xref: /openbmc/linux/arch/mips/kernel/kprobes.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/mips/kernel/kprobes.c
5  *
6  *  Copyright 2006 Sony Corp.
7  *  Copyright 2010 Cavium Networks
8  *
9  *  Some portions copied from the powerpc version.
10  *
11  *   Copyright (C) IBM Corporation, 2002, 2004
12  */
13 
14 #define pr_fmt(fmt) "kprobes: " fmt
15 
16 #include <linux/kprobes.h>
17 #include <linux/preempt.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/slab.h>
21 
22 #include <asm/ptrace.h>
23 #include <asm/branch.h>
24 #include <asm/break.h>
25 
26 #include "probes-common.h"
27 
28 static const union mips_instruction breakpoint_insn = {
29 	.b_format = {
30 		.opcode = spec_op,
31 		.code = BRK_KPROBE_BP,
32 		.func = break_op
33 	}
34 };
35 
36 static const union mips_instruction breakpoint2_insn = {
37 	.b_format = {
38 		.opcode = spec_op,
39 		.code = BRK_KPROBE_SSTEPBP,
40 		.func = break_op
41 	}
42 };
43 
44 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
45 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46 
47 static int __kprobes insn_has_delayslot(union mips_instruction insn)
48 {
49 	return __insn_has_delay_slot(insn);
50 }
51 
52 /*
53  * insn_has_ll_or_sc function checks whether instruction is ll or sc
54  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
55  * so we need to prevent it and refuse kprobes insertion for such
56  * instructions; cannot do much about breakpoint in the middle of
57  * ll/sc pair; it is upto user to avoid those places
58  */
59 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
60 {
61 	int ret = 0;
62 
63 	switch (insn.i_format.opcode) {
64 	case ll_op:
65 	case lld_op:
66 	case sc_op:
67 	case scd_op:
68 		ret = 1;
69 		break;
70 	default:
71 		break;
72 	}
73 	return ret;
74 }
75 
76 int __kprobes arch_prepare_kprobe(struct kprobe *p)
77 {
78 	union mips_instruction insn;
79 	union mips_instruction prev_insn;
80 	int ret = 0;
81 
82 	insn = p->addr[0];
83 
84 	if (insn_has_ll_or_sc(insn)) {
85 		pr_notice("Kprobes for ll and sc instructions are not supported\n");
86 		ret = -EINVAL;
87 		goto out;
88 	}
89 
90 	if (copy_from_kernel_nofault(&prev_insn, p->addr - 1,
91 			sizeof(mips_instruction)) == 0 &&
92 	    insn_has_delayslot(prev_insn)) {
93 		pr_notice("Kprobes for branch delayslot are not supported\n");
94 		ret = -EINVAL;
95 		goto out;
96 	}
97 
98 	if (__insn_is_compact_branch(insn)) {
99 		pr_notice("Kprobes for compact branches are not supported\n");
100 		ret = -EINVAL;
101 		goto out;
102 	}
103 
104 	/* insn: must be on special executable page on mips. */
105 	p->ainsn.insn = get_insn_slot();
106 	if (!p->ainsn.insn) {
107 		ret = -ENOMEM;
108 		goto out;
109 	}
110 
111 	/*
112 	 * In the kprobe->ainsn.insn[] array we store the original
113 	 * instruction at index zero and a break trap instruction at
114 	 * index one.
115 	 *
116 	 * On MIPS arch if the instruction at probed address is a
117 	 * branch instruction, we need to execute the instruction at
118 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
119 	 * doesn't have single stepping support, the BD instruction can
120 	 * not be executed in-line and it would be executed on SSOL slot
121 	 * using a normal breakpoint instruction in the next slot.
122 	 * So, read the instruction and save it for later execution.
123 	 */
124 	if (insn_has_delayslot(insn))
125 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
126 	else
127 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
128 
129 	p->ainsn.insn[1] = breakpoint2_insn;
130 	p->opcode = *p->addr;
131 
132 out:
133 	return ret;
134 }
135 
136 void __kprobes arch_arm_kprobe(struct kprobe *p)
137 {
138 	*p->addr = breakpoint_insn;
139 	flush_insn_slot(p);
140 }
141 
142 void __kprobes arch_disarm_kprobe(struct kprobe *p)
143 {
144 	*p->addr = p->opcode;
145 	flush_insn_slot(p);
146 }
147 
148 void __kprobes arch_remove_kprobe(struct kprobe *p)
149 {
150 	if (p->ainsn.insn) {
151 		free_insn_slot(p->ainsn.insn, 0);
152 		p->ainsn.insn = NULL;
153 	}
154 }
155 
156 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
157 {
158 	kcb->prev_kprobe.kp = kprobe_running();
159 	kcb->prev_kprobe.status = kcb->kprobe_status;
160 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
161 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
162 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
163 }
164 
165 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
166 {
167 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
168 	kcb->kprobe_status = kcb->prev_kprobe.status;
169 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
170 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
171 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
172 }
173 
174 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
175 			       struct kprobe_ctlblk *kcb)
176 {
177 	__this_cpu_write(current_kprobe, p);
178 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
179 	kcb->kprobe_saved_epc = regs->cp0_epc;
180 }
181 
182 /**
183  * evaluate_branch_instrucion -
184  *
185  * Evaluate the branch instruction at probed address during probe hit. The
186  * result of evaluation would be the updated epc. The insturction in delayslot
187  * would actually be single stepped using a normal breakpoint) on SSOL slot.
188  *
189  * The result is also saved in the kprobe control block for later use,
190  * in case we need to execute the delayslot instruction. The latter will be
191  * false for NOP instruction in dealyslot and the branch-likely instructions
192  * when the branch is taken. And for those cases we set a flag as
193  * SKIP_DELAYSLOT in the kprobe control block
194  */
195 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
196 					struct kprobe_ctlblk *kcb)
197 {
198 	union mips_instruction insn = p->opcode;
199 	long epc;
200 	int ret = 0;
201 
202 	epc = regs->cp0_epc;
203 	if (epc & 3)
204 		goto unaligned;
205 
206 	if (p->ainsn.insn->word == 0)
207 		kcb->flags |= SKIP_DELAYSLOT;
208 	else
209 		kcb->flags &= ~SKIP_DELAYSLOT;
210 
211 	ret = __compute_return_epc_for_insn(regs, insn);
212 	if (ret < 0)
213 		return ret;
214 
215 	if (ret == BRANCH_LIKELY_TAKEN)
216 		kcb->flags |= SKIP_DELAYSLOT;
217 
218 	kcb->target_epc = regs->cp0_epc;
219 
220 	return 0;
221 
222 unaligned:
223 	pr_notice("Failed to emulate branch instruction because of unaligned epc - sending SIGBUS to %s.\n", current->comm);
224 	force_sig(SIGBUS);
225 	return -EFAULT;
226 
227 }
228 
229 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
230 						struct kprobe_ctlblk *kcb)
231 {
232 	int ret = 0;
233 
234 	regs->cp0_status &= ~ST0_IE;
235 
236 	/* single step inline if the instruction is a break */
237 	if (p->opcode.word == breakpoint_insn.word ||
238 	    p->opcode.word == breakpoint2_insn.word)
239 		regs->cp0_epc = (unsigned long)p->addr;
240 	else if (insn_has_delayslot(p->opcode)) {
241 		ret = evaluate_branch_instruction(p, regs, kcb);
242 		if (ret < 0)
243 			return;
244 	}
245 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
246 }
247 
248 /*
249  * Called after single-stepping.  p->addr is the address of the
250  * instruction whose first byte has been replaced by the "break 0"
251  * instruction.	 To avoid the SMP problems that can occur when we
252  * temporarily put back the original opcode to single-step, we
253  * single-stepped a copy of the instruction.  The address of this
254  * copy is p->ainsn.insn.
255  *
256  * This function prepares to return from the post-single-step
257  * breakpoint trap. In case of branch instructions, the target
258  * epc to be restored.
259  */
260 static void __kprobes resume_execution(struct kprobe *p,
261 				       struct pt_regs *regs,
262 				       struct kprobe_ctlblk *kcb)
263 {
264 	if (insn_has_delayslot(p->opcode))
265 		regs->cp0_epc = kcb->target_epc;
266 	else {
267 		unsigned long orig_epc = kcb->kprobe_saved_epc;
268 		regs->cp0_epc = orig_epc + 4;
269 	}
270 }
271 
272 static int __kprobes kprobe_handler(struct pt_regs *regs)
273 {
274 	struct kprobe *p;
275 	int ret = 0;
276 	kprobe_opcode_t *addr;
277 	struct kprobe_ctlblk *kcb;
278 
279 	addr = (kprobe_opcode_t *) regs->cp0_epc;
280 
281 	/*
282 	 * We don't want to be preempted for the entire
283 	 * duration of kprobe processing
284 	 */
285 	preempt_disable();
286 	kcb = get_kprobe_ctlblk();
287 
288 	/* Check we're not actually recursing */
289 	if (kprobe_running()) {
290 		p = get_kprobe(addr);
291 		if (p) {
292 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
293 			    p->ainsn.insn->word == breakpoint_insn.word) {
294 				regs->cp0_status &= ~ST0_IE;
295 				regs->cp0_status |= kcb->kprobe_saved_SR;
296 				goto no_kprobe;
297 			}
298 			/*
299 			 * We have reentered the kprobe_handler(), since
300 			 * another probe was hit while within the handler.
301 			 * We here save the original kprobes variables and
302 			 * just single step on the instruction of the new probe
303 			 * without calling any user handlers.
304 			 */
305 			save_previous_kprobe(kcb);
306 			set_current_kprobe(p, regs, kcb);
307 			kprobes_inc_nmissed_count(p);
308 			prepare_singlestep(p, regs, kcb);
309 			kcb->kprobe_status = KPROBE_REENTER;
310 			if (kcb->flags & SKIP_DELAYSLOT) {
311 				resume_execution(p, regs, kcb);
312 				restore_previous_kprobe(kcb);
313 				preempt_enable_no_resched();
314 			}
315 			return 1;
316 		} else if (addr->word != breakpoint_insn.word) {
317 			/*
318 			 * The breakpoint instruction was removed by
319 			 * another cpu right after we hit, no further
320 			 * handling of this interrupt is appropriate
321 			 */
322 			ret = 1;
323 		}
324 		goto no_kprobe;
325 	}
326 
327 	p = get_kprobe(addr);
328 	if (!p) {
329 		if (addr->word != breakpoint_insn.word) {
330 			/*
331 			 * The breakpoint instruction was removed right
332 			 * after we hit it.  Another cpu has removed
333 			 * either a probepoint or a debugger breakpoint
334 			 * at this address.  In either case, no further
335 			 * handling of this interrupt is appropriate.
336 			 */
337 			ret = 1;
338 		}
339 		/* Not one of ours: let kernel handle it */
340 		goto no_kprobe;
341 	}
342 
343 	set_current_kprobe(p, regs, kcb);
344 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
345 
346 	if (p->pre_handler && p->pre_handler(p, regs)) {
347 		/* handler has already set things up, so skip ss setup */
348 		reset_current_kprobe();
349 		preempt_enable_no_resched();
350 		return 1;
351 	}
352 
353 	prepare_singlestep(p, regs, kcb);
354 	if (kcb->flags & SKIP_DELAYSLOT) {
355 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
356 		if (p->post_handler)
357 			p->post_handler(p, regs, 0);
358 		resume_execution(p, regs, kcb);
359 		preempt_enable_no_resched();
360 	} else
361 		kcb->kprobe_status = KPROBE_HIT_SS;
362 
363 	return 1;
364 
365 no_kprobe:
366 	preempt_enable_no_resched();
367 	return ret;
368 
369 }
370 
371 static inline int post_kprobe_handler(struct pt_regs *regs)
372 {
373 	struct kprobe *cur = kprobe_running();
374 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
375 
376 	if (!cur)
377 		return 0;
378 
379 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
380 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
381 		cur->post_handler(cur, regs, 0);
382 	}
383 
384 	resume_execution(cur, regs, kcb);
385 
386 	regs->cp0_status |= kcb->kprobe_saved_SR;
387 
388 	/* Restore back the original saved kprobes variables and continue. */
389 	if (kcb->kprobe_status == KPROBE_REENTER) {
390 		restore_previous_kprobe(kcb);
391 		goto out;
392 	}
393 	reset_current_kprobe();
394 out:
395 	preempt_enable_no_resched();
396 
397 	return 1;
398 }
399 
400 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
401 {
402 	struct kprobe *cur = kprobe_running();
403 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
404 
405 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
406 		resume_execution(cur, regs, kcb);
407 		regs->cp0_status |= kcb->kprobe_old_SR;
408 
409 		reset_current_kprobe();
410 		preempt_enable_no_resched();
411 	}
412 	return 0;
413 }
414 
415 /*
416  * Wrapper routine for handling exceptions.
417  */
418 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
419 				       unsigned long val, void *data)
420 {
421 
422 	struct die_args *args = (struct die_args *)data;
423 	int ret = NOTIFY_DONE;
424 
425 	switch (val) {
426 	case DIE_BREAK:
427 		if (kprobe_handler(args->regs))
428 			ret = NOTIFY_STOP;
429 		break;
430 	case DIE_SSTEPBP:
431 		if (post_kprobe_handler(args->regs))
432 			ret = NOTIFY_STOP;
433 		break;
434 
435 	case DIE_PAGE_FAULT:
436 		/* kprobe_running() needs smp_processor_id() */
437 		preempt_disable();
438 
439 		if (kprobe_running()
440 		    && kprobe_fault_handler(args->regs, args->trapnr))
441 			ret = NOTIFY_STOP;
442 		preempt_enable();
443 		break;
444 	default:
445 		break;
446 	}
447 	return ret;
448 }
449 
450 /*
451  * Function return probe trampoline:
452  *	- init_kprobes() establishes a probepoint here
453  *	- When the probed function returns, this probe causes the
454  *	  handlers to fire
455  */
456 static void __used kretprobe_trampoline_holder(void)
457 {
458 	asm volatile(
459 		".set push\n\t"
460 		/* Keep the assembler from reordering and placing JR here. */
461 		".set noreorder\n\t"
462 		"nop\n\t"
463 		".global __kretprobe_trampoline\n"
464 		"__kretprobe_trampoline:\n\t"
465 		"nop\n\t"
466 		".set pop"
467 		: : : "memory");
468 }
469 
470 void __kretprobe_trampoline(void);
471 
472 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
473 				      struct pt_regs *regs)
474 {
475 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
476 	ri->fp = NULL;
477 
478 	/* Replace the return addr with trampoline addr */
479 	regs->regs[31] = (unsigned long)__kretprobe_trampoline;
480 }
481 
482 /*
483  * Called when the probe at kretprobe trampoline is hit
484  */
485 static int __kprobes trampoline_probe_handler(struct kprobe *p,
486 						struct pt_regs *regs)
487 {
488 	instruction_pointer(regs) = __kretprobe_trampoline_handler(regs, NULL);
489 	/*
490 	 * By returning a non-zero value, we are telling
491 	 * kprobe_handler() that we don't want the post_handler
492 	 * to run (and have re-enabled preemption)
493 	 */
494 	return 1;
495 }
496 
497 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
498 {
499 	if (p->addr == (kprobe_opcode_t *)__kretprobe_trampoline)
500 		return 1;
501 
502 	return 0;
503 }
504 
505 static struct kprobe trampoline_p = {
506 	.addr = (kprobe_opcode_t *)__kretprobe_trampoline,
507 	.pre_handler = trampoline_probe_handler
508 };
509 
510 int __init arch_init_kprobes(void)
511 {
512 	return register_kprobe(&trampoline_p);
513 }
514