xref: /openbmc/linux/arch/mips/kernel/kprobes.c (revision 1d27a0be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Kernel Probes (KProbes)
4  *  arch/mips/kernel/kprobes.c
5  *
6  *  Copyright 2006 Sony Corp.
7  *  Copyright 2010 Cavium Networks
8  *
9  *  Some portions copied from the powerpc version.
10  *
11  *   Copyright (C) IBM Corporation, 2002, 2004
12  */
13 
14 #include <linux/kprobes.h>
15 #include <linux/preempt.h>
16 #include <linux/uaccess.h>
17 #include <linux/kdebug.h>
18 #include <linux/slab.h>
19 
20 #include <asm/ptrace.h>
21 #include <asm/branch.h>
22 #include <asm/break.h>
23 
24 #include "probes-common.h"
25 
26 static const union mips_instruction breakpoint_insn = {
27 	.b_format = {
28 		.opcode = spec_op,
29 		.code = BRK_KPROBE_BP,
30 		.func = break_op
31 	}
32 };
33 
34 static const union mips_instruction breakpoint2_insn = {
35 	.b_format = {
36 		.opcode = spec_op,
37 		.code = BRK_KPROBE_SSTEPBP,
38 		.func = break_op
39 	}
40 };
41 
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
44 
45 static int __kprobes insn_has_delayslot(union mips_instruction insn)
46 {
47 	return __insn_has_delay_slot(insn);
48 }
49 
50 /*
51  * insn_has_ll_or_sc function checks whether instruction is ll or sc
52  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
53  * so we need to prevent it and refuse kprobes insertion for such
54  * instructions; cannot do much about breakpoint in the middle of
55  * ll/sc pair; it is upto user to avoid those places
56  */
57 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
58 {
59 	int ret = 0;
60 
61 	switch (insn.i_format.opcode) {
62 	case ll_op:
63 	case lld_op:
64 	case sc_op:
65 	case scd_op:
66 		ret = 1;
67 		break;
68 	default:
69 		break;
70 	}
71 	return ret;
72 }
73 
74 int __kprobes arch_prepare_kprobe(struct kprobe *p)
75 {
76 	union mips_instruction insn;
77 	union mips_instruction prev_insn;
78 	int ret = 0;
79 
80 	insn = p->addr[0];
81 
82 	if (insn_has_ll_or_sc(insn)) {
83 		pr_notice("Kprobes for ll and sc instructions are not"
84 			  "supported\n");
85 		ret = -EINVAL;
86 		goto out;
87 	}
88 
89 	if (copy_from_kernel_nofault(&prev_insn, p->addr - 1,
90 			sizeof(mips_instruction)) == 0 &&
91 	    insn_has_delayslot(prev_insn)) {
92 		pr_notice("Kprobes for branch delayslot are not supported\n");
93 		ret = -EINVAL;
94 		goto out;
95 	}
96 
97 	if (__insn_is_compact_branch(insn)) {
98 		pr_notice("Kprobes for compact branches are not supported\n");
99 		ret = -EINVAL;
100 		goto out;
101 	}
102 
103 	/* insn: must be on special executable page on mips. */
104 	p->ainsn.insn = get_insn_slot();
105 	if (!p->ainsn.insn) {
106 		ret = -ENOMEM;
107 		goto out;
108 	}
109 
110 	/*
111 	 * In the kprobe->ainsn.insn[] array we store the original
112 	 * instruction at index zero and a break trap instruction at
113 	 * index one.
114 	 *
115 	 * On MIPS arch if the instruction at probed address is a
116 	 * branch instruction, we need to execute the instruction at
117 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
118 	 * doesn't have single stepping support, the BD instruction can
119 	 * not be executed in-line and it would be executed on SSOL slot
120 	 * using a normal breakpoint instruction in the next slot.
121 	 * So, read the instruction and save it for later execution.
122 	 */
123 	if (insn_has_delayslot(insn))
124 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
125 	else
126 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
127 
128 	p->ainsn.insn[1] = breakpoint2_insn;
129 	p->opcode = *p->addr;
130 
131 out:
132 	return ret;
133 }
134 
135 void __kprobes arch_arm_kprobe(struct kprobe *p)
136 {
137 	*p->addr = breakpoint_insn;
138 	flush_insn_slot(p);
139 }
140 
141 void __kprobes arch_disarm_kprobe(struct kprobe *p)
142 {
143 	*p->addr = p->opcode;
144 	flush_insn_slot(p);
145 }
146 
147 void __kprobes arch_remove_kprobe(struct kprobe *p)
148 {
149 	if (p->ainsn.insn) {
150 		free_insn_slot(p->ainsn.insn, 0);
151 		p->ainsn.insn = NULL;
152 	}
153 }
154 
155 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
156 {
157 	kcb->prev_kprobe.kp = kprobe_running();
158 	kcb->prev_kprobe.status = kcb->kprobe_status;
159 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
160 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
161 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
162 }
163 
164 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
165 {
166 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
167 	kcb->kprobe_status = kcb->prev_kprobe.status;
168 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
169 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
170 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
171 }
172 
173 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
174 			       struct kprobe_ctlblk *kcb)
175 {
176 	__this_cpu_write(current_kprobe, p);
177 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
178 	kcb->kprobe_saved_epc = regs->cp0_epc;
179 }
180 
181 /**
182  * evaluate_branch_instrucion -
183  *
184  * Evaluate the branch instruction at probed address during probe hit. The
185  * result of evaluation would be the updated epc. The insturction in delayslot
186  * would actually be single stepped using a normal breakpoint) on SSOL slot.
187  *
188  * The result is also saved in the kprobe control block for later use,
189  * in case we need to execute the delayslot instruction. The latter will be
190  * false for NOP instruction in dealyslot and the branch-likely instructions
191  * when the branch is taken. And for those cases we set a flag as
192  * SKIP_DELAYSLOT in the kprobe control block
193  */
194 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
195 					struct kprobe_ctlblk *kcb)
196 {
197 	union mips_instruction insn = p->opcode;
198 	long epc;
199 	int ret = 0;
200 
201 	epc = regs->cp0_epc;
202 	if (epc & 3)
203 		goto unaligned;
204 
205 	if (p->ainsn.insn->word == 0)
206 		kcb->flags |= SKIP_DELAYSLOT;
207 	else
208 		kcb->flags &= ~SKIP_DELAYSLOT;
209 
210 	ret = __compute_return_epc_for_insn(regs, insn);
211 	if (ret < 0)
212 		return ret;
213 
214 	if (ret == BRANCH_LIKELY_TAKEN)
215 		kcb->flags |= SKIP_DELAYSLOT;
216 
217 	kcb->target_epc = regs->cp0_epc;
218 
219 	return 0;
220 
221 unaligned:
222 	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
223 	force_sig(SIGBUS);
224 	return -EFAULT;
225 
226 }
227 
228 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
229 						struct kprobe_ctlblk *kcb)
230 {
231 	int ret = 0;
232 
233 	regs->cp0_status &= ~ST0_IE;
234 
235 	/* single step inline if the instruction is a break */
236 	if (p->opcode.word == breakpoint_insn.word ||
237 	    p->opcode.word == breakpoint2_insn.word)
238 		regs->cp0_epc = (unsigned long)p->addr;
239 	else if (insn_has_delayslot(p->opcode)) {
240 		ret = evaluate_branch_instruction(p, regs, kcb);
241 		if (ret < 0) {
242 			pr_notice("Kprobes: Error in evaluating branch\n");
243 			return;
244 		}
245 	}
246 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
247 }
248 
249 /*
250  * Called after single-stepping.  p->addr is the address of the
251  * instruction whose first byte has been replaced by the "break 0"
252  * instruction.	 To avoid the SMP problems that can occur when we
253  * temporarily put back the original opcode to single-step, we
254  * single-stepped a copy of the instruction.  The address of this
255  * copy is p->ainsn.insn.
256  *
257  * This function prepares to return from the post-single-step
258  * breakpoint trap. In case of branch instructions, the target
259  * epc to be restored.
260  */
261 static void __kprobes resume_execution(struct kprobe *p,
262 				       struct pt_regs *regs,
263 				       struct kprobe_ctlblk *kcb)
264 {
265 	if (insn_has_delayslot(p->opcode))
266 		regs->cp0_epc = kcb->target_epc;
267 	else {
268 		unsigned long orig_epc = kcb->kprobe_saved_epc;
269 		regs->cp0_epc = orig_epc + 4;
270 	}
271 }
272 
273 static int __kprobes kprobe_handler(struct pt_regs *regs)
274 {
275 	struct kprobe *p;
276 	int ret = 0;
277 	kprobe_opcode_t *addr;
278 	struct kprobe_ctlblk *kcb;
279 
280 	addr = (kprobe_opcode_t *) regs->cp0_epc;
281 
282 	/*
283 	 * We don't want to be preempted for the entire
284 	 * duration of kprobe processing
285 	 */
286 	preempt_disable();
287 	kcb = get_kprobe_ctlblk();
288 
289 	/* Check we're not actually recursing */
290 	if (kprobe_running()) {
291 		p = get_kprobe(addr);
292 		if (p) {
293 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
294 			    p->ainsn.insn->word == breakpoint_insn.word) {
295 				regs->cp0_status &= ~ST0_IE;
296 				regs->cp0_status |= kcb->kprobe_saved_SR;
297 				goto no_kprobe;
298 			}
299 			/*
300 			 * We have reentered the kprobe_handler(), since
301 			 * another probe was hit while within the handler.
302 			 * We here save the original kprobes variables and
303 			 * just single step on the instruction of the new probe
304 			 * without calling any user handlers.
305 			 */
306 			save_previous_kprobe(kcb);
307 			set_current_kprobe(p, regs, kcb);
308 			kprobes_inc_nmissed_count(p);
309 			prepare_singlestep(p, regs, kcb);
310 			kcb->kprobe_status = KPROBE_REENTER;
311 			if (kcb->flags & SKIP_DELAYSLOT) {
312 				resume_execution(p, regs, kcb);
313 				restore_previous_kprobe(kcb);
314 				preempt_enable_no_resched();
315 			}
316 			return 1;
317 		} else if (addr->word != breakpoint_insn.word) {
318 			/*
319 			 * The breakpoint instruction was removed by
320 			 * another cpu right after we hit, no further
321 			 * handling of this interrupt is appropriate
322 			 */
323 			ret = 1;
324 		}
325 		goto no_kprobe;
326 	}
327 
328 	p = get_kprobe(addr);
329 	if (!p) {
330 		if (addr->word != breakpoint_insn.word) {
331 			/*
332 			 * The breakpoint instruction was removed right
333 			 * after we hit it.  Another cpu has removed
334 			 * either a probepoint or a debugger breakpoint
335 			 * at this address.  In either case, no further
336 			 * handling of this interrupt is appropriate.
337 			 */
338 			ret = 1;
339 		}
340 		/* Not one of ours: let kernel handle it */
341 		goto no_kprobe;
342 	}
343 
344 	set_current_kprobe(p, regs, kcb);
345 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
346 
347 	if (p->pre_handler && p->pre_handler(p, regs)) {
348 		/* handler has already set things up, so skip ss setup */
349 		reset_current_kprobe();
350 		preempt_enable_no_resched();
351 		return 1;
352 	}
353 
354 	prepare_singlestep(p, regs, kcb);
355 	if (kcb->flags & SKIP_DELAYSLOT) {
356 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
357 		if (p->post_handler)
358 			p->post_handler(p, regs, 0);
359 		resume_execution(p, regs, kcb);
360 		preempt_enable_no_resched();
361 	} else
362 		kcb->kprobe_status = KPROBE_HIT_SS;
363 
364 	return 1;
365 
366 no_kprobe:
367 	preempt_enable_no_resched();
368 	return ret;
369 
370 }
371 
372 static inline int post_kprobe_handler(struct pt_regs *regs)
373 {
374 	struct kprobe *cur = kprobe_running();
375 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376 
377 	if (!cur)
378 		return 0;
379 
380 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
381 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
382 		cur->post_handler(cur, regs, 0);
383 	}
384 
385 	resume_execution(cur, regs, kcb);
386 
387 	regs->cp0_status |= kcb->kprobe_saved_SR;
388 
389 	/* Restore back the original saved kprobes variables and continue. */
390 	if (kcb->kprobe_status == KPROBE_REENTER) {
391 		restore_previous_kprobe(kcb);
392 		goto out;
393 	}
394 	reset_current_kprobe();
395 out:
396 	preempt_enable_no_resched();
397 
398 	return 1;
399 }
400 
401 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
402 {
403 	struct kprobe *cur = kprobe_running();
404 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
405 
406 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
407 		return 1;
408 
409 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
410 		resume_execution(cur, regs, kcb);
411 		regs->cp0_status |= kcb->kprobe_old_SR;
412 
413 		reset_current_kprobe();
414 		preempt_enable_no_resched();
415 	}
416 	return 0;
417 }
418 
419 /*
420  * Wrapper routine for handling exceptions.
421  */
422 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
423 				       unsigned long val, void *data)
424 {
425 
426 	struct die_args *args = (struct die_args *)data;
427 	int ret = NOTIFY_DONE;
428 
429 	switch (val) {
430 	case DIE_BREAK:
431 		if (kprobe_handler(args->regs))
432 			ret = NOTIFY_STOP;
433 		break;
434 	case DIE_SSTEPBP:
435 		if (post_kprobe_handler(args->regs))
436 			ret = NOTIFY_STOP;
437 		break;
438 
439 	case DIE_PAGE_FAULT:
440 		/* kprobe_running() needs smp_processor_id() */
441 		preempt_disable();
442 
443 		if (kprobe_running()
444 		    && kprobe_fault_handler(args->regs, args->trapnr))
445 			ret = NOTIFY_STOP;
446 		preempt_enable();
447 		break;
448 	default:
449 		break;
450 	}
451 	return ret;
452 }
453 
454 /*
455  * Function return probe trampoline:
456  *	- init_kprobes() establishes a probepoint here
457  *	- When the probed function returns, this probe causes the
458  *	  handlers to fire
459  */
460 static void __used kretprobe_trampoline_holder(void)
461 {
462 	asm volatile(
463 		".set push\n\t"
464 		/* Keep the assembler from reordering and placing JR here. */
465 		".set noreorder\n\t"
466 		"nop\n\t"
467 		".global kretprobe_trampoline\n"
468 		"kretprobe_trampoline:\n\t"
469 		"nop\n\t"
470 		".set pop"
471 		: : : "memory");
472 }
473 
474 void kretprobe_trampoline(void);
475 
476 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
477 				      struct pt_regs *regs)
478 {
479 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
480 
481 	/* Replace the return addr with trampoline addr */
482 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
483 }
484 
485 /*
486  * Called when the probe at kretprobe trampoline is hit
487  */
488 static int __kprobes trampoline_probe_handler(struct kprobe *p,
489 						struct pt_regs *regs)
490 {
491 	struct kretprobe_instance *ri = NULL;
492 	struct hlist_head *head, empty_rp;
493 	struct hlist_node *tmp;
494 	unsigned long flags, orig_ret_address = 0;
495 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
496 
497 	INIT_HLIST_HEAD(&empty_rp);
498 	kretprobe_hash_lock(current, &head, &flags);
499 
500 	/*
501 	 * It is possible to have multiple instances associated with a given
502 	 * task either because an multiple functions in the call path
503 	 * have a return probe installed on them, and/or more than one return
504 	 * return probe was registered for a target function.
505 	 *
506 	 * We can handle this because:
507 	 *     - instances are always inserted at the head of the list
508 	 *     - when multiple return probes are registered for the same
509 	 *	 function, the first instance's ret_addr will point to the
510 	 *	 real return address, and all the rest will point to
511 	 *	 kretprobe_trampoline
512 	 */
513 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
514 		if (ri->task != current)
515 			/* another task is sharing our hash bucket */
516 			continue;
517 
518 		if (ri->rp && ri->rp->handler)
519 			ri->rp->handler(ri, regs);
520 
521 		orig_ret_address = (unsigned long)ri->ret_addr;
522 		recycle_rp_inst(ri, &empty_rp);
523 
524 		if (orig_ret_address != trampoline_address)
525 			/*
526 			 * This is the real return address. Any other
527 			 * instances associated with this task are for
528 			 * other calls deeper on the call stack
529 			 */
530 			break;
531 	}
532 
533 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
534 	instruction_pointer(regs) = orig_ret_address;
535 
536 	kretprobe_hash_unlock(current, &flags);
537 
538 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
539 		hlist_del(&ri->hlist);
540 		kfree(ri);
541 	}
542 	/*
543 	 * By returning a non-zero value, we are telling
544 	 * kprobe_handler() that we don't want the post_handler
545 	 * to run (and have re-enabled preemption)
546 	 */
547 	return 1;
548 }
549 
550 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
551 {
552 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
553 		return 1;
554 
555 	return 0;
556 }
557 
558 static struct kprobe trampoline_p = {
559 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
560 	.pre_handler = trampoline_probe_handler
561 };
562 
563 int __init arch_init_kprobes(void)
564 {
565 	return register_kprobe(&trampoline_p);
566 }
567