1 /* 2 * Copyright (C) 2013 Imagination Technologies 3 * Author: Paul Burton <paul.burton@mips.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/percpu.h> 13 #include <linux/spinlock.h> 14 15 #include <asm/mips-cps.h> 16 #include <asm/mipsregs.h> 17 18 void __iomem *mips_gcr_base; 19 void __iomem *mips_cm_l2sync_base; 20 int mips_cm_is64; 21 22 static char *cm2_tr[8] = { 23 "mem", "gcr", "gic", "mmio", 24 "0x04", "cpc", "0x06", "0x07" 25 }; 26 27 /* CM3 Tag ECC transaction type */ 28 static char *cm3_tr[16] = { 29 [0x0] = "ReqNoData", 30 [0x1] = "0x1", 31 [0x2] = "ReqWData", 32 [0x3] = "0x3", 33 [0x4] = "IReqNoResp", 34 [0x5] = "IReqWResp", 35 [0x6] = "IReqNoRespDat", 36 [0x7] = "IReqWRespDat", 37 [0x8] = "RespNoData", 38 [0x9] = "RespDataFol", 39 [0xa] = "RespWData", 40 [0xb] = "RespDataOnly", 41 [0xc] = "IRespNoData", 42 [0xd] = "IRespDataFol", 43 [0xe] = "IRespWData", 44 [0xf] = "IRespDataOnly" 45 }; 46 47 static char *cm2_cmd[32] = { 48 [0x00] = "0x00", 49 [0x01] = "Legacy Write", 50 [0x02] = "Legacy Read", 51 [0x03] = "0x03", 52 [0x04] = "0x04", 53 [0x05] = "0x05", 54 [0x06] = "0x06", 55 [0x07] = "0x07", 56 [0x08] = "Coherent Read Own", 57 [0x09] = "Coherent Read Share", 58 [0x0a] = "Coherent Read Discard", 59 [0x0b] = "Coherent Ready Share Always", 60 [0x0c] = "Coherent Upgrade", 61 [0x0d] = "Coherent Writeback", 62 [0x0e] = "0x0e", 63 [0x0f] = "0x0f", 64 [0x10] = "Coherent Copyback", 65 [0x11] = "Coherent Copyback Invalidate", 66 [0x12] = "Coherent Invalidate", 67 [0x13] = "Coherent Write Invalidate", 68 [0x14] = "Coherent Completion Sync", 69 [0x15] = "0x15", 70 [0x16] = "0x16", 71 [0x17] = "0x17", 72 [0x18] = "0x18", 73 [0x19] = "0x19", 74 [0x1a] = "0x1a", 75 [0x1b] = "0x1b", 76 [0x1c] = "0x1c", 77 [0x1d] = "0x1d", 78 [0x1e] = "0x1e", 79 [0x1f] = "0x1f" 80 }; 81 82 /* CM3 Tag ECC command type */ 83 static char *cm3_cmd[16] = { 84 [0x0] = "Legacy Read", 85 [0x1] = "Legacy Write", 86 [0x2] = "Coherent Read Own", 87 [0x3] = "Coherent Read Share", 88 [0x4] = "Coherent Read Discard", 89 [0x5] = "Coherent Evicted", 90 [0x6] = "Coherent Upgrade", 91 [0x7] = "Coherent Upgrade for Store Conditional", 92 [0x8] = "Coherent Writeback", 93 [0x9] = "Coherent Write Invalidate", 94 [0xa] = "0xa", 95 [0xb] = "0xb", 96 [0xc] = "0xc", 97 [0xd] = "0xd", 98 [0xe] = "0xe", 99 [0xf] = "0xf" 100 }; 101 102 /* CM3 Tag ECC command group */ 103 static char *cm3_cmd_group[8] = { 104 [0x0] = "Normal", 105 [0x1] = "Registers", 106 [0x2] = "TLB", 107 [0x3] = "0x3", 108 [0x4] = "L1I", 109 [0x5] = "L1D", 110 [0x6] = "L3", 111 [0x7] = "L2" 112 }; 113 114 static char *cm2_core[8] = { 115 "Invalid/OK", "Invalid/Data", 116 "Shared/OK", "Shared/Data", 117 "Modified/OK", "Modified/Data", 118 "Exclusive/OK", "Exclusive/Data" 119 }; 120 121 static char *cm2_causes[32] = { 122 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR", 123 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07", 124 "0x08", "0x09", "0x0a", "0x0b", 125 "0x0c", "0x0d", "0x0e", "0x0f", 126 "0x10", "0x11", "0x12", "0x13", 127 "0x14", "0x15", "0x16", "INTVN_WR_ERR", 128 "INTVN_RD_ERR", "0x19", "0x1a", "0x1b", 129 "0x1c", "0x1d", "0x1e", "0x1f" 130 }; 131 132 static char *cm3_causes[32] = { 133 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR", 134 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR", 135 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR", 136 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10", 137 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18", 138 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f" 139 }; 140 141 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock); 142 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags); 143 144 phys_addr_t __mips_cm_phys_base(void) 145 { 146 u32 config3 = read_c0_config3(); 147 unsigned long cmgcr; 148 149 /* Check the CMGCRBase register is implemented */ 150 if (!(config3 & MIPS_CONF3_CMGCR)) 151 return 0; 152 153 /* Read the address from CMGCRBase */ 154 cmgcr = read_c0_cmgcrbase(); 155 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32); 156 } 157 158 phys_addr_t mips_cm_phys_base(void) 159 __attribute__((weak, alias("__mips_cm_phys_base"))); 160 161 phys_addr_t __mips_cm_l2sync_phys_base(void) 162 { 163 u32 base_reg; 164 165 /* 166 * If the L2-only sync region is already enabled then leave it at it's 167 * current location. 168 */ 169 base_reg = read_gcr_l2_only_sync_base(); 170 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN) 171 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE; 172 173 /* Default to following the CM */ 174 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE; 175 } 176 177 phys_addr_t mips_cm_l2sync_phys_base(void) 178 __attribute__((weak, alias("__mips_cm_l2sync_phys_base"))); 179 180 static void mips_cm_probe_l2sync(void) 181 { 182 unsigned major_rev; 183 phys_addr_t addr; 184 185 /* L2-only sync was introduced with CM major revision 6 */ 186 major_rev = (read_gcr_rev() & CM_GCR_REV_MAJOR) >> 187 __ffs(CM_GCR_REV_MAJOR); 188 if (major_rev < 6) 189 return; 190 191 /* Find a location for the L2 sync region */ 192 addr = mips_cm_l2sync_phys_base(); 193 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr); 194 if (!addr) 195 return; 196 197 /* Set the region base address & enable it */ 198 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN); 199 200 /* Map the region */ 201 mips_cm_l2sync_base = ioremap_nocache(addr, MIPS_CM_L2SYNC_SIZE); 202 } 203 204 int mips_cm_probe(void) 205 { 206 phys_addr_t addr; 207 u32 base_reg; 208 unsigned cpu; 209 210 /* 211 * No need to probe again if we have already been 212 * here before. 213 */ 214 if (mips_gcr_base) 215 return 0; 216 217 addr = mips_cm_phys_base(); 218 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr); 219 if (!addr) 220 return -ENODEV; 221 222 mips_gcr_base = ioremap_nocache(addr, MIPS_CM_GCR_SIZE); 223 if (!mips_gcr_base) 224 return -ENXIO; 225 226 /* sanity check that we're looking at a CM */ 227 base_reg = read_gcr_base(); 228 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) { 229 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n", 230 (unsigned long)addr); 231 mips_gcr_base = NULL; 232 return -ENODEV; 233 } 234 235 /* set default target to memory */ 236 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM); 237 238 /* disable CM regions */ 239 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR); 240 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK); 241 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR); 242 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK); 243 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR); 244 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK); 245 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR); 246 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK); 247 248 /* probe for an L2-only sync region */ 249 mips_cm_probe_l2sync(); 250 251 /* determine register width for this CM */ 252 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3); 253 254 for_each_possible_cpu(cpu) 255 spin_lock_init(&per_cpu(cm_core_lock, cpu)); 256 257 return 0; 258 } 259 260 void mips_cm_lock_other(unsigned int cluster, unsigned int core, 261 unsigned int vp, unsigned int block) 262 { 263 unsigned int curr_core, cm_rev; 264 u32 val; 265 266 cm_rev = mips_cm_revision(); 267 preempt_disable(); 268 269 if (cm_rev >= CM_REV_CM3) { 270 val = core << __ffs(CM3_GCR_Cx_OTHER_CORE); 271 val |= vp << __ffs(CM3_GCR_Cx_OTHER_VP); 272 273 if (cm_rev >= CM_REV_CM3_5) { 274 val |= CM_GCR_Cx_OTHER_CLUSTER_EN; 275 val |= cluster << __ffs(CM_GCR_Cx_OTHER_CLUSTER); 276 val |= block << __ffs(CM_GCR_Cx_OTHER_BLOCK); 277 } else { 278 WARN_ON(cluster != 0); 279 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); 280 } 281 282 /* 283 * We need to disable interrupts in SMP systems in order to 284 * ensure that we don't interrupt the caller with code which 285 * may modify the redirect register. We do so here in a 286 * slightly obscure way by using a spin lock, since this has 287 * the neat property of also catching any nested uses of 288 * mips_cm_lock_other() leading to a deadlock or a nice warning 289 * with lockdep enabled. 290 */ 291 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock), 292 *this_cpu_ptr(&cm_core_lock_flags)); 293 } else { 294 WARN_ON(cluster != 0); 295 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL); 296 297 /* 298 * We only have a GCR_CL_OTHER per core in systems with 299 * CM 2.5 & older, so have to ensure other VP(E)s don't 300 * race with us. 301 */ 302 curr_core = cpu_core(¤t_cpu_data); 303 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core), 304 per_cpu(cm_core_lock_flags, curr_core)); 305 306 val = core << __ffs(CM_GCR_Cx_OTHER_CORENUM); 307 } 308 309 write_gcr_cl_other(val); 310 311 /* 312 * Ensure the core-other region reflects the appropriate core & 313 * VP before any accesses to it occur. 314 */ 315 mb(); 316 } 317 318 void mips_cm_unlock_other(void) 319 { 320 unsigned int curr_core; 321 322 if (mips_cm_revision() < CM_REV_CM3) { 323 curr_core = cpu_core(¤t_cpu_data); 324 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core), 325 per_cpu(cm_core_lock_flags, curr_core)); 326 } else { 327 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock), 328 *this_cpu_ptr(&cm_core_lock_flags)); 329 } 330 331 preempt_enable(); 332 } 333 334 void mips_cm_error_report(void) 335 { 336 u64 cm_error, cm_addr, cm_other; 337 unsigned long revision; 338 int ocause, cause; 339 char buf[256]; 340 341 if (!mips_cm_present()) 342 return; 343 344 revision = mips_cm_revision(); 345 cm_error = read_gcr_error_cause(); 346 cm_addr = read_gcr_error_addr(); 347 cm_other = read_gcr_error_mult(); 348 349 if (revision < CM_REV_CM3) { /* CM2 */ 350 cause = cm_error >> __ffs(CM_GCR_ERROR_CAUSE_ERRTYPE); 351 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); 352 353 if (!cause) 354 return; 355 356 if (cause < 16) { 357 unsigned long cca_bits = (cm_error >> 15) & 7; 358 unsigned long tr_bits = (cm_error >> 12) & 7; 359 unsigned long cmd_bits = (cm_error >> 7) & 0x1f; 360 unsigned long stag_bits = (cm_error >> 3) & 15; 361 unsigned long sport_bits = (cm_error >> 0) & 7; 362 363 snprintf(buf, sizeof(buf), 364 "CCA=%lu TR=%s MCmd=%s STag=%lu " 365 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits], 366 cm2_cmd[cmd_bits], stag_bits, sport_bits); 367 } else { 368 /* glob state & sresp together */ 369 unsigned long c3_bits = (cm_error >> 18) & 7; 370 unsigned long c2_bits = (cm_error >> 15) & 7; 371 unsigned long c1_bits = (cm_error >> 12) & 7; 372 unsigned long c0_bits = (cm_error >> 9) & 7; 373 unsigned long sc_bit = (cm_error >> 8) & 1; 374 unsigned long cmd_bits = (cm_error >> 3) & 0x1f; 375 unsigned long sport_bits = (cm_error >> 0) & 7; 376 377 snprintf(buf, sizeof(buf), 378 "C3=%s C2=%s C1=%s C0=%s SC=%s " 379 "MCmd=%s SPort=%lu\n", 380 cm2_core[c3_bits], cm2_core[c2_bits], 381 cm2_core[c1_bits], cm2_core[c0_bits], 382 sc_bit ? "True" : "False", 383 cm2_cmd[cmd_bits], sport_bits); 384 } 385 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error, 386 cm2_causes[cause], buf); 387 pr_err("CM_ADDR =%08llx\n", cm_addr); 388 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]); 389 } else { /* CM3 */ 390 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits; 391 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit; 392 393 cause = cm_error >> __ffs64(CM3_GCR_ERROR_CAUSE_ERRTYPE); 394 ocause = cm_other >> __ffs(CM_GCR_ERROR_MULT_ERR2ND); 395 396 if (!cause) 397 return; 398 399 /* Used by cause == {1,2,3} */ 400 core_id_bits = (cm_error >> 22) & 0xf; 401 vp_id_bits = (cm_error >> 18) & 0xf; 402 cmd_bits = (cm_error >> 14) & 0xf; 403 cmd_group_bits = (cm_error >> 11) & 0xf; 404 cm3_cca_bits = (cm_error >> 8) & 7; 405 mcp_bits = (cm_error >> 5) & 0xf; 406 cm3_tr_bits = (cm_error >> 1) & 0xf; 407 sched_bit = cm_error & 0x1; 408 409 if (cause == 1 || cause == 3) { /* Tag ECC */ 410 unsigned long tag_ecc = (cm_error >> 57) & 0x1; 411 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff; 412 unsigned long dword_bits = (cm_error >> 49) & 0xff; 413 unsigned long data_way_bits = (cm_error >> 45) & 0xf; 414 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff; 415 unsigned long bank_bit = (cm_error >> 28) & 0x1; 416 snprintf(buf, sizeof(buf), 417 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)" 418 "Bank=%lu CoreID=%lu VPID=%lu Command=%s" 419 "Command Group=%s CCA=%lu MCP=%d" 420 "Transaction type=%s Scheduler=%lu\n", 421 tag_ecc ? "TAG" : "DATA", 422 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 : 423 data_way_bits, bank_bit, dword_bits, 424 data_sets_bits, 425 core_id_bits, vp_id_bits, 426 cm3_cmd[cmd_bits], 427 cm3_cmd_group[cmd_group_bits], 428 cm3_cca_bits, 1 << mcp_bits, 429 cm3_tr[cm3_tr_bits], sched_bit); 430 } else if (cause == 2) { 431 unsigned long data_error_type = (cm_error >> 41) & 0xfff; 432 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf; 433 unsigned long data_decode_group = (cm_error >> 34) & 0x7; 434 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f; 435 436 snprintf(buf, sizeof(buf), 437 "Decode Request Error: Type=%lu, Command=%lu" 438 "Command Group=%lu Destination ID=%lu" 439 "CoreID=%lu VPID=%lu Command=%s" 440 "Command Group=%s CCA=%lu MCP=%d" 441 "Transaction type=%s Scheduler=%lu\n", 442 data_error_type, data_decode_cmd, 443 data_decode_group, data_decode_destination_id, 444 core_id_bits, vp_id_bits, 445 cm3_cmd[cmd_bits], 446 cm3_cmd_group[cmd_group_bits], 447 cm3_cca_bits, 1 << mcp_bits, 448 cm3_tr[cm3_tr_bits], sched_bit); 449 } else { 450 buf[0] = 0; 451 } 452 453 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error, 454 cm3_causes[cause], buf); 455 pr_err("CM_ADDR =%llx\n", cm_addr); 456 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]); 457 } 458 459 /* reprime cause register */ 460 write_gcr_error_cause(cm_error); 461 } 462