1 /* 2 * Linux performance counter support for MIPS. 3 * 4 * Copyright (C) 2010 MIPS Technologies, Inc. 5 * Author: Deng-Cheng Zhu 6 * 7 * This code is based on the implementation for ARM, which is in turn 8 * based on the sparc64 perf event code and the x86 code. Performance 9 * counter access is based on the MIPS Oprofile code. And the callchain 10 * support references the code of MIPS stacktrace.c. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/cpumask.h> 18 #include <linux/interrupt.h> 19 #include <linux/smp.h> 20 #include <linux/kernel.h> 21 #include <linux/perf_event.h> 22 #include <linux/uaccess.h> 23 24 #include <asm/irq.h> 25 #include <asm/irq_regs.h> 26 #include <asm/stacktrace.h> 27 #include <asm/time.h> /* For perf_irq */ 28 29 /* These are for 32bit counters. For 64bit ones, define them accordingly. */ 30 #define MAX_PERIOD ((1ULL << 32) - 1) 31 #define VALID_COUNT 0x7fffffff 32 #define TOTAL_BITS 32 33 #define HIGHEST_BIT 31 34 35 #define MIPS_MAX_HWEVENTS 4 36 37 struct cpu_hw_events { 38 /* Array of events on this cpu. */ 39 struct perf_event *events[MIPS_MAX_HWEVENTS]; 40 41 /* 42 * Set the bit (indexed by the counter number) when the counter 43 * is used for an event. 44 */ 45 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 46 47 /* 48 * The borrowed MSB for the performance counter. A MIPS performance 49 * counter uses its bit 31 (for 32bit counters) or bit 63 (for 64bit 50 * counters) as a factor of determining whether a counter overflow 51 * should be signaled. So here we use a separate MSB for each 52 * counter to make things easy. 53 */ 54 unsigned long msbs[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)]; 55 56 /* 57 * Software copy of the control register for each performance counter. 58 * MIPS CPUs vary in performance counters. They use this differently, 59 * and even may not use it. 60 */ 61 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS]; 62 }; 63 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { 64 .saved_ctrl = {0}, 65 }; 66 67 /* The description of MIPS performance events. */ 68 struct mips_perf_event { 69 unsigned int event_id; 70 /* 71 * MIPS performance counters are indexed starting from 0. 72 * CNTR_EVEN indicates the indexes of the counters to be used are 73 * even numbers. 74 */ 75 unsigned int cntr_mask; 76 #define CNTR_EVEN 0x55555555 77 #define CNTR_ODD 0xaaaaaaaa 78 #ifdef CONFIG_MIPS_MT_SMP 79 enum { 80 T = 0, 81 V = 1, 82 P = 2, 83 } range; 84 #else 85 #define T 86 #define V 87 #define P 88 #endif 89 }; 90 91 static struct mips_perf_event raw_event; 92 static DEFINE_MUTEX(raw_event_mutex); 93 94 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff 95 #define C(x) PERF_COUNT_HW_CACHE_##x 96 97 struct mips_pmu { 98 const char *name; 99 int irq; 100 irqreturn_t (*handle_irq)(int irq, void *dev); 101 int (*handle_shared_irq)(void); 102 void (*start)(void); 103 void (*stop)(void); 104 int (*alloc_counter)(struct cpu_hw_events *cpuc, 105 struct hw_perf_event *hwc); 106 u64 (*read_counter)(unsigned int idx); 107 void (*write_counter)(unsigned int idx, u64 val); 108 void (*enable_event)(struct hw_perf_event *evt, int idx); 109 void (*disable_event)(int idx); 110 const struct mips_perf_event *(*map_raw_event)(u64 config); 111 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX]; 112 const struct mips_perf_event (*cache_event_map) 113 [PERF_COUNT_HW_CACHE_MAX] 114 [PERF_COUNT_HW_CACHE_OP_MAX] 115 [PERF_COUNT_HW_CACHE_RESULT_MAX]; 116 unsigned int num_counters; 117 }; 118 119 static const struct mips_pmu *mipspmu; 120 121 static int 122 mipspmu_event_set_period(struct perf_event *event, 123 struct hw_perf_event *hwc, 124 int idx) 125 { 126 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 127 s64 left = local64_read(&hwc->period_left); 128 s64 period = hwc->sample_period; 129 int ret = 0; 130 u64 uleft; 131 unsigned long flags; 132 133 if (unlikely(left <= -period)) { 134 left = period; 135 local64_set(&hwc->period_left, left); 136 hwc->last_period = period; 137 ret = 1; 138 } 139 140 if (unlikely(left <= 0)) { 141 left += period; 142 local64_set(&hwc->period_left, left); 143 hwc->last_period = period; 144 ret = 1; 145 } 146 147 if (left > (s64)MAX_PERIOD) 148 left = MAX_PERIOD; 149 150 local64_set(&hwc->prev_count, (u64)-left); 151 152 local_irq_save(flags); 153 uleft = (u64)(-left) & MAX_PERIOD; 154 uleft > VALID_COUNT ? 155 set_bit(idx, cpuc->msbs) : clear_bit(idx, cpuc->msbs); 156 mipspmu->write_counter(idx, (u64)(-left) & VALID_COUNT); 157 local_irq_restore(flags); 158 159 perf_event_update_userpage(event); 160 161 return ret; 162 } 163 164 static void mipspmu_event_update(struct perf_event *event, 165 struct hw_perf_event *hwc, 166 int idx) 167 { 168 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 169 unsigned long flags; 170 int shift = 64 - TOTAL_BITS; 171 s64 prev_raw_count, new_raw_count; 172 u64 delta; 173 174 again: 175 prev_raw_count = local64_read(&hwc->prev_count); 176 local_irq_save(flags); 177 /* Make the counter value be a "real" one. */ 178 new_raw_count = mipspmu->read_counter(idx); 179 if (new_raw_count & (test_bit(idx, cpuc->msbs) << HIGHEST_BIT)) { 180 new_raw_count &= VALID_COUNT; 181 clear_bit(idx, cpuc->msbs); 182 } else 183 new_raw_count |= (test_bit(idx, cpuc->msbs) << HIGHEST_BIT); 184 local_irq_restore(flags); 185 186 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 187 new_raw_count) != prev_raw_count) 188 goto again; 189 190 delta = (new_raw_count << shift) - (prev_raw_count << shift); 191 delta >>= shift; 192 193 local64_add(delta, &event->count); 194 local64_sub(delta, &hwc->period_left); 195 196 return; 197 } 198 199 static void mipspmu_start(struct perf_event *event, int flags) 200 { 201 struct hw_perf_event *hwc = &event->hw; 202 203 if (!mipspmu) 204 return; 205 206 if (flags & PERF_EF_RELOAD) 207 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 208 209 hwc->state = 0; 210 211 /* Set the period for the event. */ 212 mipspmu_event_set_period(event, hwc, hwc->idx); 213 214 /* Enable the event. */ 215 mipspmu->enable_event(hwc, hwc->idx); 216 } 217 218 static void mipspmu_stop(struct perf_event *event, int flags) 219 { 220 struct hw_perf_event *hwc = &event->hw; 221 222 if (!mipspmu) 223 return; 224 225 if (!(hwc->state & PERF_HES_STOPPED)) { 226 /* We are working on a local event. */ 227 mipspmu->disable_event(hwc->idx); 228 barrier(); 229 mipspmu_event_update(event, hwc, hwc->idx); 230 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 231 } 232 } 233 234 static int mipspmu_add(struct perf_event *event, int flags) 235 { 236 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 237 struct hw_perf_event *hwc = &event->hw; 238 int idx; 239 int err = 0; 240 241 perf_pmu_disable(event->pmu); 242 243 /* To look for a free counter for this event. */ 244 idx = mipspmu->alloc_counter(cpuc, hwc); 245 if (idx < 0) { 246 err = idx; 247 goto out; 248 } 249 250 /* 251 * If there is an event in the counter we are going to use then 252 * make sure it is disabled. 253 */ 254 event->hw.idx = idx; 255 mipspmu->disable_event(idx); 256 cpuc->events[idx] = event; 257 258 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 259 if (flags & PERF_EF_START) 260 mipspmu_start(event, PERF_EF_RELOAD); 261 262 /* Propagate our changes to the userspace mapping. */ 263 perf_event_update_userpage(event); 264 265 out: 266 perf_pmu_enable(event->pmu); 267 return err; 268 } 269 270 static void mipspmu_del(struct perf_event *event, int flags) 271 { 272 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); 273 struct hw_perf_event *hwc = &event->hw; 274 int idx = hwc->idx; 275 276 WARN_ON(idx < 0 || idx >= mipspmu->num_counters); 277 278 mipspmu_stop(event, PERF_EF_UPDATE); 279 cpuc->events[idx] = NULL; 280 clear_bit(idx, cpuc->used_mask); 281 282 perf_event_update_userpage(event); 283 } 284 285 static void mipspmu_read(struct perf_event *event) 286 { 287 struct hw_perf_event *hwc = &event->hw; 288 289 /* Don't read disabled counters! */ 290 if (hwc->idx < 0) 291 return; 292 293 mipspmu_event_update(event, hwc, hwc->idx); 294 } 295 296 static void mipspmu_enable(struct pmu *pmu) 297 { 298 if (mipspmu) 299 mipspmu->start(); 300 } 301 302 static void mipspmu_disable(struct pmu *pmu) 303 { 304 if (mipspmu) 305 mipspmu->stop(); 306 } 307 308 static atomic_t active_events = ATOMIC_INIT(0); 309 static DEFINE_MUTEX(pmu_reserve_mutex); 310 static int (*save_perf_irq)(void); 311 312 static int mipspmu_get_irq(void) 313 { 314 int err; 315 316 if (mipspmu->irq >= 0) { 317 /* Request my own irq handler. */ 318 err = request_irq(mipspmu->irq, mipspmu->handle_irq, 319 IRQF_DISABLED | IRQF_NOBALANCING, 320 "mips_perf_pmu", NULL); 321 if (err) { 322 pr_warning("Unable to request IRQ%d for MIPS " 323 "performance counters!\n", mipspmu->irq); 324 } 325 } else if (cp0_perfcount_irq < 0) { 326 /* 327 * We are sharing the irq number with the timer interrupt. 328 */ 329 save_perf_irq = perf_irq; 330 perf_irq = mipspmu->handle_shared_irq; 331 err = 0; 332 } else { 333 pr_warning("The platform hasn't properly defined its " 334 "interrupt controller.\n"); 335 err = -ENOENT; 336 } 337 338 return err; 339 } 340 341 static void mipspmu_free_irq(void) 342 { 343 if (mipspmu->irq >= 0) 344 free_irq(mipspmu->irq, NULL); 345 else if (cp0_perfcount_irq < 0) 346 perf_irq = save_perf_irq; 347 } 348 349 /* 350 * mipsxx/rm9000/loongson2 have different performance counters, they have 351 * specific low-level init routines. 352 */ 353 static void reset_counters(void *arg); 354 static int __hw_perf_event_init(struct perf_event *event); 355 356 static void hw_perf_event_destroy(struct perf_event *event) 357 { 358 if (atomic_dec_and_mutex_lock(&active_events, 359 &pmu_reserve_mutex)) { 360 /* 361 * We must not call the destroy function with interrupts 362 * disabled. 363 */ 364 on_each_cpu(reset_counters, 365 (void *)(long)mipspmu->num_counters, 1); 366 mipspmu_free_irq(); 367 mutex_unlock(&pmu_reserve_mutex); 368 } 369 } 370 371 static int mipspmu_event_init(struct perf_event *event) 372 { 373 int err = 0; 374 375 switch (event->attr.type) { 376 case PERF_TYPE_RAW: 377 case PERF_TYPE_HARDWARE: 378 case PERF_TYPE_HW_CACHE: 379 break; 380 381 default: 382 return -ENOENT; 383 } 384 385 if (!mipspmu || event->cpu >= nr_cpumask_bits || 386 (event->cpu >= 0 && !cpu_online(event->cpu))) 387 return -ENODEV; 388 389 if (!atomic_inc_not_zero(&active_events)) { 390 if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) { 391 atomic_dec(&active_events); 392 return -ENOSPC; 393 } 394 395 mutex_lock(&pmu_reserve_mutex); 396 if (atomic_read(&active_events) == 0) 397 err = mipspmu_get_irq(); 398 399 if (!err) 400 atomic_inc(&active_events); 401 mutex_unlock(&pmu_reserve_mutex); 402 } 403 404 if (err) 405 return err; 406 407 err = __hw_perf_event_init(event); 408 if (err) 409 hw_perf_event_destroy(event); 410 411 return err; 412 } 413 414 static struct pmu pmu = { 415 .pmu_enable = mipspmu_enable, 416 .pmu_disable = mipspmu_disable, 417 .event_init = mipspmu_event_init, 418 .add = mipspmu_add, 419 .del = mipspmu_del, 420 .start = mipspmu_start, 421 .stop = mipspmu_stop, 422 .read = mipspmu_read, 423 }; 424 425 static inline unsigned int 426 mipspmu_perf_event_encode(const struct mips_perf_event *pev) 427 { 428 /* 429 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for 430 * event_id. 431 */ 432 #ifdef CONFIG_MIPS_MT_SMP 433 return ((unsigned int)pev->range << 24) | 434 (pev->cntr_mask & 0xffff00) | 435 (pev->event_id & 0xff); 436 #else 437 return (pev->cntr_mask & 0xffff00) | 438 (pev->event_id & 0xff); 439 #endif 440 } 441 442 static const struct mips_perf_event * 443 mipspmu_map_general_event(int idx) 444 { 445 const struct mips_perf_event *pev; 446 447 pev = ((*mipspmu->general_event_map)[idx].event_id == 448 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) : 449 &(*mipspmu->general_event_map)[idx]); 450 451 return pev; 452 } 453 454 static const struct mips_perf_event * 455 mipspmu_map_cache_event(u64 config) 456 { 457 unsigned int cache_type, cache_op, cache_result; 458 const struct mips_perf_event *pev; 459 460 cache_type = (config >> 0) & 0xff; 461 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 462 return ERR_PTR(-EINVAL); 463 464 cache_op = (config >> 8) & 0xff; 465 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 466 return ERR_PTR(-EINVAL); 467 468 cache_result = (config >> 16) & 0xff; 469 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 470 return ERR_PTR(-EINVAL); 471 472 pev = &((*mipspmu->cache_event_map) 473 [cache_type] 474 [cache_op] 475 [cache_result]); 476 477 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID) 478 return ERR_PTR(-EOPNOTSUPP); 479 480 return pev; 481 482 } 483 484 static int validate_event(struct cpu_hw_events *cpuc, 485 struct perf_event *event) 486 { 487 struct hw_perf_event fake_hwc = event->hw; 488 489 /* Allow mixed event group. So return 1 to pass validation. */ 490 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF) 491 return 1; 492 493 return mipspmu->alloc_counter(cpuc, &fake_hwc) >= 0; 494 } 495 496 static int validate_group(struct perf_event *event) 497 { 498 struct perf_event *sibling, *leader = event->group_leader; 499 struct cpu_hw_events fake_cpuc; 500 501 memset(&fake_cpuc, 0, sizeof(fake_cpuc)); 502 503 if (!validate_event(&fake_cpuc, leader)) 504 return -ENOSPC; 505 506 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 507 if (!validate_event(&fake_cpuc, sibling)) 508 return -ENOSPC; 509 } 510 511 if (!validate_event(&fake_cpuc, event)) 512 return -ENOSPC; 513 514 return 0; 515 } 516 517 /* This is needed by specific irq handlers in perf_event_*.c */ 518 static void 519 handle_associated_event(struct cpu_hw_events *cpuc, 520 int idx, struct perf_sample_data *data, struct pt_regs *regs) 521 { 522 struct perf_event *event = cpuc->events[idx]; 523 struct hw_perf_event *hwc = &event->hw; 524 525 mipspmu_event_update(event, hwc, idx); 526 data->period = event->hw.last_period; 527 if (!mipspmu_event_set_period(event, hwc, idx)) 528 return; 529 530 if (perf_event_overflow(event, 0, data, regs)) 531 mipspmu->disable_event(idx); 532 } 533 534 #include "perf_event_mipsxx.c" 535 536 /* Callchain handling code. */ 537 538 /* 539 * Leave userspace callchain empty for now. When we find a way to trace 540 * the user stack callchains, we add here. 541 */ 542 void perf_callchain_user(struct perf_callchain_entry *entry, 543 struct pt_regs *regs) 544 { 545 } 546 547 static void save_raw_perf_callchain(struct perf_callchain_entry *entry, 548 unsigned long reg29) 549 { 550 unsigned long *sp = (unsigned long *)reg29; 551 unsigned long addr; 552 553 while (!kstack_end(sp)) { 554 addr = *sp++; 555 if (__kernel_text_address(addr)) { 556 perf_callchain_store(entry, addr); 557 if (entry->nr >= PERF_MAX_STACK_DEPTH) 558 break; 559 } 560 } 561 } 562 563 void perf_callchain_kernel(struct perf_callchain_entry *entry, 564 struct pt_regs *regs) 565 { 566 unsigned long sp = regs->regs[29]; 567 #ifdef CONFIG_KALLSYMS 568 unsigned long ra = regs->regs[31]; 569 unsigned long pc = regs->cp0_epc; 570 571 if (raw_show_trace || !__kernel_text_address(pc)) { 572 unsigned long stack_page = 573 (unsigned long)task_stack_page(current); 574 if (stack_page && sp >= stack_page && 575 sp <= stack_page + THREAD_SIZE - 32) 576 save_raw_perf_callchain(entry, sp); 577 return; 578 } 579 do { 580 perf_callchain_store(entry, pc); 581 if (entry->nr >= PERF_MAX_STACK_DEPTH) 582 break; 583 pc = unwind_stack(current, &sp, pc, &ra); 584 } while (pc); 585 #else 586 save_raw_perf_callchain(entry, sp); 587 #endif 588 } 589