xref: /openbmc/linux/arch/mips/kernel/kprobes.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31 
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 
36 #include "probes-common.h"
37 
38 static const union mips_instruction breakpoint_insn = {
39 	.b_format = {
40 		.opcode = spec_op,
41 		.code = BRK_KPROBE_BP,
42 		.func = break_op
43 	}
44 };
45 
46 static const union mips_instruction breakpoint2_insn = {
47 	.b_format = {
48 		.opcode = spec_op,
49 		.code = BRK_KPROBE_SSTEPBP,
50 		.func = break_op
51 	}
52 };
53 
54 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
55 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
56 
57 static int __kprobes insn_has_delayslot(union mips_instruction insn)
58 {
59 	return __insn_has_delay_slot(insn);
60 }
61 
62 /*
63  * insn_has_ll_or_sc function checks whether instruction is ll or sc
64  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
65  * so we need to prevent it and refuse kprobes insertion for such
66  * instructions; cannot do much about breakpoint in the middle of
67  * ll/sc pair; it is upto user to avoid those places
68  */
69 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
70 {
71 	int ret = 0;
72 
73 	switch (insn.i_format.opcode) {
74 	case ll_op:
75 	case lld_op:
76 	case sc_op:
77 	case scd_op:
78 		ret = 1;
79 		break;
80 	default:
81 		break;
82 	}
83 	return ret;
84 }
85 
86 int __kprobes arch_prepare_kprobe(struct kprobe *p)
87 {
88 	union mips_instruction insn;
89 	union mips_instruction prev_insn;
90 	int ret = 0;
91 
92 	insn = p->addr[0];
93 
94 	if (insn_has_ll_or_sc(insn)) {
95 		pr_notice("Kprobes for ll and sc instructions are not"
96 			  "supported\n");
97 		ret = -EINVAL;
98 		goto out;
99 	}
100 
101 	if ((probe_kernel_read(&prev_insn, p->addr - 1,
102 				sizeof(mips_instruction)) == 0) &&
103 				insn_has_delayslot(prev_insn)) {
104 		pr_notice("Kprobes for branch delayslot are not supported\n");
105 		ret = -EINVAL;
106 		goto out;
107 	}
108 
109 	if (__insn_is_compact_branch(insn)) {
110 		pr_notice("Kprobes for compact branches are not supported\n");
111 		ret = -EINVAL;
112 		goto out;
113 	}
114 
115 	/* insn: must be on special executable page on mips. */
116 	p->ainsn.insn = get_insn_slot();
117 	if (!p->ainsn.insn) {
118 		ret = -ENOMEM;
119 		goto out;
120 	}
121 
122 	/*
123 	 * In the kprobe->ainsn.insn[] array we store the original
124 	 * instruction at index zero and a break trap instruction at
125 	 * index one.
126 	 *
127 	 * On MIPS arch if the instruction at probed address is a
128 	 * branch instruction, we need to execute the instruction at
129 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
130 	 * doesn't have single stepping support, the BD instruction can
131 	 * not be executed in-line and it would be executed on SSOL slot
132 	 * using a normal breakpoint instruction in the next slot.
133 	 * So, read the instruction and save it for later execution.
134 	 */
135 	if (insn_has_delayslot(insn))
136 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
137 	else
138 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
139 
140 	p->ainsn.insn[1] = breakpoint2_insn;
141 	p->opcode = *p->addr;
142 
143 out:
144 	return ret;
145 }
146 
147 void __kprobes arch_arm_kprobe(struct kprobe *p)
148 {
149 	*p->addr = breakpoint_insn;
150 	flush_insn_slot(p);
151 }
152 
153 void __kprobes arch_disarm_kprobe(struct kprobe *p)
154 {
155 	*p->addr = p->opcode;
156 	flush_insn_slot(p);
157 }
158 
159 void __kprobes arch_remove_kprobe(struct kprobe *p)
160 {
161 	if (p->ainsn.insn) {
162 		free_insn_slot(p->ainsn.insn, 0);
163 		p->ainsn.insn = NULL;
164 	}
165 }
166 
167 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
168 {
169 	kcb->prev_kprobe.kp = kprobe_running();
170 	kcb->prev_kprobe.status = kcb->kprobe_status;
171 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
172 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
173 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
174 }
175 
176 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
177 {
178 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
179 	kcb->kprobe_status = kcb->prev_kprobe.status;
180 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
181 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
182 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
183 }
184 
185 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
186 			       struct kprobe_ctlblk *kcb)
187 {
188 	__this_cpu_write(current_kprobe, p);
189 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
190 	kcb->kprobe_saved_epc = regs->cp0_epc;
191 }
192 
193 /**
194  * evaluate_branch_instrucion -
195  *
196  * Evaluate the branch instruction at probed address during probe hit. The
197  * result of evaluation would be the updated epc. The insturction in delayslot
198  * would actually be single stepped using a normal breakpoint) on SSOL slot.
199  *
200  * The result is also saved in the kprobe control block for later use,
201  * in case we need to execute the delayslot instruction. The latter will be
202  * false for NOP instruction in dealyslot and the branch-likely instructions
203  * when the branch is taken. And for those cases we set a flag as
204  * SKIP_DELAYSLOT in the kprobe control block
205  */
206 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
207 					struct kprobe_ctlblk *kcb)
208 {
209 	union mips_instruction insn = p->opcode;
210 	long epc;
211 	int ret = 0;
212 
213 	epc = regs->cp0_epc;
214 	if (epc & 3)
215 		goto unaligned;
216 
217 	if (p->ainsn.insn->word == 0)
218 		kcb->flags |= SKIP_DELAYSLOT;
219 	else
220 		kcb->flags &= ~SKIP_DELAYSLOT;
221 
222 	ret = __compute_return_epc_for_insn(regs, insn);
223 	if (ret < 0)
224 		return ret;
225 
226 	if (ret == BRANCH_LIKELY_TAKEN)
227 		kcb->flags |= SKIP_DELAYSLOT;
228 
229 	kcb->target_epc = regs->cp0_epc;
230 
231 	return 0;
232 
233 unaligned:
234 	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
235 	force_sig(SIGBUS, current);
236 	return -EFAULT;
237 
238 }
239 
240 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
241 						struct kprobe_ctlblk *kcb)
242 {
243 	int ret = 0;
244 
245 	regs->cp0_status &= ~ST0_IE;
246 
247 	/* single step inline if the instruction is a break */
248 	if (p->opcode.word == breakpoint_insn.word ||
249 	    p->opcode.word == breakpoint2_insn.word)
250 		regs->cp0_epc = (unsigned long)p->addr;
251 	else if (insn_has_delayslot(p->opcode)) {
252 		ret = evaluate_branch_instruction(p, regs, kcb);
253 		if (ret < 0) {
254 			pr_notice("Kprobes: Error in evaluating branch\n");
255 			return;
256 		}
257 	}
258 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
259 }
260 
261 /*
262  * Called after single-stepping.  p->addr is the address of the
263  * instruction whose first byte has been replaced by the "break 0"
264  * instruction.	 To avoid the SMP problems that can occur when we
265  * temporarily put back the original opcode to single-step, we
266  * single-stepped a copy of the instruction.  The address of this
267  * copy is p->ainsn.insn.
268  *
269  * This function prepares to return from the post-single-step
270  * breakpoint trap. In case of branch instructions, the target
271  * epc to be restored.
272  */
273 static void __kprobes resume_execution(struct kprobe *p,
274 				       struct pt_regs *regs,
275 				       struct kprobe_ctlblk *kcb)
276 {
277 	if (insn_has_delayslot(p->opcode))
278 		regs->cp0_epc = kcb->target_epc;
279 	else {
280 		unsigned long orig_epc = kcb->kprobe_saved_epc;
281 		regs->cp0_epc = orig_epc + 4;
282 	}
283 }
284 
285 static int __kprobes kprobe_handler(struct pt_regs *regs)
286 {
287 	struct kprobe *p;
288 	int ret = 0;
289 	kprobe_opcode_t *addr;
290 	struct kprobe_ctlblk *kcb;
291 
292 	addr = (kprobe_opcode_t *) regs->cp0_epc;
293 
294 	/*
295 	 * We don't want to be preempted for the entire
296 	 * duration of kprobe processing
297 	 */
298 	preempt_disable();
299 	kcb = get_kprobe_ctlblk();
300 
301 	/* Check we're not actually recursing */
302 	if (kprobe_running()) {
303 		p = get_kprobe(addr);
304 		if (p) {
305 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
306 			    p->ainsn.insn->word == breakpoint_insn.word) {
307 				regs->cp0_status &= ~ST0_IE;
308 				regs->cp0_status |= kcb->kprobe_saved_SR;
309 				goto no_kprobe;
310 			}
311 			/*
312 			 * We have reentered the kprobe_handler(), since
313 			 * another probe was hit while within the handler.
314 			 * We here save the original kprobes variables and
315 			 * just single step on the instruction of the new probe
316 			 * without calling any user handlers.
317 			 */
318 			save_previous_kprobe(kcb);
319 			set_current_kprobe(p, regs, kcb);
320 			kprobes_inc_nmissed_count(p);
321 			prepare_singlestep(p, regs, kcb);
322 			kcb->kprobe_status = KPROBE_REENTER;
323 			if (kcb->flags & SKIP_DELAYSLOT) {
324 				resume_execution(p, regs, kcb);
325 				restore_previous_kprobe(kcb);
326 				preempt_enable_no_resched();
327 			}
328 			return 1;
329 		} else {
330 			if (addr->word != breakpoint_insn.word) {
331 				/*
332 				 * The breakpoint instruction was removed by
333 				 * another cpu right after we hit, no further
334 				 * handling of this interrupt is appropriate
335 				 */
336 				ret = 1;
337 				goto no_kprobe;
338 			}
339 			p = __this_cpu_read(current_kprobe);
340 			if (p->break_handler && p->break_handler(p, regs))
341 				goto ss_probe;
342 		}
343 		goto no_kprobe;
344 	}
345 
346 	p = get_kprobe(addr);
347 	if (!p) {
348 		if (addr->word != breakpoint_insn.word) {
349 			/*
350 			 * The breakpoint instruction was removed right
351 			 * after we hit it.  Another cpu has removed
352 			 * either a probepoint or a debugger breakpoint
353 			 * at this address.  In either case, no further
354 			 * handling of this interrupt is appropriate.
355 			 */
356 			ret = 1;
357 		}
358 		/* Not one of ours: let kernel handle it */
359 		goto no_kprobe;
360 	}
361 
362 	set_current_kprobe(p, regs, kcb);
363 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
364 
365 	if (p->pre_handler && p->pre_handler(p, regs)) {
366 		/* handler has already set things up, so skip ss setup */
367 		return 1;
368 	}
369 
370 ss_probe:
371 	prepare_singlestep(p, regs, kcb);
372 	if (kcb->flags & SKIP_DELAYSLOT) {
373 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
374 		if (p->post_handler)
375 			p->post_handler(p, regs, 0);
376 		resume_execution(p, regs, kcb);
377 		preempt_enable_no_resched();
378 	} else
379 		kcb->kprobe_status = KPROBE_HIT_SS;
380 
381 	return 1;
382 
383 no_kprobe:
384 	preempt_enable_no_resched();
385 	return ret;
386 
387 }
388 
389 static inline int post_kprobe_handler(struct pt_regs *regs)
390 {
391 	struct kprobe *cur = kprobe_running();
392 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
393 
394 	if (!cur)
395 		return 0;
396 
397 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
398 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
399 		cur->post_handler(cur, regs, 0);
400 	}
401 
402 	resume_execution(cur, regs, kcb);
403 
404 	regs->cp0_status |= kcb->kprobe_saved_SR;
405 
406 	/* Restore back the original saved kprobes variables and continue. */
407 	if (kcb->kprobe_status == KPROBE_REENTER) {
408 		restore_previous_kprobe(kcb);
409 		goto out;
410 	}
411 	reset_current_kprobe();
412 out:
413 	preempt_enable_no_resched();
414 
415 	return 1;
416 }
417 
418 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
419 {
420 	struct kprobe *cur = kprobe_running();
421 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
422 
423 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
424 		return 1;
425 
426 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
427 		resume_execution(cur, regs, kcb);
428 		regs->cp0_status |= kcb->kprobe_old_SR;
429 
430 		reset_current_kprobe();
431 		preempt_enable_no_resched();
432 	}
433 	return 0;
434 }
435 
436 /*
437  * Wrapper routine for handling exceptions.
438  */
439 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
440 				       unsigned long val, void *data)
441 {
442 
443 	struct die_args *args = (struct die_args *)data;
444 	int ret = NOTIFY_DONE;
445 
446 	switch (val) {
447 	case DIE_BREAK:
448 		if (kprobe_handler(args->regs))
449 			ret = NOTIFY_STOP;
450 		break;
451 	case DIE_SSTEPBP:
452 		if (post_kprobe_handler(args->regs))
453 			ret = NOTIFY_STOP;
454 		break;
455 
456 	case DIE_PAGE_FAULT:
457 		/* kprobe_running() needs smp_processor_id() */
458 		preempt_disable();
459 
460 		if (kprobe_running()
461 		    && kprobe_fault_handler(args->regs, args->trapnr))
462 			ret = NOTIFY_STOP;
463 		preempt_enable();
464 		break;
465 	default:
466 		break;
467 	}
468 	return ret;
469 }
470 
471 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
472 {
473 	struct jprobe *jp = container_of(p, struct jprobe, kp);
474 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
475 
476 	kcb->jprobe_saved_regs = *regs;
477 	kcb->jprobe_saved_sp = regs->regs[29];
478 
479 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
480 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
481 
482 	regs->cp0_epc = (unsigned long)(jp->entry);
483 
484 	return 1;
485 }
486 
487 /* Defined in the inline asm below. */
488 void jprobe_return_end(void);
489 
490 void __kprobes jprobe_return(void)
491 {
492 	/* Assembler quirk necessitates this '0,code' business.	 */
493 	asm volatile(
494 		"break 0,%0\n\t"
495 		".globl jprobe_return_end\n"
496 		"jprobe_return_end:\n"
497 		: : "n" (BRK_KPROBE_BP) : "memory");
498 }
499 
500 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
501 {
502 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
503 
504 	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
505 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
506 		*regs = kcb->jprobe_saved_regs;
507 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
508 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
509 		preempt_enable_no_resched();
510 
511 		return 1;
512 	}
513 	return 0;
514 }
515 
516 /*
517  * Function return probe trampoline:
518  *	- init_kprobes() establishes a probepoint here
519  *	- When the probed function returns, this probe causes the
520  *	  handlers to fire
521  */
522 static void __used kretprobe_trampoline_holder(void)
523 {
524 	asm volatile(
525 		".set push\n\t"
526 		/* Keep the assembler from reordering and placing JR here. */
527 		".set noreorder\n\t"
528 		"nop\n\t"
529 		".global kretprobe_trampoline\n"
530 		"kretprobe_trampoline:\n\t"
531 		"nop\n\t"
532 		".set pop"
533 		: : : "memory");
534 }
535 
536 void kretprobe_trampoline(void);
537 
538 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
539 				      struct pt_regs *regs)
540 {
541 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
542 
543 	/* Replace the return addr with trampoline addr */
544 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
545 }
546 
547 /*
548  * Called when the probe at kretprobe trampoline is hit
549  */
550 static int __kprobes trampoline_probe_handler(struct kprobe *p,
551 						struct pt_regs *regs)
552 {
553 	struct kretprobe_instance *ri = NULL;
554 	struct hlist_head *head, empty_rp;
555 	struct hlist_node *tmp;
556 	unsigned long flags, orig_ret_address = 0;
557 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
558 
559 	INIT_HLIST_HEAD(&empty_rp);
560 	kretprobe_hash_lock(current, &head, &flags);
561 
562 	/*
563 	 * It is possible to have multiple instances associated with a given
564 	 * task either because an multiple functions in the call path
565 	 * have a return probe installed on them, and/or more than one return
566 	 * return probe was registered for a target function.
567 	 *
568 	 * We can handle this because:
569 	 *     - instances are always inserted at the head of the list
570 	 *     - when multiple return probes are registered for the same
571 	 *	 function, the first instance's ret_addr will point to the
572 	 *	 real return address, and all the rest will point to
573 	 *	 kretprobe_trampoline
574 	 */
575 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
576 		if (ri->task != current)
577 			/* another task is sharing our hash bucket */
578 			continue;
579 
580 		if (ri->rp && ri->rp->handler)
581 			ri->rp->handler(ri, regs);
582 
583 		orig_ret_address = (unsigned long)ri->ret_addr;
584 		recycle_rp_inst(ri, &empty_rp);
585 
586 		if (orig_ret_address != trampoline_address)
587 			/*
588 			 * This is the real return address. Any other
589 			 * instances associated with this task are for
590 			 * other calls deeper on the call stack
591 			 */
592 			break;
593 	}
594 
595 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
596 	instruction_pointer(regs) = orig_ret_address;
597 
598 	reset_current_kprobe();
599 	kretprobe_hash_unlock(current, &flags);
600 	preempt_enable_no_resched();
601 
602 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
603 		hlist_del(&ri->hlist);
604 		kfree(ri);
605 	}
606 	/*
607 	 * By returning a non-zero value, we are telling
608 	 * kprobe_handler() that we don't want the post_handler
609 	 * to run (and have re-enabled preemption)
610 	 */
611 	return 1;
612 }
613 
614 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
615 {
616 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
617 		return 1;
618 
619 	return 0;
620 }
621 
622 static struct kprobe trampoline_p = {
623 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
624 	.pre_handler = trampoline_probe_handler
625 };
626 
627 int __init arch_init_kprobes(void)
628 {
629 	return register_kprobe(&trampoline_p);
630 }
631