xref: /openbmc/linux/arch/mips/kernel/module.c (revision 260ea95c)
1 /*
2  *  This program is free software; you can redistribute it and/or modify
3  *  it under the terms of the GNU General Public License as published by
4  *  the Free Software Foundation; either version 2 of the License, or
5  *  (at your option) any later version.
6  *
7  *  This program is distributed in the hope that it will be useful,
8  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *  GNU General Public License for more details.
11  *
12  *  You should have received a copy of the GNU General Public License
13  *  along with this program; if not, write to the Free Software
14  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
15  *
16  *  Copyright (C) 2001 Rusty Russell.
17  *  Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
18  *  Copyright (C) 2005 Thiemo Seufer
19  */
20 
21 #undef DEBUG
22 
23 #include <linux/extable.h>
24 #include <linux/moduleloader.h>
25 #include <linux/elf.h>
26 #include <linux/mm.h>
27 #include <linux/numa.h>
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/fs.h>
31 #include <linux/string.h>
32 #include <linux/kernel.h>
33 #include <linux/spinlock.h>
34 #include <linux/jump_label.h>
35 
36 #include <asm/pgtable.h>	/* MODULE_START */
37 
38 struct mips_hi16 {
39 	struct mips_hi16 *next;
40 	Elf_Addr *addr;
41 	Elf_Addr value;
42 };
43 
44 static LIST_HEAD(dbe_list);
45 static DEFINE_SPINLOCK(dbe_lock);
46 
47 #ifdef MODULE_START
48 void *module_alloc(unsigned long size)
49 {
50 	return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
51 				GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE,
52 				__builtin_return_address(0));
53 }
54 #endif
55 
56 static int apply_r_mips_none(struct module *me, u32 *location,
57 			     u32 base, Elf_Addr v, bool rela)
58 {
59 	return 0;
60 }
61 
62 static int apply_r_mips_32(struct module *me, u32 *location,
63 			   u32 base, Elf_Addr v, bool rela)
64 {
65 	*location = base + v;
66 
67 	return 0;
68 }
69 
70 static int apply_r_mips_26(struct module *me, u32 *location,
71 			   u32 base, Elf_Addr v, bool rela)
72 {
73 	if (v % 4) {
74 		pr_err("module %s: dangerous R_MIPS_26 relocation\n",
75 		       me->name);
76 		return -ENOEXEC;
77 	}
78 
79 	if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
80 		pr_err("module %s: relocation overflow\n",
81 		       me->name);
82 		return -ENOEXEC;
83 	}
84 
85 	*location = (*location & ~0x03ffffff) |
86 		    ((base + (v >> 2)) & 0x03ffffff);
87 
88 	return 0;
89 }
90 
91 static int apply_r_mips_hi16(struct module *me, u32 *location,
92 			     u32 base, Elf_Addr v, bool rela)
93 {
94 	struct mips_hi16 *n;
95 
96 	if (rela) {
97 		*location = (*location & 0xffff0000) |
98 			    ((((long long) v + 0x8000LL) >> 16) & 0xffff);
99 		return 0;
100 	}
101 
102 	/*
103 	 * We cannot relocate this one now because we don't know the value of
104 	 * the carry we need to add.  Save the information, and let LO16 do the
105 	 * actual relocation.
106 	 */
107 	n = kmalloc(sizeof *n, GFP_KERNEL);
108 	if (!n)
109 		return -ENOMEM;
110 
111 	n->addr = (Elf_Addr *)location;
112 	n->value = v;
113 	n->next = me->arch.r_mips_hi16_list;
114 	me->arch.r_mips_hi16_list = n;
115 
116 	return 0;
117 }
118 
119 static void free_relocation_chain(struct mips_hi16 *l)
120 {
121 	struct mips_hi16 *next;
122 
123 	while (l) {
124 		next = l->next;
125 		kfree(l);
126 		l = next;
127 	}
128 }
129 
130 static int apply_r_mips_lo16(struct module *me, u32 *location,
131 			     u32 base, Elf_Addr v, bool rela)
132 {
133 	unsigned long insnlo = base;
134 	struct mips_hi16 *l;
135 	Elf_Addr val, vallo;
136 
137 	if (rela) {
138 		*location = (*location & 0xffff0000) | (v & 0xffff);
139 		return 0;
140 	}
141 
142 	/* Sign extend the addend we extract from the lo insn.	*/
143 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
144 
145 	if (me->arch.r_mips_hi16_list != NULL) {
146 		l = me->arch.r_mips_hi16_list;
147 		while (l != NULL) {
148 			struct mips_hi16 *next;
149 			unsigned long insn;
150 
151 			/*
152 			 * The value for the HI16 had best be the same.
153 			 */
154 			if (v != l->value)
155 				goto out_danger;
156 
157 			/*
158 			 * Do the HI16 relocation.  Note that we actually don't
159 			 * need to know anything about the LO16 itself, except
160 			 * where to find the low 16 bits of the addend needed
161 			 * by the LO16.
162 			 */
163 			insn = *l->addr;
164 			val = ((insn & 0xffff) << 16) + vallo;
165 			val += v;
166 
167 			/*
168 			 * Account for the sign extension that will happen in
169 			 * the low bits.
170 			 */
171 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
172 
173 			insn = (insn & ~0xffff) | val;
174 			*l->addr = insn;
175 
176 			next = l->next;
177 			kfree(l);
178 			l = next;
179 		}
180 
181 		me->arch.r_mips_hi16_list = NULL;
182 	}
183 
184 	/*
185 	 * Ok, we're done with the HI16 relocs.	 Now deal with the LO16.
186 	 */
187 	val = v + vallo;
188 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
189 	*location = insnlo;
190 
191 	return 0;
192 
193 out_danger:
194 	free_relocation_chain(l);
195 	me->arch.r_mips_hi16_list = NULL;
196 
197 	pr_err("module %s: dangerous R_MIPS_LO16 relocation\n", me->name);
198 
199 	return -ENOEXEC;
200 }
201 
202 static int apply_r_mips_pc(struct module *me, u32 *location, u32 base,
203 			   Elf_Addr v, unsigned int bits)
204 {
205 	unsigned long mask = GENMASK(bits - 1, 0);
206 	unsigned long se_bits;
207 	long offset;
208 
209 	if (v % 4) {
210 		pr_err("module %s: dangerous R_MIPS_PC%u relocation\n",
211 		       me->name, bits);
212 		return -ENOEXEC;
213 	}
214 
215 	/* retrieve & sign extend implicit addend if any */
216 	offset = base & mask;
217 	offset |= (offset & BIT(bits - 1)) ? ~mask : 0;
218 
219 	offset += ((long)v - (long)location) >> 2;
220 
221 	/* check the sign bit onwards are identical - ie. we didn't overflow */
222 	se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0;
223 	if ((offset & ~mask) != (se_bits & ~mask)) {
224 		pr_err("module %s: relocation overflow\n", me->name);
225 		return -ENOEXEC;
226 	}
227 
228 	*location = (*location & ~mask) | (offset & mask);
229 
230 	return 0;
231 }
232 
233 static int apply_r_mips_pc16(struct module *me, u32 *location,
234 			     u32 base, Elf_Addr v, bool rela)
235 {
236 	return apply_r_mips_pc(me, location, base, v, 16);
237 }
238 
239 static int apply_r_mips_pc21(struct module *me, u32 *location,
240 			     u32 base, Elf_Addr v, bool rela)
241 {
242 	return apply_r_mips_pc(me, location, base, v, 21);
243 }
244 
245 static int apply_r_mips_pc26(struct module *me, u32 *location,
246 			     u32 base, Elf_Addr v, bool rela)
247 {
248 	return apply_r_mips_pc(me, location, base, v, 26);
249 }
250 
251 static int apply_r_mips_64(struct module *me, u32 *location,
252 			   u32 base, Elf_Addr v, bool rela)
253 {
254 	if (WARN_ON(!rela))
255 		return -EINVAL;
256 
257 	*(Elf_Addr *)location = v;
258 
259 	return 0;
260 }
261 
262 static int apply_r_mips_higher(struct module *me, u32 *location,
263 			       u32 base, Elf_Addr v, bool rela)
264 {
265 	if (WARN_ON(!rela))
266 		return -EINVAL;
267 
268 	*location = (*location & 0xffff0000) |
269 		    ((((long long)v + 0x80008000LL) >> 32) & 0xffff);
270 
271 	return 0;
272 }
273 
274 static int apply_r_mips_highest(struct module *me, u32 *location,
275 				u32 base, Elf_Addr v, bool rela)
276 {
277 	if (WARN_ON(!rela))
278 		return -EINVAL;
279 
280 	*location = (*location & 0xffff0000) |
281 		    ((((long long)v + 0x800080008000LL) >> 48) & 0xffff);
282 
283 	return 0;
284 }
285 
286 /**
287  * reloc_handler() - Apply a particular relocation to a module
288  * @me: the module to apply the reloc to
289  * @location: the address at which the reloc is to be applied
290  * @base: the existing value at location for REL-style; 0 for RELA-style
291  * @v: the value of the reloc, with addend for RELA-style
292  *
293  * Each implemented reloc_handler function applies a particular type of
294  * relocation to the module @me. Relocs that may be found in either REL or RELA
295  * variants can be handled by making use of the @base & @v parameters which are
296  * set to values which abstract the difference away from the particular reloc
297  * implementations.
298  *
299  * Return: 0 upon success, else -ERRNO
300  */
301 typedef int (*reloc_handler)(struct module *me, u32 *location,
302 			     u32 base, Elf_Addr v, bool rela);
303 
304 /* The handlers for known reloc types */
305 static reloc_handler reloc_handlers[] = {
306 	[R_MIPS_NONE]		= apply_r_mips_none,
307 	[R_MIPS_32]		= apply_r_mips_32,
308 	[R_MIPS_26]		= apply_r_mips_26,
309 	[R_MIPS_HI16]		= apply_r_mips_hi16,
310 	[R_MIPS_LO16]		= apply_r_mips_lo16,
311 	[R_MIPS_PC16]		= apply_r_mips_pc16,
312 	[R_MIPS_64]		= apply_r_mips_64,
313 	[R_MIPS_HIGHER]		= apply_r_mips_higher,
314 	[R_MIPS_HIGHEST]	= apply_r_mips_highest,
315 	[R_MIPS_PC21_S2]	= apply_r_mips_pc21,
316 	[R_MIPS_PC26_S2]	= apply_r_mips_pc26,
317 };
318 
319 static int __apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
320 			    unsigned int symindex, unsigned int relsec,
321 			    struct module *me, bool rela)
322 {
323 	union {
324 		Elf_Mips_Rel *rel;
325 		Elf_Mips_Rela *rela;
326 	} r;
327 	reloc_handler handler;
328 	Elf_Sym *sym;
329 	u32 *location, base;
330 	unsigned int i, type;
331 	Elf_Addr v;
332 	int err = 0;
333 	size_t reloc_sz;
334 
335 	pr_debug("Applying relocate section %u to %u\n", relsec,
336 	       sechdrs[relsec].sh_info);
337 
338 	r.rel = (void *)sechdrs[relsec].sh_addr;
339 	reloc_sz = rela ? sizeof(*r.rela) : sizeof(*r.rel);
340 	me->arch.r_mips_hi16_list = NULL;
341 	for (i = 0; i < sechdrs[relsec].sh_size / reloc_sz; i++) {
342 		/* This is where to make the change */
343 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
344 			+ r.rel->r_offset;
345 		/* This is the symbol it is referring to */
346 		sym = (Elf_Sym *)sechdrs[symindex].sh_addr
347 			+ ELF_MIPS_R_SYM(*r.rel);
348 		if (sym->st_value >= -MAX_ERRNO) {
349 			/* Ignore unresolved weak symbol */
350 			if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
351 				continue;
352 			pr_warn("%s: Unknown symbol %s\n",
353 				me->name, strtab + sym->st_name);
354 			err = -ENOENT;
355 			goto out;
356 		}
357 
358 		type = ELF_MIPS_R_TYPE(*r.rel);
359 		if (type < ARRAY_SIZE(reloc_handlers))
360 			handler = reloc_handlers[type];
361 		else
362 			handler = NULL;
363 
364 		if (!handler) {
365 			pr_err("%s: Unknown relocation type %u\n",
366 			       me->name, type);
367 			err = -EINVAL;
368 			goto out;
369 		}
370 
371 		if (rela) {
372 			v = sym->st_value + r.rela->r_addend;
373 			base = 0;
374 			r.rela = &r.rela[1];
375 		} else {
376 			v = sym->st_value;
377 			base = *location;
378 			r.rel = &r.rel[1];
379 		}
380 
381 		err = handler(me, location, base, v, rela);
382 		if (err)
383 			goto out;
384 	}
385 
386 out:
387 	/*
388 	 * Normally the hi16 list should be deallocated at this point. A
389 	 * malformed binary however could contain a series of R_MIPS_HI16
390 	 * relocations not followed by a R_MIPS_LO16 relocation, or if we hit
391 	 * an error processing a reloc we might have gotten here before
392 	 * reaching the R_MIPS_LO16. In either case, free up the list and
393 	 * return an error.
394 	 */
395 	if (me->arch.r_mips_hi16_list) {
396 		free_relocation_chain(me->arch.r_mips_hi16_list);
397 		me->arch.r_mips_hi16_list = NULL;
398 		err = err ?: -ENOEXEC;
399 	}
400 
401 	return err;
402 }
403 
404 int apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
405 		   unsigned int symindex, unsigned int relsec,
406 		   struct module *me)
407 {
408 	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, false);
409 }
410 
411 #ifdef CONFIG_MODULES_USE_ELF_RELA
412 int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
413 		       unsigned int symindex, unsigned int relsec,
414 		       struct module *me)
415 {
416 	return __apply_relocate(sechdrs, strtab, symindex, relsec, me, true);
417 }
418 #endif /* CONFIG_MODULES_USE_ELF_RELA */
419 
420 /* Given an address, look for it in the module exception tables. */
421 const struct exception_table_entry *search_module_dbetables(unsigned long addr)
422 {
423 	unsigned long flags;
424 	const struct exception_table_entry *e = NULL;
425 	struct mod_arch_specific *dbe;
426 
427 	spin_lock_irqsave(&dbe_lock, flags);
428 	list_for_each_entry(dbe, &dbe_list, dbe_list) {
429 		e = search_extable(dbe->dbe_start,
430 				   dbe->dbe_end - dbe->dbe_start, addr);
431 		if (e)
432 			break;
433 	}
434 	spin_unlock_irqrestore(&dbe_lock, flags);
435 
436 	/* Now, if we found one, we are running inside it now, hence
437 	   we cannot unload the module, hence no refcnt needed. */
438 	return e;
439 }
440 
441 /* Put in dbe list if necessary. */
442 int module_finalize(const Elf_Ehdr *hdr,
443 		    const Elf_Shdr *sechdrs,
444 		    struct module *me)
445 {
446 	const Elf_Shdr *s;
447 	char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
448 
449 	/* Make jump label nops. */
450 	jump_label_apply_nops(me);
451 
452 	INIT_LIST_HEAD(&me->arch.dbe_list);
453 	for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
454 		if (strcmp("__dbe_table", secstrings + s->sh_name) != 0)
455 			continue;
456 		me->arch.dbe_start = (void *)s->sh_addr;
457 		me->arch.dbe_end = (void *)s->sh_addr + s->sh_size;
458 		spin_lock_irq(&dbe_lock);
459 		list_add(&me->arch.dbe_list, &dbe_list);
460 		spin_unlock_irq(&dbe_lock);
461 	}
462 	return 0;
463 }
464 
465 void module_arch_cleanup(struct module *mod)
466 {
467 	spin_lock_irq(&dbe_lock);
468 	list_del(&mod->arch.dbe_list);
469 	spin_unlock_irq(&dbe_lock);
470 }
471