * not included here. One can use raw events if really needed. 1147 */ 1148 [C(ITLB)] = { 1149 [C(OP_READ)] = { 1150 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, 1151 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, 1152 }, 1153 [C(OP_WRITE)] = { 1154 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T }, 1155 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T }, 1156 }, 1157 }, 1158 [C(BPU)] = { 1159 /* Using the same code for *HW_BRANCH* */ 1160 [C(OP_READ)] = { 1161 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, 1162 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, 1163 }, 1164 [C(OP_WRITE)] = { 1165 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T }, 1166 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T }, 1167 }, 1168 }, 1169 }; 1170 1171 static const struct mips_perf_event i6x00_cache_map 1172 [PERF_COUNT_HW_CACHE_MAX] 1173 [PERF_COUNT_HW_CACHE_OP_MAX] 1174 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1175 [C(L1D)] = { 1176 [C(OP_READ)] = { 1177 [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD }, 1178 [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD }, 1179 }, 1180 [C(OP_WRITE)] = { 1181 [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD }, 1182 [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD }, 1183 }, 1184 }, 1185 [C(L1I)] = { 1186 [C(OP_READ)] = { 1187 [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD }, 1188 [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD }, 1189 }, 1190 }, 1191 [C(DTLB)] = { 1192 /* Can't distinguish read & write */ 1193 [C(OP_READ)] = { 1194 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, 1195 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, 1196 }, 1197 [C(OP_WRITE)] = { 1198 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD }, 1199 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD }, 1200 }, 1201 }, 1202 [C(BPU)] = { 1203 /* Conditional branches / mispredicted */ 1204 [C(OP_READ)] = { 1205 [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD }, 1206 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD }, 1207 }, 1208 }, 1209 }; 1210 1211 static const struct mips_perf_event loongson3_cache_map1 1212 [PERF_COUNT_HW_CACHE_MAX] 1213 [PERF_COUNT_HW_CACHE_OP_MAX] 1214 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1215 [C(L1D)] = { 1216 /* 1217 * Like some other architectures (e.g. ARM), the performance 1218 * counters don't differentiate between read and write 1219 * accesses/misses, so this isn't strictly correct, but it's the 1220 * best we can do. Writes and reads get combined. 1221 */ 1222 [C(OP_READ)] = { 1223 [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, 1224 }, 1225 [C(OP_WRITE)] = { 1226 [C(RESULT_MISS)] = { 0x04, CNTR_ODD }, 1227 }, 1228 }, 1229 [C(L1I)] = { 1230 [C(OP_READ)] = { 1231 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, 1232 }, 1233 [C(OP_WRITE)] = { 1234 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN }, 1235 }, 1236 }, 1237 [C(DTLB)] = { 1238 [C(OP_READ)] = { 1239 [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, 1240 }, 1241 [C(OP_WRITE)] = { 1242 [C(RESULT_MISS)] = { 0x09, CNTR_ODD }, 1243 }, 1244 }, 1245 [C(ITLB)] = { 1246 [C(OP_READ)] = { 1247 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, 1248 }, 1249 [C(OP_WRITE)] = { 1250 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD }, 1251 }, 1252 }, 1253 [C(BPU)] = { 1254 /* Using the same code for *HW_BRANCH* */ 1255 [C(OP_READ)] = { 1256 [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, 1257 [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, 1258 }, 1259 [C(OP_WRITE)] = { 1260 [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN }, 1261 [C(RESULT_MISS)] = { 0x01, CNTR_ODD }, 1262 }, 1263 }, 1264 }; 1265 1266 static const struct mips_perf_event loongson3_cache_map2 1267 [PERF_COUNT_HW_CACHE_MAX] 1268 [PERF_COUNT_HW_CACHE_OP_MAX] 1269 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1270 [C(L1D)] = { 1271 /* 1272 * Like some other architectures (e.g. ARM), the performance 1273 * counters don't differentiate between read and write 1274 * accesses/misses, so this isn't strictly correct, but it's the 1275 * best we can do. Writes and reads get combined. 1276 */ 1277 [C(OP_READ)] = { 1278 [C(RESULT_ACCESS)] = { 0x156, CNTR_ALL }, 1279 }, 1280 [C(OP_WRITE)] = { 1281 [C(RESULT_ACCESS)] = { 0x155, CNTR_ALL }, 1282 [C(RESULT_MISS)] = { 0x153, CNTR_ALL }, 1283 }, 1284 }, 1285 [C(L1I)] = { 1286 [C(OP_READ)] = { 1287 [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, 1288 }, 1289 [C(OP_WRITE)] = { 1290 [C(RESULT_MISS)] = { 0x18, CNTR_ALL }, 1291 }, 1292 }, 1293 [C(LL)] = { 1294 [C(OP_READ)] = { 1295 [C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL }, 1296 }, 1297 [C(OP_WRITE)] = { 1298 [C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL }, 1299 }, 1300 [C(OP_PREFETCH)] = { 1301 [C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL }, 1302 }, 1303 }, 1304 [C(DTLB)] = { 1305 [C(OP_READ)] = { 1306 [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, 1307 }, 1308 [C(OP_WRITE)] = { 1309 [C(RESULT_MISS)] = { 0x92, CNTR_ALL }, 1310 }, 1311 }, 1312 [C(ITLB)] = { 1313 [C(OP_READ)] = { 1314 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, 1315 }, 1316 [C(OP_WRITE)] = { 1317 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, 1318 }, 1319 }, 1320 [C(BPU)] = { 1321 /* Using the same code for *HW_BRANCH* */ 1322 [C(OP_READ)] = { 1323 [C(RESULT_ACCESS)] = { 0x94, CNTR_ALL }, 1324 [C(RESULT_MISS)] = { 0x9c, CNTR_ALL }, 1325 }, 1326 }, 1327 }; 1328 1329 static const struct mips_perf_event loongson3_cache_map3 1330 [PERF_COUNT_HW_CACHE_MAX] 1331 [PERF_COUNT_HW_CACHE_OP_MAX] 1332 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1333 [C(L1D)] = { 1334 /* 1335 * Like some other architectures (e.g. ARM), the performance 1336 * counters don't differentiate between read and write 1337 * accesses/misses, so this isn't strictly correct, but it's the 1338 * best we can do. Writes and reads get combined. 1339 */ 1340 [C(OP_READ)] = { 1341 [C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL }, 1342 [C(RESULT_MISS)] = { 0x1f, CNTR_ALL }, 1343 }, 1344 [C(OP_PREFETCH)] = { 1345 [C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL }, 1346 [C(RESULT_MISS)] = { 0xa9, CNTR_ALL }, 1347 }, 1348 }, 1349 [C(L1I)] = { 1350 [C(OP_READ)] = { 1351 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL }, 1352 [C(RESULT_MISS)] = { 0x1d, CNTR_ALL }, 1353 }, 1354 }, 1355 [C(LL)] = { 1356 [C(OP_READ)] = { 1357 [C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL }, 1358 [C(RESULT_MISS)] = { 0x2f, CNTR_ALL }, 1359 }, 1360 }, 1361 [C(DTLB)] = { 1362 [C(OP_READ)] = { 1363 [C(RESULT_ACCESS)] = { 0x14, CNTR_ALL }, 1364 [C(RESULT_MISS)] = { 0x1b, CNTR_ALL }, 1365 }, 1366 }, 1367 [C(ITLB)] = { 1368 [C(OP_READ)] = { 1369 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL }, 1370 }, 1371 }, 1372 [C(BPU)] = { 1373 /* Using the same code for *HW_BRANCH* */ 1374 [C(OP_READ)] = { 1375 [C(RESULT_ACCESS)] = { 0x02, CNTR_ALL }, 1376 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, 1377 }, 1378 }, 1379 }; 1380 1381 /* BMIPS5000 */ 1382 static const struct mips_perf_event bmips5000_cache_map 1383 [PERF_COUNT_HW_CACHE_MAX] 1384 [PERF_COUNT_HW_CACHE_OP_MAX] 1385 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1386 [C(L1D)] = { 1387 /* 1388 * Like some other architectures (e.g. ARM), the performance 1389 * counters don't differentiate between read and write 1390 * accesses/misses, so this isn't strictly correct, but it's the 1391 * best we can do. Writes and reads get combined. 1392 */ 1393 [C(OP_READ)] = { 1394 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, 1395 [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, 1396 }, 1397 [C(OP_WRITE)] = { 1398 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T }, 1399 [C(RESULT_MISS)] = { 12, CNTR_ODD, T }, 1400 }, 1401 }, 1402 [C(L1I)] = { 1403 [C(OP_READ)] = { 1404 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, 1405 [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, 1406 }, 1407 [C(OP_WRITE)] = { 1408 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T }, 1409 [C(RESULT_MISS)] = { 10, CNTR_ODD, T }, 1410 }, 1411 [C(OP_PREFETCH)] = { 1412 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T }, 1413 /* 1414 * Note that MIPS has only "hit" events countable for 1415 * the prefetch operation. 1416 */ 1417 }, 1418 }, 1419 [C(LL)] = { 1420 [C(OP_READ)] = { 1421 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, 1422 [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, 1423 }, 1424 [C(OP_WRITE)] = { 1425 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P }, 1426 [C(RESULT_MISS)] = { 28, CNTR_ODD, P }, 1427 }, 1428 }, 1429 [C(BPU)] = { 1430 /* Using the same code for *HW_BRANCH* */ 1431 [C(OP_READ)] = { 1432 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1433 }, 1434 [C(OP_WRITE)] = { 1435 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T }, 1436 }, 1437 }, 1438 }; 1439 1440 static const struct mips_perf_event octeon_cache_map 1441 [PERF_COUNT_HW_CACHE_MAX] 1442 [PERF_COUNT_HW_CACHE_OP_MAX] 1443 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1444 [C(L1D)] = { 1445 [C(OP_READ)] = { 1446 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL }, 1447 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, 1448 }, 1449 [C(OP_WRITE)] = { 1450 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL }, 1451 }, 1452 }, 1453 [C(L1I)] = { 1454 [C(OP_READ)] = { 1455 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL }, 1456 }, 1457 [C(OP_PREFETCH)] = { 1458 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL }, 1459 }, 1460 }, 1461 [C(DTLB)] = { 1462 /* 1463 * Only general DTLB misses are counted use the same event for 1464 * read and write. 1465 */ 1466 [C(OP_READ)] = { 1467 [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, 1468 }, 1469 [C(OP_WRITE)] = { 1470 [C(RESULT_MISS)] = { 0x35, CNTR_ALL }, 1471 }, 1472 }, 1473 [C(ITLB)] = { 1474 [C(OP_READ)] = { 1475 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, 1476 }, 1477 }, 1478 }; 1479 1480 static const struct mips_perf_event xlp_cache_map 1481 [PERF_COUNT_HW_CACHE_MAX] 1482 [PERF_COUNT_HW_CACHE_OP_MAX] 1483 [PERF_COUNT_HW_CACHE_RESULT_MAX] = { 1484 [C(L1D)] = { 1485 [C(OP_READ)] = { 1486 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */ 1487 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */ 1488 }, 1489 [C(OP_WRITE)] = { 1490 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */ 1491 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */ 1492 }, 1493 }, 1494 [C(L1I)] = { 1495 [C(OP_READ)] = { 1496 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */ 1497 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */ 1498 }, 1499 }, 1500 [C(LL)] = { 1501 [C(OP_READ)] = { 1502 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */ 1503 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */ 1504 }, 1505 [C(OP_WRITE)] = { 1506 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */ 1507 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */ 1508 }, 1509 }, 1510 [C(DTLB)] = { 1511 /* 1512 * Only general DTLB misses are counted use the same event for 1513 * read and write. 1514 */ 1515 [C(OP_READ)] = { 1516 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ 1517 }, 1518 [C(OP_WRITE)] = { 1519 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */ 1520 }, 1521 }, 1522 [C(ITLB)] = { 1523 [C(OP_READ)] = { 1524 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ 1525 }, 1526 [C(OP_WRITE)] = { 1527 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */ 1528 }, 1529 }, 1530 [C(BPU)] = { 1531 [C(OP_READ)] = { 1532 [C(RESULT_MISS)] = { 0x25, CNTR_ALL }, 1533 }, 1534 }, 1535 }; 1536 1537 static int __hw_perf_event_init(struct perf_event *event) 1538 { 1539 struct perf_event_attr *attr = &event->attr; 1540 struct hw_perf_event *hwc = &event->hw; 1541 const struct mips_perf_event *pev; 1542 int err; 1543 1544 /* Returning MIPS event descriptor for generic perf event. */ 1545 if (PERF_TYPE_HARDWARE == event->attr.type) { 1546 if (event->attr.config >= PERF_COUNT_HW_MAX) 1547 return -EINVAL; 1548 pev = mipspmu_map_general_event(event->attr.config); 1549 } else if (PERF_TYPE_HW_CACHE == event->attr.type) { 1550 pev = mipspmu_map_cache_event(event->attr.config); 1551 } else if (PERF_TYPE_RAW == event->attr.type) { 1552 /* We are working on the global raw event. */ 1553 mutex_lock(&raw_event_mutex); 1554 pev = mipspmu.map_raw_event(event->attr.config); 1555 } else { 1556 /* The event type is not (yet) supported. */ 1557 return -EOPNOTSUPP; 1558 } 1559 1560 if (IS_ERR(pev)) { 1561 if (PERF_TYPE_RAW == event->attr.type) 1562 mutex_unlock(&raw_event_mutex); 1563 return PTR_ERR(pev); 1564 } 1565 1566 /* 1567 * We allow max flexibility on how each individual counter shared 1568 * by the single CPU operates (the mode exclusion and the range). 1569 */ 1570 hwc->config_base = MIPS_PERFCTRL_IE; 1571 1572 hwc->event_base = mipspmu_perf_event_encode(pev); 1573 if (PERF_TYPE_RAW == event->attr.type) 1574 mutex_unlock(&raw_event_mutex); 1575 1576 if (!attr->exclude_user) 1577 hwc->config_base |= MIPS_PERFCTRL_U; 1578 if (!attr->exclude_kernel) { 1579 hwc->config_base |= MIPS_PERFCTRL_K; 1580 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */ 1581 hwc->config_base |= MIPS_PERFCTRL_EXL; 1582 } 1583 if (!attr->exclude_hv) 1584 hwc->config_base |= MIPS_PERFCTRL_S; 1585 1586 hwc->config_base &= M_PERFCTL_CONFIG_MASK; 1587 /* 1588 * The event can belong to another cpu. We do not assign a local 1589 * counter for it for now. 1590 */ 1591 hwc->idx = -1; 1592 hwc->config = 0; 1593 1594 if (!hwc->sample_period) { 1595 hwc->sample_period = mipspmu.max_period; 1596 hwc->last_period = hwc->sample_period; 1597 local64_set(&hwc->period_left, hwc->sample_period); 1598 } 1599 1600 err = 0; 1601 if (event->group_leader != event) 1602 err = validate_group(event); 1603 1604 event->destroy = hw_perf_event_destroy; 1605 1606 if (err) 1607 event->destroy(event); 1608 1609 return err; 1610 } 1611 1612 static void pause_local_counters(void) 1613 { 1614 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1615 int ctr = mipspmu.num_counters; 1616 unsigned long flags; 1617 1618 local_irq_save(flags); 1619 do { 1620 ctr--; 1621 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr); 1622 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] & 1623 ~M_PERFCTL_COUNT_EVENT_WHENEVER); 1624 } while (ctr > 0); 1625 local_irq_restore(flags); 1626 } 1627 1628 static void resume_local_counters(void) 1629 { 1630 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1631 int ctr = mipspmu.num_counters; 1632 1633 do { 1634 ctr--; 1635 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]); 1636 } while (ctr > 0); 1637 } 1638 1639 static int mipsxx_pmu_handle_shared_irq(void) 1640 { 1641 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); 1642 struct perf_sample_data data; 1643 unsigned int counters = mipspmu.num_counters; 1644 u64 counter; 1645 int n, handled = IRQ_NONE; 1646 struct pt_regs *regs; 1647 1648 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI)) 1649 return handled; 1650 /* 1651 * First we pause the local counters, so that when we are locked 1652 * here, the counters are all paused. When it gets locked due to 1653 * perf_disable(), the timer interrupt handler will be delayed. 1654 * 1655 * See also mipsxx_pmu_start(). 1656 */ 1657 pause_local_counters(); 1658 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1659 read_lock(&pmuint_rwlock); 1660 #endif 1661 1662 regs = get_irq_regs(); 1663 1664 perf_sample_data_init(&data, 0, 0); 1665 1666 for (n = counters - 1; n >= 0; n--) { 1667 if (!test_bit(n, cpuc->used_mask)) 1668 continue; 1669 1670 counter = mipspmu.read_counter(n); 1671 if (!(counter & mipspmu.overflow)) 1672 continue; 1673 1674 handle_associated_event(cpuc, n, &data, regs); 1675 handled = IRQ_HANDLED; 1676 } 1677 1678 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1679 read_unlock(&pmuint_rwlock); 1680 #endif 1681 resume_local_counters(); 1682 1683 /* 1684 * Do all the work for the pending perf events. We can do this 1685 * in here because the performance counter interrupt is a regular 1686 * interrupt, not NMI. 1687 */ 1688 if (handled == IRQ_HANDLED) 1689 irq_work_run(); 1690 1691 return handled; 1692 } 1693 1694 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev) 1695 { 1696 return mipsxx_pmu_handle_shared_irq(); 1697 } 1698 1699 /* 24K */ 1700 #define IS_BOTH_COUNTERS_24K_EVENT(b) \ 1701 ((b) == 0 || (b) == 1 || (b) == 11) 1702 1703 /* 34K */ 1704 #define IS_BOTH_COUNTERS_34K_EVENT(b) \ 1705 ((b) == 0 || (b) == 1 || (b) == 11) 1706 #ifdef CONFIG_MIPS_MT_SMP 1707 #define IS_RANGE_P_34K_EVENT(r, b) \ 1708 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ 1709 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \ 1710 (r) == 176 || ((b) >= 50 && (b) <= 55) || \ 1711 ((b) >= 64 && (b) <= 67)) 1712 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47) 1713 #endif 1714 1715 /* 74K */ 1716 #define IS_BOTH_COUNTERS_74K_EVENT(b) \ 1717 ((b) == 0 || (b) == 1) 1718 1719 /* proAptiv */ 1720 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \ 1721 ((b) == 0 || (b) == 1) 1722 /* P5600 */ 1723 #define IS_BOTH_COUNTERS_P5600_EVENT(b) \ 1724 ((b) == 0 || (b) == 1) 1725 1726 /* 1004K */ 1727 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \ 1728 ((b) == 0 || (b) == 1 || (b) == 11) 1729 #ifdef CONFIG_MIPS_MT_SMP 1730 #define IS_RANGE_P_1004K_EVENT(r, b) \ 1731 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ 1732 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \ 1733 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \ 1734 (r) == 188 || (b) == 61 || (b) == 62 || \ 1735 ((b) >= 64 && (b) <= 67)) 1736 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47) 1737 #endif 1738 1739 /* interAptiv */ 1740 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \ 1741 ((b) == 0 || (b) == 1 || (b) == 11) 1742 #ifdef CONFIG_MIPS_MT_SMP 1743 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */ 1744 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \ 1745 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \ 1746 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \ 1747 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \ 1748 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \ 1749 ((b) >= 64 && (b) <= 67)) 1750 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175) 1751 #endif 1752 1753 /* BMIPS5000 */ 1754 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \ 1755 ((b) == 0 || (b) == 1) 1756 1757 1758 /* 1759 * For most cores the user can use 0-255 raw events, where 0-127 for the events 1760 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to 1761 * indicate the even/odd bank selector. So, for example, when user wants to take 1762 * the Event Num of 15 for odd counters (by referring to the user manual), then 1763 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F) 1764 * to be used. 1765 * 1766 * Some newer cores have even more events, in which case the user can use raw 1767 * events 0-511, where 0-255 are for the events of even counters, and 256-511 1768 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector. 1769 */ 1770 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config) 1771 { 1772 /* currently most cores have 7-bit event numbers */ 1773 int pmu_type; 1774 unsigned int raw_id = config & 0xff; 1775 unsigned int base_id = raw_id & 0x7f; 1776 1777 switch (current_cpu_type()) { 1778 case CPU_24K: 1779 if (IS_BOTH_COUNTERS_24K_EVENT(base_id)) 1780 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1781 else 1782 raw_event.cntr_mask = 1783 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1784 #ifdef CONFIG_MIPS_MT_SMP 1785 /* 1786 * This is actually doing nothing. Non-multithreading 1787 * CPUs will not check and calculate the range. 1788 */ 1789 raw_event.range = P; 1790 #endif 1791 break; 1792 case CPU_34K: 1793 if (IS_BOTH_COUNTERS_34K_EVENT(base_id)) 1794 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1795 else 1796 raw_event.cntr_mask = 1797 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1798 #ifdef CONFIG_MIPS_MT_SMP 1799 if (IS_RANGE_P_34K_EVENT(raw_id, base_id)) 1800 raw_event.range = P; 1801 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id))) 1802 raw_event.range = V; 1803 else 1804 raw_event.range = T; 1805 #endif 1806 break; 1807 case CPU_74K: 1808 case CPU_1074K: 1809 if (IS_BOTH_COUNTERS_74K_EVENT(base_id)) 1810 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1811 else 1812 raw_event.cntr_mask = 1813 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1814 #ifdef CONFIG_MIPS_MT_SMP 1815 raw_event.range = P; 1816 #endif 1817 break; 1818 case CPU_PROAPTIV: 1819 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id)) 1820 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1821 else 1822 raw_event.cntr_mask = 1823 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1824 #ifdef CONFIG_MIPS_MT_SMP 1825 raw_event.range = P; 1826 #endif 1827 break; 1828 case CPU_P5600: 1829 case CPU_P6600: 1830 /* 8-bit event numbers */ 1831 raw_id = config & 0x1ff; 1832 base_id = raw_id & 0xff; 1833 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id)) 1834 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1835 else 1836 raw_event.cntr_mask = 1837 raw_id > 255 ? CNTR_ODD : CNTR_EVEN; 1838 #ifdef CONFIG_MIPS_MT_SMP 1839 raw_event.range = P; 1840 #endif 1841 break; 1842 case CPU_I6400: 1843 case CPU_I6500: 1844 /* 8-bit event numbers */ 1845 base_id = config & 0xff; 1846 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1847 break; 1848 case CPU_1004K: 1849 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id)) 1850 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1851 else 1852 raw_event.cntr_mask = 1853 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1854 #ifdef CONFIG_MIPS_MT_SMP 1855 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id)) 1856 raw_event.range = P; 1857 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id))) 1858 raw_event.range = V; 1859 else 1860 raw_event.range = T; 1861 #endif 1862 break; 1863 case CPU_INTERAPTIV: 1864 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id)) 1865 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1866 else 1867 raw_event.cntr_mask = 1868 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1869 #ifdef CONFIG_MIPS_MT_SMP 1870 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id)) 1871 raw_event.range = P; 1872 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id))) 1873 raw_event.range = V; 1874 else 1875 raw_event.range = T; 1876 #endif 1877 break; 1878 case CPU_BMIPS5000: 1879 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id)) 1880 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD; 1881 else 1882 raw_event.cntr_mask = 1883 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1884 break; 1885 case CPU_LOONGSON64: 1886 pmu_type = get_loongson3_pmu_type(); 1887 1888 switch (pmu_type) { 1889 case LOONGSON_PMU_TYPE1: 1890 raw_event.cntr_mask = 1891 raw_id > 127 ? CNTR_ODD : CNTR_EVEN; 1892 break; 1893 case LOONGSON_PMU_TYPE2: 1894 base_id = config & 0x3ff; 1895 raw_event.cntr_mask = CNTR_ALL; 1896 1897 if ((base_id >= 1 && base_id < 28) || 1898 (base_id >= 64 && base_id < 90) || 1899 (base_id >= 128 && base_id < 164) || 1900 (base_id >= 192 && base_id < 200) || 1901 (base_id >= 256 && base_id < 274) || 1902 (base_id >= 320 && base_id < 358) || 1903 (base_id >= 384 && base_id < 574)) 1904 break; 1905 1906 return ERR_PTR(-EOPNOTSUPP); 1907 case LOONGSON_PMU_TYPE3: 1908 base_id = raw_id; 1909 raw_event.cntr_mask = CNTR_ALL; 1910 break; 1911 } 1912 break; 1913 } 1914 1915 raw_event.event_id = base_id; 1916 1917 return &raw_event; 1918 } 1919 1920 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config) 1921 { 1922 unsigned int raw_id = config & 0xff; 1923 unsigned int base_id = raw_id & 0x7f; 1924 1925 1926 raw_event.cntr_mask = CNTR_ALL; 1927 raw_event.event_id = base_id; 1928 1929 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) { 1930 if (base_id > 0x42) 1931 return ERR_PTR(-EOPNOTSUPP); 1932 } else { 1933 if (base_id > 0x3a) 1934 return ERR_PTR(-EOPNOTSUPP); 1935 } 1936 1937 switch (base_id) { 1938 case 0x00: 1939 case 0x0f: 1940 case 0x1e: 1941 case 0x1f: 1942 case 0x2f: 1943 case 0x34: 1944 case 0x3b ... 0x3f: 1945 return ERR_PTR(-EOPNOTSUPP); 1946 default: 1947 break; 1948 } 1949 1950 return &raw_event; 1951 } 1952 1953 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config) 1954 { 1955 unsigned int raw_id = config & 0xff; 1956 1957 /* Only 1-63 are defined */ 1958 if ((raw_id < 0x01) || (raw_id > 0x3f)) 1959 return ERR_PTR(-EOPNOTSUPP); 1960 1961 raw_event.cntr_mask = CNTR_ALL; 1962 raw_event.event_id = raw_id; 1963 1964 return &raw_event; 1965 } 1966 1967 static int __init 1968 init_hw_perf_events(void) 1969 { 1970 int counters, irq, pmu_type; 1971 1972 pr_info("Performance counters: "); 1973 1974 counters = n_counters(); 1975 if (counters == 0) { 1976 pr_cont("No available PMU.\n"); 1977 return -ENODEV; 1978 } 1979 1980 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS 1981 if (!cpu_has_mipsmt_pertccounters) 1982 counters = counters_total_to_per_cpu(counters); 1983 #endif 1984 1985 if (get_c0_perfcount_int) 1986 irq = get_c0_perfcount_int(); 1987 else if (cp0_perfcount_irq >= 0) 1988 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq; 1989 else 1990 irq = -1; 1991 1992 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event; 1993 1994 switch (current_cpu_type()) { 1995 case CPU_24K: 1996 mipspmu.name = "mips/24K"; 1997 mipspmu.general_event_map = &mipsxxcore_event_map; 1998 mipspmu.cache_event_map = &mipsxxcore_cache_map; 1999 break; 2000 case CPU_34K: 2001 mipspmu.name = "mips/34K"; 2002 mipspmu.general_event_map = &mipsxxcore_event_map; 2003 mipspmu.cache_event_map = &mipsxxcore_cache_map; 2004 break; 2005 case CPU_74K: 2006 mipspmu.name = "mips/74K"; 2007 mipspmu.general_event_map = &mipsxxcore_event_map2; 2008 mipspmu.cache_event_map = &mipsxxcore_cache_map2; 2009 break; 2010 case CPU_PROAPTIV: 2011 mipspmu.name = "mips/proAptiv"; 2012 mipspmu.general_event_map = &mipsxxcore_event_map2; 2013 mipspmu.cache_event_map = &mipsxxcore_cache_map2; 2014 break; 2015 case CPU_P5600: 2016 mipspmu.name = "mips/P5600"; 2017 mipspmu.general_event_map = &mipsxxcore_event_map2; 2018 mipspmu.cache_event_map = &mipsxxcore_cache_map2; 2019 break; 2020 case CPU_P6600: 2021 mipspmu.name = "mips/P6600"; 2022 mipspmu.general_event_map = &mipsxxcore_event_map2; 2023 mipspmu.cache_event_map = &mipsxxcore_cache_map2; 2024 break; 2025 case CPU_I6400: 2026 mipspmu.name = "mips/I6400"; 2027 mipspmu.general_event_map = &i6x00_event_map; 2028 mipspmu.cache_event_map = &i6x00_cache_map; 2029 break; 2030 case CPU_I6500: 2031 mipspmu.name = "mips/I6500"; 2032 mipspmu.general_event_map = &i6x00_event_map; 2033 mipspmu.cache_event_map = &i6x00_cache_map; 2034 break; 2035 case CPU_1004K: 2036 mipspmu.name = "mips/1004K"; 2037 mipspmu.general_event_map = &mipsxxcore_event_map; 2038 mipspmu.cache_event_map = &mipsxxcore_cache_map; 2039 break; 2040 case CPU_1074K: 2041 mipspmu.name = "mips/1074K"; 2042 mipspmu.general_event_map = &mipsxxcore_event_map; 2043 mipspmu.cache_event_map = &mipsxxcore_cache_map; 2044 break; 2045 case CPU_INTERAPTIV: 2046 mipspmu.name = "mips/interAptiv"; 2047 mipspmu.general_event_map = &mipsxxcore_event_map; 2048 mipspmu.cache_event_map = &mipsxxcore_cache_map; 2049 break; 2050 case CPU_LOONGSON32: 2051 mipspmu.name = "mips/loongson1"; 2052 mipspmu.general_event_map = &mipsxxcore_event_map; 2053 mipspmu.cache_event_map = &mipsxxcore_cache_map; 2054 break; 2055 case CPU_LOONGSON64: 2056 mipspmu.name = "mips/loongson3"; 2057 pmu_type = get_loongson3_pmu_type(); 2058 2059 switch (pmu_type) { 2060 case LOONGSON_PMU_TYPE1: 2061 counters = 2; 2062 mipspmu.general_event_map = &loongson3_event_map1; 2063 mipspmu.cache_event_map = &loongson3_cache_map1; 2064 break; 2065 case LOONGSON_PMU_TYPE2: 2066 counters = 4; 2067 mipspmu.general_event_map = &loongson3_event_map2; 2068 mipspmu.cache_event_map = &loongson3_cache_map2; 2069 break; 2070 case LOONGSON_PMU_TYPE3: 2071 counters = 4; 2072 mipspmu.general_event_map = &loongson3_event_map3; 2073 mipspmu.cache_event_map = &loongson3_cache_map3; 2074 break; 2075 } 2076 break; 2077 case CPU_CAVIUM_OCTEON: 2078 case CPU_CAVIUM_OCTEON_PLUS: 2079 case CPU_CAVIUM_OCTEON2: 2080 mipspmu.name = "octeon"; 2081 mipspmu.general_event_map = &octeon_event_map; 2082 mipspmu.cache_event_map = &octeon_cache_map; 2083 mipspmu.map_raw_event = octeon_pmu_map_raw_event; 2084 break; 2085 case CPU_BMIPS5000: 2086 mipspmu.name = "BMIPS5000"; 2087 mipspmu.general_event_map = &bmips5000_event_map; 2088 mipspmu.cache_event_map = &bmips5000_cache_map; 2089 break; 2090 case CPU_XLP: 2091 mipspmu.name = "xlp"; 2092 mipspmu.general_event_map = &xlp_event_map; 2093 mipspmu.cache_event_map = &xlp_cache_map; 2094 mipspmu.map_raw_event = xlp_pmu_map_raw_event; 2095 break; 2096 default: 2097 pr_cont("Either hardware does not support performance " 2098 "counters, or not yet implemented.\n"); 2099 return -ENODEV; 2100 } 2101 2102 mipspmu.num_counters = counters; 2103 mipspmu.irq = irq; 2104 2105 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) { 2106 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) { 2107 counter_bits = 48; 2108 mipspmu.max_period = (1ULL << 47) - 1; 2109 mipspmu.valid_count = (1ULL << 47) - 1; 2110 mipspmu.overflow = 1ULL << 47; 2111 } else { 2112 counter_bits = 64; 2113 mipspmu.max_period = (1ULL << 63) - 1; 2114 mipspmu.valid_count = (1ULL << 63) - 1; 2115 mipspmu.overflow = 1ULL << 63; 2116 } 2117 mipspmu.read_counter = mipsxx_pmu_read_counter_64; 2118 mipspmu.write_counter = mipsxx_pmu_write_counter_64; 2119 } else { 2120 counter_bits = 32; 2121 mipspmu.max_period = (1ULL << 31) - 1; 2122 mipspmu.valid_count = (1ULL << 31) - 1; 2123 mipspmu.overflow = 1ULL << 31; 2124 mipspmu.read_counter = mipsxx_pmu_read_counter; 2125 mipspmu.write_counter = mipsxx_pmu_write_counter; 2126 } 2127 2128 on_each_cpu(reset_counters, (void *)(long)counters, 1); 2129 2130 pr_cont("%s PMU enabled, %d %d-bit counters available to each " 2131 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq, 2132 irq < 0 ? " (share with timer interrupt)" : ""); 2133 2134 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); 2135 2136 return 0; 2137 } 2138 early_initcall(init_hw_perf_events); 2139