1 /* 2 * Linux performance counter support for MIPS. 3 * 4 * Copyright (C) 2010 MIPS Technologies, Inc. 5 * Author: Deng-Cheng Zhu 6 * 7 * This code is based on the implementation for ARM, which is in turn 8 * based on the sparc64 perf event code and the x86 code. Performance 9 * counter access is based on the MIPS Oprofile code. And the callchain 10 * support references the code of MIPS stacktrace.c. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/cpumask.h> 18 #include <linux/interrupt.h> 19 #include <linux/smp.h> 20 #include <linux/kernel.h> 21 #include <linux/perf_event.h> 22 #include <linux/uaccess.h> 23 24 #include <asm/irq.h> 25 #include <asm/irq_regs.h> 26 #include <asm/stacktrace.h> 27 #include <asm/time.h> /* For perf_irq */ 28 29 /* These are for 32bit counters. For 64bit ones, define them accordingly. */ 30 #define MAX_PERIOD ((1ULL << 32) - 1) 31 #define VALID_COUNT 0x7fffffff 32 #define TOTAL_BITS 32 33 #define HIGHEST_BIT 31 34 35 #define MIPS_MAX_HWEVENTS 4 36 37 struct cpu_hw_events { 38 /* Array of events on this cpu. */ 39 struct perf_event *events[MIPS_MAX_HWEVENTS]; 40 41 /* 42 * Set the bit (indexed by the counter number) when the counter 43 * is used for an event. 44 */ 45 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 46 47 /* 48 * The borrowed MSB for the performance counter. A MIPS performance 49 * counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit 50 * counters) as a factor of determining whether a counter overflow 51 * should be signaled. So here we use a separate MSB for each 52 * counter to make things easy. 53 */ 54 unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 55 56 /* 57 * Software copy of the control register for each performance counter. 58 * MIPS CPUs vary in performance counters. They use this differently, 59 * and even may not use it. 60 */ 61 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; 62 }; 63 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 64 .saved_ctrl = {0}, 65 }; 66 67 /* The description of MIPS performance events. */ 68 struct mips_perf_event { 69 unsigned int event_id; 70 /* 71 * MIPS performance counters are indexed starting from 0. 72 * CNTR_EVEN indicates the indexes of the counters to be used are 73 * even numbers. 74 */ 75 unsigned int cntr_mask; 76 #define CNTR_EVEN 0x55555555 77 #define CNTR_ODD 0xaaaaaaaa 78 #ifdef CONFIG_MIPS_MT_SMP 79 enum { 80 T = 0, 81 V = 1, 82 P = 2, 83 } range; 84 #else 85 #define T 86 #define V 87 #define P 88 #endif 89 }; 90 91 static struct mips_perf_event raw_event; 92 static DEFINE_MUTEX(raw_event_mutex); 93 94 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff 95 #define C(x) PERF_COUNT_HW_CACHE_##x 96 97 struct mips_pmu { 98 const char *name; 99 int irq; 100 irqreturn_t (*handle_irq)(int irq, void *dev); 101 int (*handle_shared_irq)(void); 102 void (*start)(void); 103 void (*stop)(void); 104 int (*alloc_counter)(struct cpu_hw_events *cpuc, 105 struct hw_perf_event *hwc); 106 u64 (*read_counter)(unsigned int idx); 107 void (*write_counter)(unsigned int idx, u64 val); 108 void (*enable_event)(struct hw_perf_event *evt, int idx); 109 void (*disable_event)(int idx); 110 const struct mips_perf_event *(*map_raw_event)(u64 config); 111 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; 112 const struct mips_perf_event (*cache_event_map) 113 [PERF_COUNT_HW_CACHE_MAX] 114 [PERF_COUNT_HW_CACHE_OP_MAX] 115 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 116 unsigned int num_counters; 117 }; 118 119 static const struct mips_pmu *mipspmu; 120 121 static int 122 mipspmu_event_set_period(struct perf_event *event, 123 struct hw_perf_event *hwc, 124 int idx) 125 { 126 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 127 s64 left = local64_read(&hwc->period_left); 128 s64 period = hwc->sample_period; 129 int ret = 0; 130 u64 uleft; 131 unsigned long flags; 132 133 if (unlikely(left <= -period)) { 134 left = period; 135 local64_set(&hwc->period_left, left); 136 hwc->last_period = period; 137 ret = 1; 138 } 139 140 if (unlikely(left <= 0)) { 141 left += period; 142 local64_set(&hwc->period_left, left); 143 hwc->last_period = period; 144 ret = 1; 145 } 146 147 if (left > (s64)MAX_PERIOD) 148 left = MAX_PERIOD; 149 150 local64_set(&hwc->prev_count, (u64)-left); 151 152 local_irq_save(flags); 153 uleft = (u64)(-left) & MAX_PERIOD; 154 uleft > VALID_COUNT ? 155 set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs); 156 mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT); 157 local_irq_restore(flags); 158 159 perf_event_update_userpage(event); 160 161 return ret; 162 } 163 164 static void mipspmu_event_update(struct perf_event *event, 165 struct hw_perf_event *hwc, 166 int idx) 167 { 168 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 169 unsigned long flags; 170 int shift = 64 - TOTAL_BITS; 171 s64 prev_raw_count, new_raw_count; 172 u64 delta; 173 174 again: 175 prev_raw_count = local64_read(&hwc->prev_count); 176 local_irq_save(flags); 177 /* Make the counter value be a "real" one. */ 178 new_raw_count = mipspmu->read_counter(idx); 179 if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) { 180 new_raw_count &= VALID_COUNT; 181 clear_bit(idx, cpuc->msbs); 182 } else 183 new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT); 184 local_irq_restore(flags); 185 186 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 187 new_raw_count) != prev_raw_count) 188 goto again; 189 190 delta = (new_raw_count << shift) - (prev_raw_count << shift); 191 delta >>= shift; 192 193 local64_add(delta, &event->count); 194 local64_sub(delta, &hwc->period_left); 195 } 196 197 static void mipspmu_start(struct perf_event *event, int flags) 198 { 199 struct hw_perf_event *hwc = &event->hw; 200 201 if (!mipspmu) 202 return; 203 204 if (flags & PERF_EF_RELOAD) 205 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 206 207 hwc->state = 0; 208 209 /* Set the period for the event. */ 210 mipspmu_event_set_period(event, hwc, hwc->idx); 211 212 /* Enable the event. */ 213 mipspmu->enable_event(hwc, hwc->idx); 214 } 215 216 static void mipspmu_stop(struct perf_event *event, int flags) 217 { 218 struct hw_perf_event *hwc = &event->hw; 219 220 if (!mipspmu) 221 return; 222 223 if (!(hwc->state & PERF_HES_STOPPED)) { 224 /* We are working on a local event. */ 225 mipspmu->disable_event(hwc->idx); 226 barrier(); 227 mipspmu_event_update(event, hwc, hwc->idx); 228 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 229 } 230 } 231 232 static int mipspmu_add(struct perf_event *event, int flags) 233 { 234 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 235 struct hw_perf_event *hwc = &event->hw; 236 int idx; 237 int err = 0; 238 239 perf_pmu_disable(event->pmu); 240 241 /* To look for a free counter for this event. */ 242 idx = mipspmu->alloc_counter(cpuc, hwc); 243 if (idx < 0) { 244 err = idx; 245 goto out; 246 } 247 248 /* 249 * If there is an event in the counter we are going to use then 250 * make sure it is disabled. 251 */ 252 event->hw.idx = idx; 253 mipspmu->disable_event(idx); 254 cpuc->events[idx] = event; 255 256 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 257 if (flags & PERF_EF_START) 258 mipspmu_start(event, PERF_EF_RELOAD); 259 260 /* Propagate our changes to the userspace mapping. */ 261 perf_event_update_userpage(event); 262 263 out: 264 perf_pmu_enable(event->pmu); 265 return err; 266 } 267 268 static void mipspmu_del(struct perf_event *event, int flags) 269 { 270 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 271 struct hw_perf_event *hwc = &event->hw; 272 int idx = hwc->idx; 273 274 WARN_ON(idx < 0 || idx >= mipspmu->num_counters); 275 276 mipspmu_stop(event, PERF_EF_UPDATE); 277 cpuc->events[idx] = NULL; 278 clear_bit(idx, cpuc->used_mask); 279 280 perf_event_update_userpage(event); 281 } 282 283 static void mipspmu_read(struct perf_event *event) 284 { 285 struct hw_perf_event *hwc = &event->hw; 286 287 /* Don't read disabled counters! */ 288 if (hwc->idx < 0) 289 return; 290 291 mipspmu_event_update(event, hwc, hwc->idx); 292 } 293 294 static void mipspmu_enable(struct pmu *pmu) 295 { 296 if (mipspmu) 297 mipspmu->start(); 298 } 299 300 static void mipspmu_disable(struct pmu *pmu) 301 { 302 if (mipspmu) 303 mipspmu->stop(); 304 } 305 306 static atomic_t active_events = ATOMIC_INIT(0); 307 static DEFINE_MUTEX(pmu_reserve_mutex); 308 static int (*save_perf_irq)(void); 309 310 static int mipspmu_get_irq(void) 311 { 312 int err; 313 314 if (mipspmu->irq >= 0) { 315 /* Request my own irq handler. */ 316 err = request_irq(mipspmu->irq, mipspmu->handle_irq, 317 IRQF_DISABLED | IRQF_NOBALANCING, 318 "mips_perf_pmu", NULL); 319 if (err) { 320 pr_warning("Unable to request IRQ%d for MIPS " 321 "performance counters!\n", mipspmu->irq); 322 } 323 } else if (cp0_perfcount_irq < 0) { 324 /* 325 * We are sharing the irq number with the timer interrupt. 326 */ 327 save_perf_irq = perf_irq; 328 perf_irq = mipspmu->handle_shared_irq; 329 err = 0; 330 } else { 331 pr_warning("The platform hasn't properly defined its " 332 "interrupt controller.\n"); 333 err = -ENOENT; 334 } 335 336 return err; 337 } 338 339 static void mipspmu_free_irq(void) 340 { 341 if (mipspmu->irq >= 0) 342 free_irq(mipspmu->irq, NULL); 343 else if (cp0_perfcount_irq < 0) 344 perf_irq = save_perf_irq; 345 } 346 347 /* 348 * mipsxx/rm9000/loongson2 have different performance counters, they have 349 * specific low-level init routines. 350 */ 351 static void reset_counters(void *arg); 352 static int __hw_perf_event_init(struct perf_event *event); 353 354 static void hw_perf_event_destroy(struct perf_event *event) 355 { 356 if (atomic_dec_and_mutex_lock(&active_events, 357 &pmu_reserve_mutex)) { 358 /* 359 * We must not call the destroy function with interrupts 360 * disabled. 361 */ 362 on_each_cpu(reset_counters, 363 (void *)(long)mipspmu->num_counters, 1); 364 mipspmu_free_irq(); 365 mutex_unlock(&pmu_reserve_mutex); 366 } 367 } 368 369 static int mipspmu_event_init(struct perf_event *event) 370 { 371 int err = 0; 372 373 switch (event->attr.type) { 374 case PERF_TYPE_RAW: 375 case PERF_TYPE_HARDWARE: 376 case PERF_TYPE_HW_CACHE: 377 break; 378 379 default: 380 return -ENOENT; 381 } 382 383 if (!mipspmu || event->cpu >= nr_cpumask_bits || 384 (event->cpu >= 0 && !cpu_online(event->cpu))) 385 return -ENODEV; 386 387 if (!atomic_inc_not_zero(&active_events)) { 388 if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) { 389 atomic_dec(&active_events); 390 return -ENOSPC; 391 } 392 393 mutex_lock(&pmu_reserve_mutex); 394 if (atomic_read(&active_events) == 0) 395 err = mipspmu_get_irq(); 396 397 if (!err) 398 atomic_inc(&active_events); 399 mutex_unlock(&pmu_reserve_mutex); 400 } 401 402 if (err) 403 return err; 404 405 err = __hw_perf_event_init(event); 406 if (err) 407 hw_perf_event_destroy(event); 408 409 return err; 410 } 411 412 static struct pmu pmu = { 413 .pmu_enable = mipspmu_enable, 414 .pmu_disable = mipspmu_disable, 415 .event_init = mipspmu_event_init, 416 .add = mipspmu_add, 417 .del = mipspmu_del, 418 .start = mipspmu_start, 419 .stop = mipspmu_stop, 420 .read = mipspmu_read, 421 }; 422 423 static inline unsigned int 424 mipspmu_perf_event_encode(const struct mips_perf_event *pev) 425 { 426 /* 427 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for 428 * event_id. 429 */ 430 #ifdef CONFIG_MIPS_MT_SMP 431 return ((unsigned int)pev->range << 24) | 432 (pev->cntr_mask & 0xffff00) | 433 (pev->event_id & 0xff); 434 #else 435 return (pev->cntr_mask & 0xffff00) | 436 (pev->event_id & 0xff); 437 #endif 438 } 439 440 static const struct mips_perf_event * 441 mipspmu_map_general_event(int idx) 442 { 443 const struct mips_perf_event *pev; 444 445 pev = ((*mipspmu->general_event_map)[idx].event_id == 446 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) : 447 &(*mipspmu->general_event_map)[idx]); 448 449 return pev; 450 } 451 452 static const struct mips_perf_event * 453 mipspmu_map_cache_event(u64 config) 454 { 455 unsigned int cache_type, cache_op, cache_result; 456 const struct mips_perf_event *pev; 457 458 cache_type = (config >> 0) & 0xff; 459 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 460 return ERR_PTR(-EINVAL); 461 462 cache_op = (config >> 8) & 0xff; 463 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 464 return ERR_PTR(-EINVAL); 465 466 cache_result = (config >> 16) & 0xff; 467 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 468 return ERR_PTR(-EINVAL); 469 470 pev = &((*mipspmu->cache_event_map) 471 [cache_type] 472 [cache_op] 473 [cache_result]); 474 475 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID) 476 return ERR_PTR(-EOPNOTSUPP); 477 478 return pev; 479 480 } 481 482 static int validate_event(struct cpu_hw_events *cpuc, 483 struct perf_event *event) 484 { 485 struct hw_perf_event fake_hwc = event->hw; 486 487 /* Allow mixed event group. So return 1 to pass validation. */ 488 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF) 489 return 1; 490 491 return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0; 492 } 493 494 static int validate_group(struct perf_event *event) 495 { 496 struct perf_event *sibling, *leader = event->group_leader; 497 struct cpu_hw_events fake_cpuc; 498 499 memset(&fake_cpuc, 0, sizeof(fake_cpuc)); 500 501 if (!validate_event(&fake_cpuc, leader)) 502 return -ENOSPC; 503 504 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 505 if (!validate_event(&fake_cpuc, sibling)) 506 return -ENOSPC; 507 } 508 509 if (!validate_event(&fake_cpuc, event)) 510 return -ENOSPC; 511 512 return 0; 513 } 514 515 /* This is needed by specific irq handlers in perf_event_*.c */ 516 static void 517 handle_associated_event(struct cpu_hw_events *cpuc, 518 int idx, struct perf_sample_data *data, struct pt_regs *regs) 519 { 520 struct perf_event *event = cpuc->events[idx]; 521 struct hw_perf_event *hwc = &event->hw; 522 523 mipspmu_event_update(event, hwc, idx); 524 data->period = event->hw.last_period; 525 if (!mipspmu_event_set_period(event, hwc, idx)) 526 return; 527 528 if (perf_event_overflow(event, data, regs)) 529 mipspmu->disable_event(idx); 530 } 531 532 #include "perf_event_mipsxx.c" 533 534 /* Callchain handling code. */ 535 536 /* 537 * Leave userspace callchain empty for now. When we find a way to trace 538 * the user stack callchains, we add here. 539 */ 540 void perf_callchain_user(struct perf_callchain_entry *entry, 541 struct pt_regs *regs) 542 { 543 } 544 545 static void save_raw_perf_callchain(struct perf_callchain_entry *entry, 546 unsigned long reg29) 547 { 548 unsigned long *sp = (unsigned long *)reg29; 549 unsigned long addr; 550 551 while (!kstack_end(sp)) { 552 addr = *sp++; 553 if (__kernel_text_address(addr)) { 554 perf_callchain_store(entry, addr); 555 if (entry->nr >= PERF_MAX_STACK_DEPTH) 556 break; 557 } 558 } 559 } 560 561 void perf_callchain_kernel(struct perf_callchain_entry *entry, 562 struct pt_regs *regs) 563 { 564 unsigned long sp = regs->regs[29]; 565 #ifdef CONFIG_KALLSYMS 566 unsigned long ra = regs->regs[31]; 567 unsigned long pc = regs->cp0_epc; 568 569 if (raw_show_trace || !__kernel_text_address(pc)) { 570 unsigned long stack_page = 571 (unsigned long)task_stack_page(current); 572 if (stack_page && sp >= stack_page && 573 sp <= stack_page + THREAD_SIZE - 32) 574 save_raw_perf_callchain(entry, sp); 575 return; 576 } 577 do { 578 perf_callchain_store(entry, pc); 579 if (entry->nr >= PERF_MAX_STACK_DEPTH) 580 break; 581 pc = unwind_stack(current, &sp, pc, &ra); 582 } while (pc); 583 #else 584 save_raw_perf_callchain(entry, sp); 585 #endif 586 } 587