1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2013 Imagination Technologies 4 * Author: Paul Burton <paul.burton@mips.com> 5 */ 6 7 #include <linux/errno.h> 8 #include <linux/percpu.h> 9 #include <linux/spinlock.h> 10 11 #include <asm/mips-cps.h> 12 #include <asm/mipsregs.h> 13 14 void __iomem *mips_gcr_base; 15 void __iomem *mips_cm_l2sync_base; 16 int mips_cm_is64; 17 18 static char *cm2_tr[8] = { 19 "mem", "gcr", "gic", "mmio", 20 "0x04", "cpc", "0x06", "0x07" 21 }; 22 23 /* CM3 Tag ECC transaction type */ 24 static char *cm3_tr[16] = { 25 [0x0] = "ReqNoData", 26 [0x1] = "0x1", 27 [0x2] = "ReqWData", 28 [0x3] = "0x3", 29 [0x4] = "IReqNoResp", 30 [0x5] = "IReqWResp", 31 [0x6] = "IReqNoRespDat", 32 [0x7] = "IReqWRespDat", 33 [0x8] = "RespNoData", 34 [0x9] = "RespDataFol", 35 [0xa] = "RespWData", 36 [0xb] = "RespDataOnly", 37 [0xc] = "IRespNoData", 38 [0xd] = "IRespDataFol", 39 [0xe] = "IRespWData", 40 [0xf] = "IRespDataOnly" 41 }; 42 43 static char *cm2_cmd[32] = { 44 [0x00] = "0x00", 45 [0x01] = "Legacy Write", 46 [0x02] = "Legacy Read", 47 [0x03] = "0x03", 48 [0x04] = "0x04", 49 [0x05] = "0x05", 50 [0x06] = "0x06", 51 [0x07] = "0x07", 52 [0x08] = "Coherent Read Own", 53 [0x09] = "Coherent Read Share", 54 [0x0a] = "Coherent Read Discard", 55 [0x0b] = "Coherent Ready Share Always", 56 [0x0c] = "Coherent Upgrade", 57 [0x0d] = "Coherent Writeback", 58 [0x0e] = "0x0e", 59 [0x0f] = "0x0f", 60 [0x10] = "Coherent Copyback", 61 [0x11] = "Coherent Copyback Invalidate", 62 [0x12] = "Coherent Invalidate", 63 [0x13] = "Coherent Write Invalidate", 64 [0x14] = "Coherent Completion Sync", 65 [0x15] = "0x15", 66 [0x16] = "0x16", 67 [0x17] = "0x17", 68 [0x18] = "0x18", 69 [0x19] = "0x19", 70 [0x1a] = "0x1a", 71 [0x1b] = "0x1b", 72 [0x1c] = "0x1c", 73 [0x1d] = "0x1d", 74 [0x1e] = "0x1e", 75 [0x1f] = "0x1f" 76 }; 77 78 /* CM3 Tag ECC command type */ 79 static char *cm3_cmd[16] = { 80 [0x0] = "Legacy Read", 81 [0x1] = "Legacy Write", 82 [0x2] = "Coherent Read Own", 83 [0x3] = "Coherent Read Share", 84 [0x4] = "Coherent Read Discard", 85 [0x5] = "Coherent Evicted", 86 [0x6] = "Coherent Upgrade", 87 [0x7] = "Coherent Upgrade for Store Conditional", 88 [0x8] = "Coherent Writeback", 89 [0x9] = "Coherent Write Invalidate", 90 [0xa] = "0xa", 91 [0xb] = "0xb", 92 [0xc] = "0xc", 93 [0xd] = "0xd", 94 [0xe] = "0xe", 95 [0xf] = "0xf" 96 }; 97 98 /* CM3 Tag ECC command group */ 99 static char *cm3_cmd_group[8] = { 100 [0x0] = "Normal", 101 [0x1] = "Registers", 102 [0x2] = "TLB", 103 [0x3] = "0x3", 104 [0x4] = "L1I", 105 [0x5] = "L1D", 106 [0x6] = "L3", 107 [0x7] = "L2" 108 }; 109 110 static char *cm2_core[8] = { 111 "Invalid/OK", "Invalid/Data", 112 "Shared/OK", "Shared/Data", 113 "Modified/OK", "Modified/Data", 114 "Exclusive/OK", "Exclusive/Data" 115 }; 116 117 static char *cm2_l2_type[4] = { 118 [0x0] = "None", 119 [0x1] = "Tag RAM single/double ECC error", 120 [0x2] = "Data RAM single/double ECC error", 121 [0x3] = "WS RAM uncorrectable dirty parity" 122 }; 123 124 static char *cm2_l2_instr[32] = { 125 [0x00] = "L2_NOP", 126 [0x01] = "L2_ERR_CORR", 127 [0x02] = "L2_TAG_INV", 128 [0x03] = "L2_WS_CLEAN", 129 [0x04] = "L2_RD_MDYFY_WR", 130 [0x05] = "L2_WS_MRU", 131 [0x06] = "L2_EVICT_LN2", 132 [0x07] = "0x07", 133 [0x08] = "L2_EVICT", 134 [0x09] = "L2_REFL", 135 [0x0a] = "L2_RD", 136 [0x0b] = "L2_WR", 137 [0x0c] = "L2_EVICT_MRU", 138 [0x0d] = "L2_SYNC", 139 [0x0e] = "L2_REFL_ERR", 140 [0x0f] = "0x0f", 141 [0x10] = "L2_INDX_WB_INV", 142 [0x11] = "L2_INDX_LD_TAG", 143 [0x12] = "L2_INDX_ST_TAG", 144 [0x13] = "L2_INDX_ST_DATA", 145 [0x14] = "L2_INDX_ST_ECC", 146 [0x15] = "0x15", 147 [0x16] = "0x16", 148 [0x17] = "0x17", 149 [0x18] = "L2_FTCH_AND_LCK", 150 [0x19] = "L2_HIT_INV", 151 [0x1a] = "L2_HIT_WB_INV", 152 [0x1b] = "L2_HIT_WB", 153 [0x1c] = "0x1c", 154 [0x1d] = "0x1d", 155 [0x1e] = "0x1e", 156 [0x1f] = "0x1f" 157 }; 158 159 static char *cm2_causes[32] = { 160 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR", 161 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07", 162 "0x08", "0x09", "0x0a", "0x0b", 163 "0x0c", "0x0d", "0x0e", "0x0f", 164 "0x10", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x13", 165 "0x14", "0x15", "0x16", "0x17", 166 "L2_RD_UNCORR", "L2_WR_UNCORR", "L2_CORR", "0x1b", 167 "0x1c", "0x1d", "0x1e", "0x1f" 168 }; 169 170 static char *cm3_causes[32] = { 171 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR", 172 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR", 173 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR", 174 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10", 175 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18", 176 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f" 177 }; 178 179 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock); 180 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags); 181 182 phys_addr_t __mips_cm_phys_base(void) 183 { 184 u32 config3 = read_c0_config3(); 185 unsigned long cmgcr; 186 187 /* Check the CMGCRBase register is implemented */ 188 if (!(config3 & MIPS_CONF3_CMGCR)) 189 return 0; 190 191 /* Read the address from CMGCRBase */ 192 cmgcr = read_c0_cmgcrbase(); 193 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32); 194 } 195 196 phys_addr_t mips_cm_phys_base(void) 197 __attribute__((weak, alias("__mips_cm_phys_base"))); 198 199 phys_addr_t __mips_cm_l2sync_phys_base(void) 200 { 201 u32 base_reg; 202 203 /* 204 * If the L2-only sync region is already enabled then leave it at it's 205 * current location. 206 */ 207 base_reg = read_gcr_l2_only_sync_base(); 208 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN) 209 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE; 210 211 /* Default to following the CM */ 212 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE; 213 } 214 215 phys_addr_t mips_cm_l2sync_phys_base(void) 216 __attribute__((weak, alias("__mips_cm_l2sync_phys_base"))); 217 218 static void mips_cm_probe_l2sync(void) 219 { 220 unsigned major_rev; 221 phys_addr_t addr; 222 223 /* L2-only sync was introduced with CM major revision 6 */ 224 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >> 225 __ffs(CM_GCR_REV_MAJOR); 226 if (major_rev < 6) 227 return; 228 229 /* Find a location for the L2 sync region */ 230 addr = mips_cm_l2sync_phys_base(); 231 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr); 232 if (!addr) 233 return; 234 235 /* Set the region base address & enable it */ 236 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN); 237 238 /* Map the region */ 239 mips_cm_l2sync_base = ioremap(addr, MIPS_CM_L2SYNC_SIZE); 240 } 241 242 int mips_cm_probe(void) 243 { 244 phys_addr_t addr; 245 u32 base_reg; 246 unsigned cpu; 247 248 /* 249 * No need to probe again if we have already been 250 * here before. 251 */ 252 if (mips_gcr_base) 253 return 0; 254 255 addr = mips_cm_phys_base(); 256 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr); 257 if (!addr) 258 return -ENODEV; 259 260 mips_gcr_base = ioremap(addr, MIPS_CM_GCR_SIZE); 261 if (!mips_gcr_base) 262 return -ENXIO; 263 264 /* sanity check that we're looking at a CM */ 265 base_reg = read_gcr_base(); 266 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) { 267 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n", 268 (unsigned long)addr); 269 iounmap(mips_gcr_base); 270 mips_gcr_base = NULL; 271 return -ENODEV; 272 } 273 274 /* set default target to memory */ 275 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM); 276 277 /* disable CM regions */ 278 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR); 279 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK); 280 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR); 281 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK); 282 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR); 283 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK); 284 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR); 285 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK); 286 287 /* probe for an L2-only sync region */ 288 mips_cm_probe_l2sync(); 289 290 /* determine register width for this CM */ 291 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3); 292 293 for_each_possible_cpu(cpu) 294 spin_lock_init(&per_cpu(cm_core_lock, cpu)); 295 296 return 0; 297 } 298 299 void mips_cm_lock_other(unsigned int cluster, unsigned int core, 300 unsigned int vp, unsigned int block) 301 { 302 unsigned int curr_core, cm_rev; 303 u32 val; 304 305 cm_rev = mips_cm_revision(); 306 preempt_disable(); 307 308 if (cm_rev >= CM_REV_CM3) { 309 val = core << __ffs(CM3_GCR_Cx_OTHER_CORE); 310 val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP); 311 312 if (cm_rev >= CM_REV_CM3_5) { 313 val |= CM_GCR_Cx_OTHER_CLUSTER_EN; 314 val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER); 315 val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK); 316 } else { 317 WARN_ON(cluster != 0); 318 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); 319 } 320 321 /* 322 * We need to disable interrupts in SMP systems in order to 323 * ensure that we don't interrupt the caller with code which 324 * may modify the redirect register. We do so here in a 325 * slightly obscure way by using a spin lock, since this has 326 * the neat property of also catching any nested uses of 327 * mips_cm_lock_other() leading to a deadlock or a nice warning 328 * with lockdep enabled. 329 */ 330 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock), 331 *this_cpu_ptr(&cm_core_lock_flags)); 332 } else { 333 WARN_ON(cluster != 0); 334 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); 335 336 /* 337 * We only have a GCR_CL_OTHER per core in systems with 338 * CM 2.5 & older, so have to ensure other VP(E)s don't 339 * race with us. 340 */ 341 curr_core = cpu_core(¤t_cpu_data); 342 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core), 343 per_cpu(cm_core_lock_flags, curr_core)); 344 345 val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM); 346 } 347 348 write_gcr_cl_other(val); 349 350 /* 351 * Ensure the core-other region reflects the appropriate core & 352 * VP before any accesses to it occur. 353 */ 354 mb(); 355 } 356 357 void mips_cm_unlock_other(void) 358 { 359 unsigned int curr_core; 360 361 if (mips_cm_revision() < CM_REV_CM3) { 362 curr_core = cpu_core(¤t_cpu_data); 363 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core), 364 per_cpu(cm_core_lock_flags, curr_core)); 365 } else { 366 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock), 367 *this_cpu_ptr(&cm_core_lock_flags)); 368 } 369 370 preempt_enable(); 371 } 372 373 void mips_cm_error_report(void) 374 { 375 u64 cm_error, cm_addr, cm_other; 376 unsigned long revision; 377 int ocause, cause; 378 char buf[256]; 379 380 if (!mips_cm_present()) 381 return; 382 383 revision = mips_cm_revision(); 384 cm_error = read_gcr_error_cause(); 385 cm_addr = read_gcr_error_addr(); 386 cm_other = read_gcr_error_mult(); 387 388 if (revision < CM_REV_CM3) { /* CM2 */ 389 cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE); 390 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); 391 392 if (!cause) 393 return; 394 395 if (cause < 16) { 396 unsigned long cca_bits = (cm_error >> 15) & 7; 397 unsigned long tr_bits = (cm_error >> 12) & 7; 398 unsigned long cmd_bits = (cm_error >> 7) & 0x1f; 399 unsigned long stag_bits = (cm_error >> 3) & 15; 400 unsigned long sport_bits = (cm_error >> 0) & 7; 401 402 snprintf(buf, sizeof(buf), 403 "CCA=%lu TR=%s MCmd=%s STag=%lu " 404 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits], 405 cm2_cmd[cmd_bits], stag_bits, sport_bits); 406 } else if (cause < 24) { 407 /* glob state & sresp together */ 408 unsigned long c3_bits = (cm_error >> 18) & 7; 409 unsigned long c2_bits = (cm_error >> 15) & 7; 410 unsigned long c1_bits = (cm_error >> 12) & 7; 411 unsigned long c0_bits = (cm_error >> 9) & 7; 412 unsigned long sc_bit = (cm_error >> 8) & 1; 413 unsigned long cmd_bits = (cm_error >> 3) & 0x1f; 414 unsigned long sport_bits = (cm_error >> 0) & 7; 415 416 snprintf(buf, sizeof(buf), 417 "C3=%s C2=%s C1=%s C0=%s SC=%s " 418 "MCmd=%s SPort=%lu\n", 419 cm2_core[c3_bits], cm2_core[c2_bits], 420 cm2_core[c1_bits], cm2_core[c0_bits], 421 sc_bit ? "True" : "False", 422 cm2_cmd[cmd_bits], sport_bits); 423 } else { 424 unsigned long muc_bit = (cm_error >> 23) & 1; 425 unsigned long ins_bits = (cm_error >> 18) & 0x1f; 426 unsigned long arr_bits = (cm_error >> 16) & 3; 427 unsigned long dw_bits = (cm_error >> 12) & 15; 428 unsigned long way_bits = (cm_error >> 9) & 7; 429 unsigned long mway_bit = (cm_error >> 8) & 1; 430 unsigned long syn_bits = (cm_error >> 0) & 0xFF; 431 432 snprintf(buf, sizeof(buf), 433 "Type=%s%s Instr=%s DW=%lu Way=%lu " 434 "MWay=%s Syndrome=0x%02lx", 435 muc_bit ? "Multi-UC " : "", 436 cm2_l2_type[arr_bits], 437 cm2_l2_instr[ins_bits], dw_bits, way_bits, 438 mway_bit ? "True" : "False", syn_bits); 439 } 440 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error, 441 cm2_causes[cause], buf); 442 pr_err("CM_ADDR =%08llx\n", cm_addr); 443 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]); 444 } else { /* CM3 */ 445 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits; 446 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit; 447 448 cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE); 449 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); 450 451 if (!cause) 452 return; 453 454 /* Used by cause == {1,2,3} */ 455 core_id_bits = (cm_error >> 22) & 0xf; 456 vp_id_bits = (cm_error >> 18) & 0xf; 457 cmd_bits = (cm_error >> 14) & 0xf; 458 cmd_group_bits = (cm_error >> 11) & 0xf; 459 cm3_cca_bits = (cm_error >> 8) & 7; 460 mcp_bits = (cm_error >> 5) & 0xf; 461 cm3_tr_bits = (cm_error >> 1) & 0xf; 462 sched_bit = cm_error & 0x1; 463 464 if (cause == 1 || cause == 3) { /* Tag ECC */ 465 unsigned long tag_ecc = (cm_error >> 57) & 0x1; 466 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff; 467 unsigned long dword_bits = (cm_error >> 49) & 0xff; 468 unsigned long data_way_bits = (cm_error >> 45) & 0xf; 469 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff; 470 unsigned long bank_bit = (cm_error >> 28) & 0x1; 471 snprintf(buf, sizeof(buf), 472 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)" 473 "Bank=%lu CoreID=%lu VPID=%lu Command=%s" 474 "Command Group=%s CCA=%lu MCP=%d" 475 "Transaction type=%s Scheduler=%lu\n", 476 tag_ecc ? "TAG" : "DATA", 477 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 : 478 data_way_bits, bank_bit, dword_bits, 479 data_sets_bits, 480 core_id_bits, vp_id_bits, 481 cm3_cmd[cmd_bits], 482 cm3_cmd_group[cmd_group_bits], 483 cm3_cca_bits, 1 << mcp_bits, 484 cm3_tr[cm3_tr_bits], sched_bit); 485 } else if (cause == 2) { 486 unsigned long data_error_type = (cm_error >> 41) & 0xfff; 487 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf; 488 unsigned long data_decode_group = (cm_error >> 34) & 0x7; 489 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f; 490 491 snprintf(buf, sizeof(buf), 492 "Decode Request Error: Type=%lu, Command=%lu" 493 "Command Group=%lu Destination ID=%lu" 494 "CoreID=%lu VPID=%lu Command=%s" 495 "Command Group=%s CCA=%lu MCP=%d" 496 "Transaction type=%s Scheduler=%lu\n", 497 data_error_type, data_decode_cmd, 498 data_decode_group, data_decode_destination_id, 499 core_id_bits, vp_id_bits, 500 cm3_cmd[cmd_bits], 501 cm3_cmd_group[cmd_group_bits], 502 cm3_cca_bits, 1 << mcp_bits, 503 cm3_tr[cm3_tr_bits], sched_bit); 504 } else { 505 buf[0] = 0; 506 } 507 508 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error, 509 cm3_causes[cause], buf); 510 pr_err("CM_ADDR =%llx\n", cm_addr); 511 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]); 512 } 513 514 /* reprime cause register */ 515 write_gcr_error_cause(cm_error); 516 } 517