xref: /openbmc/linux/arch/mips/kernel/kprobes.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/kdebug.h>
29 #include <linux/slab.h>
30 
31 #include <asm/ptrace.h>
32 #include <asm/break.h>
33 #include <asm/inst.h>
34 
35 static const union mips_instruction breakpoint_insn = {
36 	.b_format = {
37 		.opcode = spec_op,
38 		.code = BRK_KPROBE_BP,
39 		.func = break_op
40 	}
41 };
42 
43 static const union mips_instruction breakpoint2_insn = {
44 	.b_format = {
45 		.opcode = spec_op,
46 		.code = BRK_KPROBE_SSTEPBP,
47 		.func = break_op
48 	}
49 };
50 
51 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
52 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
53 
54 static int __kprobes insn_has_delayslot(union mips_instruction insn)
55 {
56 	switch (insn.i_format.opcode) {
57 
58 		/*
59 		 * This group contains:
60 		 * jr and jalr are in r_format format.
61 		 */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jr_op:
65 		case jalr_op:
66 			break;
67 		default:
68 			goto insn_ok;
69 		}
70 
71 		/*
72 		 * This group contains:
73 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
74 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
75 		 */
76 	case bcond_op:
77 
78 		/*
79 		 * These are unconditional and in j_format.
80 		 */
81 	case jal_op:
82 	case j_op:
83 
84 		/*
85 		 * These are conditional and in i_format.
86 		 */
87 	case beq_op:
88 	case beql_op:
89 	case bne_op:
90 	case bnel_op:
91 	case blez_op:
92 	case blezl_op:
93 	case bgtz_op:
94 	case bgtzl_op:
95 
96 		/*
97 		 * These are the FPA/cp1 branch instructions.
98 		 */
99 	case cop1_op:
100 
101 #ifdef CONFIG_CPU_CAVIUM_OCTEON
102 	case lwc2_op: /* This is bbit0 on Octeon */
103 	case ldc2_op: /* This is bbit032 on Octeon */
104 	case swc2_op: /* This is bbit1 on Octeon */
105 	case sdc2_op: /* This is bbit132 on Octeon */
106 #endif
107 		return 1;
108 	default:
109 		break;
110 	}
111 insn_ok:
112 	return 0;
113 }
114 
115 int __kprobes arch_prepare_kprobe(struct kprobe *p)
116 {
117 	union mips_instruction insn;
118 	union mips_instruction prev_insn;
119 	int ret = 0;
120 
121 	prev_insn = p->addr[-1];
122 	insn = p->addr[0];
123 
124 	if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) {
125 		pr_notice("Kprobes for branch and jump instructions are not supported\n");
126 		ret = -EINVAL;
127 		goto out;
128 	}
129 
130 	/* insn: must be on special executable page on mips. */
131 	p->ainsn.insn = get_insn_slot();
132 	if (!p->ainsn.insn) {
133 		ret = -ENOMEM;
134 		goto out;
135 	}
136 
137 	/*
138 	 * In the kprobe->ainsn.insn[] array we store the original
139 	 * instruction at index zero and a break trap instruction at
140 	 * index one.
141 	 */
142 
143 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
144 	p->ainsn.insn[1] = breakpoint2_insn;
145 	p->opcode = *p->addr;
146 
147 out:
148 	return ret;
149 }
150 
151 void __kprobes arch_arm_kprobe(struct kprobe *p)
152 {
153 	*p->addr = breakpoint_insn;
154 	flush_insn_slot(p);
155 }
156 
157 void __kprobes arch_disarm_kprobe(struct kprobe *p)
158 {
159 	*p->addr = p->opcode;
160 	flush_insn_slot(p);
161 }
162 
163 void __kprobes arch_remove_kprobe(struct kprobe *p)
164 {
165 	free_insn_slot(p->ainsn.insn, 0);
166 }
167 
168 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
169 {
170 	kcb->prev_kprobe.kp = kprobe_running();
171 	kcb->prev_kprobe.status = kcb->kprobe_status;
172 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
173 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
174 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
175 }
176 
177 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
178 {
179 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
180 	kcb->kprobe_status = kcb->prev_kprobe.status;
181 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
182 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
183 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
184 }
185 
186 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
187 			       struct kprobe_ctlblk *kcb)
188 {
189 	__get_cpu_var(current_kprobe) = p;
190 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
191 	kcb->kprobe_saved_epc = regs->cp0_epc;
192 }
193 
194 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
195 {
196 	regs->cp0_status &= ~ST0_IE;
197 
198 	/* single step inline if the instruction is a break */
199 	if (p->opcode.word == breakpoint_insn.word ||
200 	    p->opcode.word == breakpoint2_insn.word)
201 		regs->cp0_epc = (unsigned long)p->addr;
202 	else
203 		regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
204 }
205 
206 static int __kprobes kprobe_handler(struct pt_regs *regs)
207 {
208 	struct kprobe *p;
209 	int ret = 0;
210 	kprobe_opcode_t *addr;
211 	struct kprobe_ctlblk *kcb;
212 
213 	addr = (kprobe_opcode_t *) regs->cp0_epc;
214 
215 	/*
216 	 * We don't want to be preempted for the entire
217 	 * duration of kprobe processing
218 	 */
219 	preempt_disable();
220 	kcb = get_kprobe_ctlblk();
221 
222 	/* Check we're not actually recursing */
223 	if (kprobe_running()) {
224 		p = get_kprobe(addr);
225 		if (p) {
226 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
227 			    p->ainsn.insn->word == breakpoint_insn.word) {
228 				regs->cp0_status &= ~ST0_IE;
229 				regs->cp0_status |= kcb->kprobe_saved_SR;
230 				goto no_kprobe;
231 			}
232 			/*
233 			 * We have reentered the kprobe_handler(), since
234 			 * another probe was hit while within the handler.
235 			 * We here save the original kprobes variables and
236 			 * just single step on the instruction of the new probe
237 			 * without calling any user handlers.
238 			 */
239 			save_previous_kprobe(kcb);
240 			set_current_kprobe(p, regs, kcb);
241 			kprobes_inc_nmissed_count(p);
242 			prepare_singlestep(p, regs);
243 			kcb->kprobe_status = KPROBE_REENTER;
244 			return 1;
245 		} else {
246 			if (addr->word != breakpoint_insn.word) {
247 				/*
248 				 * The breakpoint instruction was removed by
249 				 * another cpu right after we hit, no further
250 				 * handling of this interrupt is appropriate
251 				 */
252 				ret = 1;
253 				goto no_kprobe;
254 			}
255 			p = __get_cpu_var(current_kprobe);
256 			if (p->break_handler && p->break_handler(p, regs))
257 				goto ss_probe;
258 		}
259 		goto no_kprobe;
260 	}
261 
262 	p = get_kprobe(addr);
263 	if (!p) {
264 		if (addr->word != breakpoint_insn.word) {
265 			/*
266 			 * The breakpoint instruction was removed right
267 			 * after we hit it.  Another cpu has removed
268 			 * either a probepoint or a debugger breakpoint
269 			 * at this address.  In either case, no further
270 			 * handling of this interrupt is appropriate.
271 			 */
272 			ret = 1;
273 		}
274 		/* Not one of ours: let kernel handle it */
275 		goto no_kprobe;
276 	}
277 
278 	set_current_kprobe(p, regs, kcb);
279 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
280 
281 	if (p->pre_handler && p->pre_handler(p, regs)) {
282 		/* handler has already set things up, so skip ss setup */
283 		return 1;
284 	}
285 
286 ss_probe:
287 	prepare_singlestep(p, regs);
288 	kcb->kprobe_status = KPROBE_HIT_SS;
289 	return 1;
290 
291 no_kprobe:
292 	preempt_enable_no_resched();
293 	return ret;
294 
295 }
296 
297 /*
298  * Called after single-stepping.  p->addr is the address of the
299  * instruction whose first byte has been replaced by the "break 0"
300  * instruction.  To avoid the SMP problems that can occur when we
301  * temporarily put back the original opcode to single-step, we
302  * single-stepped a copy of the instruction.  The address of this
303  * copy is p->ainsn.insn.
304  *
305  * This function prepares to return from the post-single-step
306  * breakpoint trap.
307  */
308 static void __kprobes resume_execution(struct kprobe *p,
309 				       struct pt_regs *regs,
310 				       struct kprobe_ctlblk *kcb)
311 {
312 	unsigned long orig_epc = kcb->kprobe_saved_epc;
313 	regs->cp0_epc = orig_epc + 4;
314 }
315 
316 static inline int post_kprobe_handler(struct pt_regs *regs)
317 {
318 	struct kprobe *cur = kprobe_running();
319 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320 
321 	if (!cur)
322 		return 0;
323 
324 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
325 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
326 		cur->post_handler(cur, regs, 0);
327 	}
328 
329 	resume_execution(cur, regs, kcb);
330 
331 	regs->cp0_status |= kcb->kprobe_saved_SR;
332 
333 	/* Restore back the original saved kprobes variables and continue. */
334 	if (kcb->kprobe_status == KPROBE_REENTER) {
335 		restore_previous_kprobe(kcb);
336 		goto out;
337 	}
338 	reset_current_kprobe();
339 out:
340 	preempt_enable_no_resched();
341 
342 	return 1;
343 }
344 
345 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
346 {
347 	struct kprobe *cur = kprobe_running();
348 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
349 
350 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
351 		return 1;
352 
353 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
354 		resume_execution(cur, regs, kcb);
355 		regs->cp0_status |= kcb->kprobe_old_SR;
356 
357 		reset_current_kprobe();
358 		preempt_enable_no_resched();
359 	}
360 	return 0;
361 }
362 
363 /*
364  * Wrapper routine for handling exceptions.
365  */
366 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
367 				       unsigned long val, void *data)
368 {
369 
370 	struct die_args *args = (struct die_args *)data;
371 	int ret = NOTIFY_DONE;
372 
373 	switch (val) {
374 	case DIE_BREAK:
375 		if (kprobe_handler(args->regs))
376 			ret = NOTIFY_STOP;
377 		break;
378 	case DIE_SSTEPBP:
379 		if (post_kprobe_handler(args->regs))
380 			ret = NOTIFY_STOP;
381 		break;
382 
383 	case DIE_PAGE_FAULT:
384 		/* kprobe_running() needs smp_processor_id() */
385 		preempt_disable();
386 
387 		if (kprobe_running()
388 		    && kprobe_fault_handler(args->regs, args->trapnr))
389 			ret = NOTIFY_STOP;
390 		preempt_enable();
391 		break;
392 	default:
393 		break;
394 	}
395 	return ret;
396 }
397 
398 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
399 {
400 	struct jprobe *jp = container_of(p, struct jprobe, kp);
401 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402 
403 	kcb->jprobe_saved_regs = *regs;
404 	kcb->jprobe_saved_sp = regs->regs[29];
405 
406 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
407 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408 
409 	regs->cp0_epc = (unsigned long)(jp->entry);
410 
411 	return 1;
412 }
413 
414 /* Defined in the inline asm below. */
415 void jprobe_return_end(void);
416 
417 void __kprobes jprobe_return(void)
418 {
419 	/* Assembler quirk necessitates this '0,code' business.  */
420 	asm volatile(
421 		"break 0,%0\n\t"
422 		".globl jprobe_return_end\n"
423 		"jprobe_return_end:\n"
424 		: : "n" (BRK_KPROBE_BP) : "memory");
425 }
426 
427 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
428 {
429 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
430 
431 	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
432 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
433 		*regs = kcb->jprobe_saved_regs;
434 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
435 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
436 		preempt_enable_no_resched();
437 
438 		return 1;
439 	}
440 	return 0;
441 }
442 
443 /*
444  * Function return probe trampoline:
445  *	- init_kprobes() establishes a probepoint here
446  *	- When the probed function returns, this probe causes the
447  *	  handlers to fire
448  */
449 static void __used kretprobe_trampoline_holder(void)
450 {
451 	asm volatile(
452 		".set push\n\t"
453 		/* Keep the assembler from reordering and placing JR here. */
454 		".set noreorder\n\t"
455 		"nop\n\t"
456 		".global kretprobe_trampoline\n"
457 		"kretprobe_trampoline:\n\t"
458 		"nop\n\t"
459 		".set pop"
460 		: : : "memory");
461 }
462 
463 void kretprobe_trampoline(void);
464 
465 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
466 				      struct pt_regs *regs)
467 {
468 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
469 
470 	/* Replace the return addr with trampoline addr */
471 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
472 }
473 
474 /*
475  * Called when the probe at kretprobe trampoline is hit
476  */
477 static int __kprobes trampoline_probe_handler(struct kprobe *p,
478 						struct pt_regs *regs)
479 {
480 	struct kretprobe_instance *ri = NULL;
481 	struct hlist_head *head, empty_rp;
482 	struct hlist_node *node, *tmp;
483 	unsigned long flags, orig_ret_address = 0;
484 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
485 
486 	INIT_HLIST_HEAD(&empty_rp);
487 	kretprobe_hash_lock(current, &head, &flags);
488 
489 	/*
490 	 * It is possible to have multiple instances associated with a given
491 	 * task either because an multiple functions in the call path
492 	 * have a return probe installed on them, and/or more than one return
493 	 * return probe was registered for a target function.
494 	 *
495 	 * We can handle this because:
496 	 *     - instances are always inserted at the head of the list
497 	 *     - when multiple return probes are registered for the same
498 	 *       function, the first instance's ret_addr will point to the
499 	 *       real return address, and all the rest will point to
500 	 *       kretprobe_trampoline
501 	 */
502 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
503 		if (ri->task != current)
504 			/* another task is sharing our hash bucket */
505 			continue;
506 
507 		if (ri->rp && ri->rp->handler)
508 			ri->rp->handler(ri, regs);
509 
510 		orig_ret_address = (unsigned long)ri->ret_addr;
511 		recycle_rp_inst(ri, &empty_rp);
512 
513 		if (orig_ret_address != trampoline_address)
514 			/*
515 			 * This is the real return address. Any other
516 			 * instances associated with this task are for
517 			 * other calls deeper on the call stack
518 			 */
519 			break;
520 	}
521 
522 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
523 	instruction_pointer(regs) = orig_ret_address;
524 
525 	reset_current_kprobe();
526 	kretprobe_hash_unlock(current, &flags);
527 	preempt_enable_no_resched();
528 
529 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
530 		hlist_del(&ri->hlist);
531 		kfree(ri);
532 	}
533 	/*
534 	 * By returning a non-zero value, we are telling
535 	 * kprobe_handler() that we don't want the post_handler
536 	 * to run (and have re-enabled preemption)
537 	 */
538 	return 1;
539 }
540 
541 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
542 {
543 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
544 		return 1;
545 
546 	return 0;
547 }
548 
549 static struct kprobe trampoline_p = {
550 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
551 	.pre_handler = trampoline_probe_handler
552 };
553 
554 int __init arch_init_kprobes(void)
555 {
556 	return register_kprobe(&trampoline_p);
557 }
558