xref: /openbmc/linux/arch/mips/kernel/kprobes.c (revision bbaf1ff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/mips/kernel/kprobes.c
5  *
6  *  Copyright 2006 Sony Corp.
7  *  Copyright 2010 Cavium Networks
8  *
9  *  Some portions copied from the powerpc version.
10  *
11  *   Copyright (C) IBM Corporation, 2002, 2004
12  */
13 
14 #define pr_fmt(fmt) "kprobes: " fmt
15 
16 #include <linux/kprobes.h>
17 #include <linux/preempt.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/slab.h>
21 
22 #include <asm/ptrace.h>
23 #include <asm/branch.h>
24 #include <asm/break.h>
25 
26 #include "probes-common.h"
27 
28 static const union mips_instruction breakpoint_insn = {
29 	.b_format = {
30 		.opcode = spec_op,
31 		.code = BRK_KPROBE_BP,
32 		.func = break_op
33 	}
34 };
35 
36 static const union mips_instruction breakpoint2_insn = {
37 	.b_format = {
38 		.opcode = spec_op,
39 		.code = BRK_KPROBE_SSTEPBP,
40 		.func = break_op
41 	}
42 };
43 
44 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
45 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46 
47 static int insn_has_delayslot(union mips_instruction insn)
48 {
49 	return __insn_has_delay_slot(insn);
50 }
51 NOKPROBE_SYMBOL(insn_has_delayslot);
52 
53 /*
54  * insn_has_ll_or_sc function checks whether instruction is ll or sc
55  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
56  * so we need to prevent it and refuse kprobes insertion for such
57  * instructions; cannot do much about breakpoint in the middle of
58  * ll/sc pair; it is upto user to avoid those places
59  */
60 static int insn_has_ll_or_sc(union mips_instruction insn)
61 {
62 	int ret = 0;
63 
64 	switch (insn.i_format.opcode) {
65 	case ll_op:
66 	case lld_op:
67 	case sc_op:
68 	case scd_op:
69 		ret = 1;
70 		break;
71 	default:
72 		break;
73 	}
74 	return ret;
75 }
76 NOKPROBE_SYMBOL(insn_has_ll_or_sc);
77 
78 int arch_prepare_kprobe(struct kprobe *p)
79 {
80 	union mips_instruction insn;
81 	union mips_instruction prev_insn;
82 	int ret = 0;
83 
84 	insn = p->addr[0];
85 
86 	if (insn_has_ll_or_sc(insn)) {
87 		pr_notice("Kprobes for ll and sc instructions are not supported\n");
88 		ret = -EINVAL;
89 		goto out;
90 	}
91 
92 	if (copy_from_kernel_nofault(&prev_insn, p->addr - 1,
93 			sizeof(mips_instruction)) == 0 &&
94 	    insn_has_delayslot(prev_insn)) {
95 		pr_notice("Kprobes for branch delayslot are not supported\n");
96 		ret = -EINVAL;
97 		goto out;
98 	}
99 
100 	if (__insn_is_compact_branch(insn)) {
101 		pr_notice("Kprobes for compact branches are not supported\n");
102 		ret = -EINVAL;
103 		goto out;
104 	}
105 
106 	/* insn: must be on special executable page on mips. */
107 	p->ainsn.insn = get_insn_slot();
108 	if (!p->ainsn.insn) {
109 		ret = -ENOMEM;
110 		goto out;
111 	}
112 
113 	/*
114 	 * In the kprobe->ainsn.insn[] array we store the original
115 	 * instruction at index zero and a break trap instruction at
116 	 * index one.
117 	 *
118 	 * On MIPS arch if the instruction at probed address is a
119 	 * branch instruction, we need to execute the instruction at
120 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
121 	 * doesn't have single stepping support, the BD instruction can
122 	 * not be executed in-line and it would be executed on SSOL slot
123 	 * using a normal breakpoint instruction in the next slot.
124 	 * So, read the instruction and save it for later execution.
125 	 */
126 	if (insn_has_delayslot(insn))
127 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
128 	else
129 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
130 
131 	p->ainsn.insn[1] = breakpoint2_insn;
132 	p->opcode = *p->addr;
133 
134 out:
135 	return ret;
136 }
137 NOKPROBE_SYMBOL(arch_prepare_kprobe);
138 
139 void arch_arm_kprobe(struct kprobe *p)
140 {
141 	*p->addr = breakpoint_insn;
142 	flush_insn_slot(p);
143 }
144 NOKPROBE_SYMBOL(arch_arm_kprobe);
145 
146 void arch_disarm_kprobe(struct kprobe *p)
147 {
148 	*p->addr = p->opcode;
149 	flush_insn_slot(p);
150 }
151 NOKPROBE_SYMBOL(arch_disarm_kprobe);
152 
153 void arch_remove_kprobe(struct kprobe *p)
154 {
155 	if (p->ainsn.insn) {
156 		free_insn_slot(p->ainsn.insn, 0);
157 		p->ainsn.insn = NULL;
158 	}
159 }
160 NOKPROBE_SYMBOL(arch_remove_kprobe);
161 
162 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
163 {
164 	kcb->prev_kprobe.kp = kprobe_running();
165 	kcb->prev_kprobe.status = kcb->kprobe_status;
166 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
167 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
168 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
169 }
170 
171 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
172 {
173 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
174 	kcb->kprobe_status = kcb->prev_kprobe.status;
175 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
176 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
177 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
178 }
179 
180 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
181 			       struct kprobe_ctlblk *kcb)
182 {
183 	__this_cpu_write(current_kprobe, p);
184 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
185 	kcb->kprobe_saved_epc = regs->cp0_epc;
186 }
187 
188 /**
189  * evaluate_branch_instrucion -
190  *
191  * Evaluate the branch instruction at probed address during probe hit. The
192  * result of evaluation would be the updated epc. The insturction in delayslot
193  * would actually be single stepped using a normal breakpoint) on SSOL slot.
194  *
195  * The result is also saved in the kprobe control block for later use,
196  * in case we need to execute the delayslot instruction. The latter will be
197  * false for NOP instruction in dealyslot and the branch-likely instructions
198  * when the branch is taken. And for those cases we set a flag as
199  * SKIP_DELAYSLOT in the kprobe control block
200  */
201 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
202 					struct kprobe_ctlblk *kcb)
203 {
204 	union mips_instruction insn = p->opcode;
205 	long epc;
206 	int ret = 0;
207 
208 	epc = regs->cp0_epc;
209 	if (epc & 3)
210 		goto unaligned;
211 
212 	if (p->ainsn.insn->word == 0)
213 		kcb->flags |= SKIP_DELAYSLOT;
214 	else
215 		kcb->flags &= ~SKIP_DELAYSLOT;
216 
217 	ret = __compute_return_epc_for_insn(regs, insn);
218 	if (ret < 0)
219 		return ret;
220 
221 	if (ret == BRANCH_LIKELY_TAKEN)
222 		kcb->flags |= SKIP_DELAYSLOT;
223 
224 	kcb->target_epc = regs->cp0_epc;
225 
226 	return 0;
227 
228 unaligned:
229 	pr_notice("Failed to emulate branch instruction because of unaligned epc - sending SIGBUS to %s.\n", current->comm);
230 	force_sig(SIGBUS);
231 	return -EFAULT;
232 
233 }
234 
235 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
236 						struct kprobe_ctlblk *kcb)
237 {
238 	int ret = 0;
239 
240 	regs->cp0_status &= ~ST0_IE;
241 
242 	/* single step inline if the instruction is a break */
243 	if (p->opcode.word == breakpoint_insn.word ||
244 	    p->opcode.word == breakpoint2_insn.word)
245 		regs->cp0_epc = (unsigned long)p->addr;
246 	else if (insn_has_delayslot(p->opcode)) {
247 		ret = evaluate_branch_instruction(p, regs, kcb);
248 		if (ret < 0)
249 			return;
250 	}
251 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
252 }
253 
254 /*
255  * Called after single-stepping.  p->addr is the address of the
256  * instruction whose first byte has been replaced by the "break 0"
257  * instruction.	 To avoid the SMP problems that can occur when we
258  * temporarily put back the original opcode to single-step, we
259  * single-stepped a copy of the instruction.  The address of this
260  * copy is p->ainsn.insn.
261  *
262  * This function prepares to return from the post-single-step
263  * breakpoint trap. In case of branch instructions, the target
264  * epc to be restored.
265  */
266 static void resume_execution(struct kprobe *p,
267 				       struct pt_regs *regs,
268 				       struct kprobe_ctlblk *kcb)
269 {
270 	if (insn_has_delayslot(p->opcode))
271 		regs->cp0_epc = kcb->target_epc;
272 	else {
273 		unsigned long orig_epc = kcb->kprobe_saved_epc;
274 		regs->cp0_epc = orig_epc + 4;
275 	}
276 }
277 NOKPROBE_SYMBOL(resume_execution);
278 
279 static int kprobe_handler(struct pt_regs *regs)
280 {
281 	struct kprobe *p;
282 	int ret = 0;
283 	kprobe_opcode_t *addr;
284 	struct kprobe_ctlblk *kcb;
285 
286 	addr = (kprobe_opcode_t *) regs->cp0_epc;
287 
288 	/*
289 	 * We don't want to be preempted for the entire
290 	 * duration of kprobe processing
291 	 */
292 	preempt_disable();
293 	kcb = get_kprobe_ctlblk();
294 
295 	/* Check we're not actually recursing */
296 	if (kprobe_running()) {
297 		p = get_kprobe(addr);
298 		if (p) {
299 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
300 			    p->ainsn.insn->word == breakpoint_insn.word) {
301 				regs->cp0_status &= ~ST0_IE;
302 				regs->cp0_status |= kcb->kprobe_saved_SR;
303 				goto no_kprobe;
304 			}
305 			/*
306 			 * We have reentered the kprobe_handler(), since
307 			 * another probe was hit while within the handler.
308 			 * We here save the original kprobes variables and
309 			 * just single step on the instruction of the new probe
310 			 * without calling any user handlers.
311 			 */
312 			save_previous_kprobe(kcb);
313 			set_current_kprobe(p, regs, kcb);
314 			kprobes_inc_nmissed_count(p);
315 			prepare_singlestep(p, regs, kcb);
316 			kcb->kprobe_status = KPROBE_REENTER;
317 			if (kcb->flags & SKIP_DELAYSLOT) {
318 				resume_execution(p, regs, kcb);
319 				restore_previous_kprobe(kcb);
320 				preempt_enable_no_resched();
321 			}
322 			return 1;
323 		} else if (addr->word != breakpoint_insn.word) {
324 			/*
325 			 * The breakpoint instruction was removed by
326 			 * another cpu right after we hit, no further
327 			 * handling of this interrupt is appropriate
328 			 */
329 			ret = 1;
330 		}
331 		goto no_kprobe;
332 	}
333 
334 	p = get_kprobe(addr);
335 	if (!p) {
336 		if (addr->word != breakpoint_insn.word) {
337 			/*
338 			 * The breakpoint instruction was removed right
339 			 * after we hit it.  Another cpu has removed
340 			 * either a probepoint or a debugger breakpoint
341 			 * at this address.  In either case, no further
342 			 * handling of this interrupt is appropriate.
343 			 */
344 			ret = 1;
345 		}
346 		/* Not one of ours: let kernel handle it */
347 		goto no_kprobe;
348 	}
349 
350 	set_current_kprobe(p, regs, kcb);
351 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352 
353 	if (p->pre_handler && p->pre_handler(p, regs)) {
354 		/* handler has already set things up, so skip ss setup */
355 		reset_current_kprobe();
356 		preempt_enable_no_resched();
357 		return 1;
358 	}
359 
360 	prepare_singlestep(p, regs, kcb);
361 	if (kcb->flags & SKIP_DELAYSLOT) {
362 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
363 		if (p->post_handler)
364 			p->post_handler(p, regs, 0);
365 		resume_execution(p, regs, kcb);
366 		preempt_enable_no_resched();
367 	} else
368 		kcb->kprobe_status = KPROBE_HIT_SS;
369 
370 	return 1;
371 
372 no_kprobe:
373 	preempt_enable_no_resched();
374 	return ret;
375 
376 }
377 NOKPROBE_SYMBOL(kprobe_handler);
378 
379 static inline int post_kprobe_handler(struct pt_regs *regs)
380 {
381 	struct kprobe *cur = kprobe_running();
382 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383 
384 	if (!cur)
385 		return 0;
386 
387 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
388 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
389 		cur->post_handler(cur, regs, 0);
390 	}
391 
392 	resume_execution(cur, regs, kcb);
393 
394 	regs->cp0_status |= kcb->kprobe_saved_SR;
395 
396 	/* Restore back the original saved kprobes variables and continue. */
397 	if (kcb->kprobe_status == KPROBE_REENTER) {
398 		restore_previous_kprobe(kcb);
399 		goto out;
400 	}
401 	reset_current_kprobe();
402 out:
403 	preempt_enable_no_resched();
404 
405 	return 1;
406 }
407 
408 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
409 {
410 	struct kprobe *cur = kprobe_running();
411 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
412 
413 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
414 		resume_execution(cur, regs, kcb);
415 		regs->cp0_status |= kcb->kprobe_old_SR;
416 
417 		reset_current_kprobe();
418 		preempt_enable_no_resched();
419 	}
420 	return 0;
421 }
422 
423 /*
424  * Wrapper routine for handling exceptions.
425  */
426 int kprobe_exceptions_notify(struct notifier_block *self,
427 				       unsigned long val, void *data)
428 {
429 
430 	struct die_args *args = (struct die_args *)data;
431 	int ret = NOTIFY_DONE;
432 
433 	switch (val) {
434 	case DIE_BREAK:
435 		if (kprobe_handler(args->regs))
436 			ret = NOTIFY_STOP;
437 		break;
438 	case DIE_SSTEPBP:
439 		if (post_kprobe_handler(args->regs))
440 			ret = NOTIFY_STOP;
441 		break;
442 
443 	case DIE_PAGE_FAULT:
444 		/* kprobe_running() needs smp_processor_id() */
445 		preempt_disable();
446 
447 		if (kprobe_running()
448 		    && kprobe_fault_handler(args->regs, args->trapnr))
449 			ret = NOTIFY_STOP;
450 		preempt_enable();
451 		break;
452 	default:
453 		break;
454 	}
455 	return ret;
456 }
457 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
458 
459 /*
460  * Function return probe trampoline:
461  *	- init_kprobes() establishes a probepoint here
462  *	- When the probed function returns, this probe causes the
463  *	  handlers to fire
464  */
465 static void __used kretprobe_trampoline_holder(void)
466 {
467 	asm volatile(
468 		".set push\n\t"
469 		/* Keep the assembler from reordering and placing JR here. */
470 		".set noreorder\n\t"
471 		"nop\n\t"
472 		".global __kretprobe_trampoline\n"
473 		"__kretprobe_trampoline:\n\t"
474 		"nop\n\t"
475 		".set pop"
476 		: : : "memory");
477 }
478 
479 void __kretprobe_trampoline(void);
480 
481 void arch_prepare_kretprobe(struct kretprobe_instance *ri,
482 				      struct pt_regs *regs)
483 {
484 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
485 	ri->fp = NULL;
486 
487 	/* Replace the return addr with trampoline addr */
488 	regs->regs[31] = (unsigned long)__kretprobe_trampoline;
489 }
490 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
491 
492 /*
493  * Called when the probe at kretprobe trampoline is hit
494  */
495 static int trampoline_probe_handler(struct kprobe *p,
496 						struct pt_regs *regs)
497 {
498 	instruction_pointer(regs) = __kretprobe_trampoline_handler(regs, NULL);
499 	/*
500 	 * By returning a non-zero value, we are telling
501 	 * kprobe_handler() that we don't want the post_handler
502 	 * to run (and have re-enabled preemption)
503 	 */
504 	return 1;
505 }
506 NOKPROBE_SYMBOL(trampoline_probe_handler);
507 
508 int arch_trampoline_kprobe(struct kprobe *p)
509 {
510 	if (p->addr == (kprobe_opcode_t *)__kretprobe_trampoline)
511 		return 1;
512 
513 	return 0;
514 }
515 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
516 
517 static struct kprobe trampoline_p = {
518 	.addr = (kprobe_opcode_t *)__kretprobe_trampoline,
519 	.pre_handler = trampoline_probe_handler
520 };
521 
522 int __init arch_init_kprobes(void)
523 {
524 	return register_kprobe(&trampoline_p);
525 }
526