xref: /openbmc/linux/arch/mips/kernel/perf_event.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Author: Deng-Cheng Zhu
6  *
7  * This code is based on the implementation for ARM, which is in turn
8  * based on the sparc64 perf event code and the x86 code. Performance
9  * counter access is based on the MIPS Oprofile code. And the callchain
10  * support references the code of MIPS stacktrace.c.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/cpumask.h>
18 #include <linux/interrupt.h>
19 #include <linux/smp.h>
20 #include <linux/kernel.h>
21 #include <linux/perf_event.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/stacktrace.h>
27 #include <asm/time.h> /* For perf_irq */
28 
29 /* These are for 32bit counters. For 64bit ones, define them accordingly. */
30 #define MAX_PERIOD	((1ULL << 32) - 1)
31 #define VALID_COUNT	0x7fffffff
32 #define TOTAL_BITS	32
33 #define HIGHEST_BIT	31
34 
35 #define MIPS_MAX_HWEVENTS 4
36 
37 struct cpu_hw_events {
38 	/* Array of events on this cpu. */
39 	struct perf_event	*events[MIPS_MAX_HWEVENTS];
40 
41 	/*
42 	 * Set the bit (indexed by the counter number) when the counter
43 	 * is used for an event.
44 	 */
45 	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
46 
47 	/*
48 	 * The borrowed MSB for the performance counter. A MIPS performance
49 	 * counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit
50 	 * counters) as a factor of determining whether a counter overflow
51 	 * should be signaled. So here we use a separate MSB for each
52 	 * counter to make things easy.
53 	 */
54 	unsigned long		msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
55 
56 	/*
57 	 * Software copy of the control register for each performance counter.
58 	 * MIPS CPUs vary in performance counters. They use this differently,
59 	 * and even may not use it.
60 	 */
61 	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
62 };
63 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
64 	.saved_ctrl = {0},
65 };
66 
67 /* The description of MIPS performance events. */
68 struct mips_perf_event {
69 	unsigned int event_id;
70 	/*
71 	 * MIPS performance counters are indexed starting from 0.
72 	 * CNTR_EVEN indicates the indexes of the counters to be used are
73 	 * even numbers.
74 	 */
75 	unsigned int cntr_mask;
76 	#define CNTR_EVEN	0x55555555
77 	#define CNTR_ODD	0xaaaaaaaa
78 #ifdef CONFIG_MIPS_MT_SMP
79 	enum {
80 		T  = 0,
81 		V  = 1,
82 		P  = 2,
83 	} range;
84 #else
85 	#define T
86 	#define V
87 	#define P
88 #endif
89 };
90 
91 static struct mips_perf_event raw_event;
92 static DEFINE_MUTEX(raw_event_mutex);
93 
94 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
95 #define C(x) PERF_COUNT_HW_CACHE_##x
96 
97 struct mips_pmu {
98 	const char	*name;
99 	int		irq;
100 	irqreturn_t	(*handle_irq)(int irq, void *dev);
101 	int		(*handle_shared_irq)(void);
102 	void		(*start)(void);
103 	void		(*stop)(void);
104 	int		(*alloc_counter)(struct cpu_hw_events *cpuc,
105 					struct hw_perf_event *hwc);
106 	u64		(*read_counter)(unsigned int idx);
107 	void		(*write_counter)(unsigned int idx, u64 val);
108 	void		(*enable_event)(struct hw_perf_event *evt, int idx);
109 	void		(*disable_event)(int idx);
110 	const struct mips_perf_event *(*map_raw_event)(u64 config);
111 	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
112 	const struct mips_perf_event (*cache_event_map)
113 				[PERF_COUNT_HW_CACHE_MAX]
114 				[PERF_COUNT_HW_CACHE_OP_MAX]
115 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
116 	unsigned int	num_counters;
117 };
118 
119 static const struct mips_pmu *mipspmu;
120 
121 static int
122 mipspmu_event_set_period(struct perf_event *event,
123 			struct hw_perf_event *hwc,
124 			int idx)
125 {
126 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
127 	s64 left = local64_read(&hwc->period_left);
128 	s64 period = hwc->sample_period;
129 	int ret = 0;
130 	u64 uleft;
131 	unsigned long flags;
132 
133 	if (unlikely(left <= -period)) {
134 		left = period;
135 		local64_set(&hwc->period_left, left);
136 		hwc->last_period = period;
137 		ret = 1;
138 	}
139 
140 	if (unlikely(left <= 0)) {
141 		left += period;
142 		local64_set(&hwc->period_left, left);
143 		hwc->last_period = period;
144 		ret = 1;
145 	}
146 
147 	if (left > (s64)MAX_PERIOD)
148 		left = MAX_PERIOD;
149 
150 	local64_set(&hwc->prev_count, (u64)-left);
151 
152 	local_irq_save(flags);
153 	uleft = (u64)(-left) & MAX_PERIOD;
154 	uleft > VALID_COUNT ?
155 		set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs);
156 	mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT);
157 	local_irq_restore(flags);
158 
159 	perf_event_update_userpage(event);
160 
161 	return ret;
162 }
163 
164 static int mipspmu_enable(struct perf_event *event)
165 {
166 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
167 	struct hw_perf_event *hwc = &event->hw;
168 	int idx;
169 	int err = 0;
170 
171 	/* To look for a free counter for this event. */
172 	idx = mipspmu->alloc_counter(cpuc, hwc);
173 	if (idx < 0) {
174 		err = idx;
175 		goto out;
176 	}
177 
178 	/*
179 	 * If there is an event in the counter we are going to use then
180 	 * make sure it is disabled.
181 	 */
182 	event->hw.idx = idx;
183 	mipspmu->disable_event(idx);
184 	cpuc->events[idx] = event;
185 
186 	/* Set the period for the event. */
187 	mipspmu_event_set_period(event, hwc, idx);
188 
189 	/* Enable the event. */
190 	mipspmu->enable_event(hwc, idx);
191 
192 	/* Propagate our changes to the userspace mapping. */
193 	perf_event_update_userpage(event);
194 
195 out:
196 	return err;
197 }
198 
199 static void mipspmu_event_update(struct perf_event *event,
200 			struct hw_perf_event *hwc,
201 			int idx)
202 {
203 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
204 	unsigned long flags;
205 	int shift = 64 - TOTAL_BITS;
206 	s64 prev_raw_count, new_raw_count;
207 	s64 delta;
208 
209 again:
210 	prev_raw_count = local64_read(&hwc->prev_count);
211 	local_irq_save(flags);
212 	/* Make the counter value be a "real" one. */
213 	new_raw_count = mipspmu->read_counter(idx);
214 	if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) {
215 		new_raw_count &= VALID_COUNT;
216 		clear_bit(idx, cpuc->msbs);
217 	} else
218 		new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT);
219 	local_irq_restore(flags);
220 
221 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
222 				new_raw_count) != prev_raw_count)
223 		goto again;
224 
225 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
226 	delta >>= shift;
227 
228 	local64_add(delta, &event->count);
229 	local64_sub(delta, &hwc->period_left);
230 
231 	return;
232 }
233 
234 static void mipspmu_disable(struct perf_event *event)
235 {
236 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
237 	struct hw_perf_event *hwc = &event->hw;
238 	int idx = hwc->idx;
239 
240 
241 	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);
242 
243 	/* We are working on a local event. */
244 	mipspmu->disable_event(idx);
245 
246 	barrier();
247 
248 	mipspmu_event_update(event, hwc, idx);
249 	cpuc->events[idx] = NULL;
250 	clear_bit(idx, cpuc->used_mask);
251 
252 	perf_event_update_userpage(event);
253 }
254 
255 static void mipspmu_unthrottle(struct perf_event *event)
256 {
257 	struct hw_perf_event *hwc = &event->hw;
258 
259 	mipspmu->enable_event(hwc, hwc->idx);
260 }
261 
262 static void mipspmu_read(struct perf_event *event)
263 {
264 	struct hw_perf_event *hwc = &event->hw;
265 
266 	/* Don't read disabled counters! */
267 	if (hwc->idx < 0)
268 		return;
269 
270 	mipspmu_event_update(event, hwc, hwc->idx);
271 }
272 
273 static struct pmu pmu = {
274 	.enable		= mipspmu_enable,
275 	.disable	= mipspmu_disable,
276 	.unthrottle	= mipspmu_unthrottle,
277 	.read		= mipspmu_read,
278 };
279 
280 static atomic_t active_events = ATOMIC_INIT(0);
281 static DEFINE_MUTEX(pmu_reserve_mutex);
282 static int (*save_perf_irq)(void);
283 
284 static int mipspmu_get_irq(void)
285 {
286 	int err;
287 
288 	if (mipspmu->irq >= 0) {
289 		/* Request my own irq handler. */
290 		err = request_irq(mipspmu->irq, mipspmu->handle_irq,
291 			IRQF_DISABLED | IRQF_NOBALANCING,
292 			"mips_perf_pmu", NULL);
293 		if (err) {
294 			pr_warning("Unable to request IRQ%d for MIPS "
295 			   "performance counters!\n", mipspmu->irq);
296 		}
297 	} else if (cp0_perfcount_irq < 0) {
298 		/*
299 		 * We are sharing the irq number with the timer interrupt.
300 		 */
301 		save_perf_irq = perf_irq;
302 		perf_irq = mipspmu->handle_shared_irq;
303 		err = 0;
304 	} else {
305 		pr_warning("The platform hasn't properly defined its "
306 			"interrupt controller.\n");
307 		err = -ENOENT;
308 	}
309 
310 	return err;
311 }
312 
313 static void mipspmu_free_irq(void)
314 {
315 	if (mipspmu->irq >= 0)
316 		free_irq(mipspmu->irq, NULL);
317 	else if (cp0_perfcount_irq < 0)
318 		perf_irq = save_perf_irq;
319 }
320 
321 static inline unsigned int
322 mipspmu_perf_event_encode(const struct mips_perf_event *pev)
323 {
324 /*
325  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
326  * event_id.
327  */
328 #ifdef CONFIG_MIPS_MT_SMP
329 	return ((unsigned int)pev->range << 24) |
330 		(pev->cntr_mask & 0xffff00) |
331 		(pev->event_id & 0xff);
332 #else
333 	return (pev->cntr_mask & 0xffff00) |
334 		(pev->event_id & 0xff);
335 #endif
336 }
337 
338 static const struct mips_perf_event *
339 mipspmu_map_general_event(int idx)
340 {
341 	const struct mips_perf_event *pev;
342 
343 	pev = ((*mipspmu->general_event_map)[idx].event_id ==
344 		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
345 		&(*mipspmu->general_event_map)[idx]);
346 
347 	return pev;
348 }
349 
350 static const struct mips_perf_event *
351 mipspmu_map_cache_event(u64 config)
352 {
353 	unsigned int cache_type, cache_op, cache_result;
354 	const struct mips_perf_event *pev;
355 
356 	cache_type = (config >> 0) & 0xff;
357 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
358 		return ERR_PTR(-EINVAL);
359 
360 	cache_op = (config >> 8) & 0xff;
361 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
362 		return ERR_PTR(-EINVAL);
363 
364 	cache_result = (config >> 16) & 0xff;
365 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
366 		return ERR_PTR(-EINVAL);
367 
368 	pev = &((*mipspmu->cache_event_map)
369 					[cache_type]
370 					[cache_op]
371 					[cache_result]);
372 
373 	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
374 		return ERR_PTR(-EOPNOTSUPP);
375 
376 	return pev;
377 
378 }
379 
380 static int validate_event(struct cpu_hw_events *cpuc,
381 	       struct perf_event *event)
382 {
383 	struct hw_perf_event fake_hwc = event->hw;
384 
385 	if (event->pmu && event->pmu != &pmu)
386 		return 0;
387 
388 	return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0;
389 }
390 
391 static int validate_group(struct perf_event *event)
392 {
393 	struct perf_event *sibling, *leader = event->group_leader;
394 	struct cpu_hw_events fake_cpuc;
395 
396 	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
397 
398 	if (!validate_event(&fake_cpuc, leader))
399 		return -ENOSPC;
400 
401 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
402 		if (!validate_event(&fake_cpuc, sibling))
403 			return -ENOSPC;
404 	}
405 
406 	if (!validate_event(&fake_cpuc, event))
407 		return -ENOSPC;
408 
409 	return 0;
410 }
411 
412 /*
413  * mipsxx/rm9000/loongson2 have different performance counters, they have
414  * specific low-level init routines.
415  */
416 static void reset_counters(void *arg);
417 static int __hw_perf_event_init(struct perf_event *event);
418 
419 static void hw_perf_event_destroy(struct perf_event *event)
420 {
421 	if (atomic_dec_and_mutex_lock(&active_events,
422 				&pmu_reserve_mutex)) {
423 		/*
424 		 * We must not call the destroy function with interrupts
425 		 * disabled.
426 		 */
427 		on_each_cpu(reset_counters,
428 			(void *)(long)mipspmu->num_counters, 1);
429 		mipspmu_free_irq();
430 		mutex_unlock(&pmu_reserve_mutex);
431 	}
432 }
433 
434 const struct pmu *hw_perf_event_init(struct perf_event *event)
435 {
436 	int err = 0;
437 
438 	if (!mipspmu || event->cpu >= nr_cpumask_bits ||
439 		(event->cpu >= 0 && !cpu_online(event->cpu)))
440 		return ERR_PTR(-ENODEV);
441 
442 	if (!atomic_inc_not_zero(&active_events)) {
443 		if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
444 			atomic_dec(&active_events);
445 			return ERR_PTR(-ENOSPC);
446 		}
447 
448 		mutex_lock(&pmu_reserve_mutex);
449 		if (atomic_read(&active_events) == 0)
450 			err = mipspmu_get_irq();
451 
452 		if (!err)
453 			atomic_inc(&active_events);
454 		mutex_unlock(&pmu_reserve_mutex);
455 	}
456 
457 	if (err)
458 		return ERR_PTR(err);
459 
460 	err = __hw_perf_event_init(event);
461 	if (err)
462 		hw_perf_event_destroy(event);
463 
464 	return err ? ERR_PTR(err) : &pmu;
465 }
466 
467 void hw_perf_enable(void)
468 {
469 	if (mipspmu)
470 		mipspmu->start();
471 }
472 
473 void hw_perf_disable(void)
474 {
475 	if (mipspmu)
476 		mipspmu->stop();
477 }
478 
479 /* This is needed by specific irq handlers in perf_event_*.c */
480 static void
481 handle_associated_event(struct cpu_hw_events *cpuc,
482 	int idx, struct perf_sample_data *data, struct pt_regs *regs)
483 {
484 	struct perf_event *event = cpuc->events[idx];
485 	struct hw_perf_event *hwc = &event->hw;
486 
487 	mipspmu_event_update(event, hwc, idx);
488 	data->period = event->hw.last_period;
489 	if (!mipspmu_event_set_period(event, hwc, idx))
490 		return;
491 
492 	if (perf_event_overflow(event, 0, data, regs))
493 		mipspmu->disable_event(idx);
494 }
495 
496 #include "perf_event_mipsxx.c"
497 
498 /* Callchain handling code. */
499 static inline void
500 callchain_store(struct perf_callchain_entry *entry,
501 		u64 ip)
502 {
503 	if (entry->nr < PERF_MAX_STACK_DEPTH)
504 		entry->ip[entry->nr++] = ip;
505 }
506 
507 /*
508  * Leave userspace callchain empty for now. When we find a way to trace
509  * the user stack callchains, we add here.
510  */
511 static void
512 perf_callchain_user(struct pt_regs *regs,
513 		    struct perf_callchain_entry *entry)
514 {
515 }
516 
517 static void save_raw_perf_callchain(struct perf_callchain_entry *entry,
518 	unsigned long reg29)
519 {
520 	unsigned long *sp = (unsigned long *)reg29;
521 	unsigned long addr;
522 
523 	while (!kstack_end(sp)) {
524 		addr = *sp++;
525 		if (__kernel_text_address(addr)) {
526 			callchain_store(entry, addr);
527 			if (entry->nr >= PERF_MAX_STACK_DEPTH)
528 				break;
529 		}
530 	}
531 }
532 
533 static void
534 perf_callchain_kernel(struct pt_regs *regs,
535 		      struct perf_callchain_entry *entry)
536 {
537 	unsigned long sp = regs->regs[29];
538 #ifdef CONFIG_KALLSYMS
539 	unsigned long ra = regs->regs[31];
540 	unsigned long pc = regs->cp0_epc;
541 
542 	callchain_store(entry, PERF_CONTEXT_KERNEL);
543 	if (raw_show_trace || !__kernel_text_address(pc)) {
544 		unsigned long stack_page =
545 			(unsigned long)task_stack_page(current);
546 		if (stack_page && sp >= stack_page &&
547 		    sp <= stack_page + THREAD_SIZE - 32)
548 			save_raw_perf_callchain(entry, sp);
549 		return;
550 	}
551 	do {
552 		callchain_store(entry, pc);
553 		if (entry->nr >= PERF_MAX_STACK_DEPTH)
554 			break;
555 		pc = unwind_stack(current, &sp, pc, &ra);
556 	} while (pc);
557 #else
558 	callchain_store(entry, PERF_CONTEXT_KERNEL);
559 	save_raw_perf_callchain(entry, sp);
560 #endif
561 }
562 
563 static void
564 perf_do_callchain(struct pt_regs *regs,
565 		  struct perf_callchain_entry *entry)
566 {
567 	int is_user;
568 
569 	if (!regs)
570 		return;
571 
572 	is_user = user_mode(regs);
573 
574 	if (!current || !current->pid)
575 		return;
576 
577 	if (is_user && current->state != TASK_RUNNING)
578 		return;
579 
580 	if (!is_user) {
581 		perf_callchain_kernel(regs, entry);
582 		if (current->mm)
583 			regs = task_pt_regs(current);
584 		else
585 			regs = NULL;
586 	}
587 	if (regs)
588 		perf_callchain_user(regs, entry);
589 }
590 
591 static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
592 
593 struct perf_callchain_entry *
594 perf_callchain(struct pt_regs *regs)
595 {
596 	struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry);
597 
598 	entry->nr = 0;
599 	perf_do_callchain(regs, entry);
600 	return entry;
601 }
602