1 /* 2 * Originally written by Glenn Engel, Lake Stevens Instrument Division 3 * 4 * Contributed by HP Systems 5 * 6 * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse 7 * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> 8 * 9 * Copyright (C) 1995 Andreas Busse 10 * 11 * Copyright (C) 2003 MontaVista Software Inc. 12 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 13 * 14 * Copyright (C) 2004-2005 MontaVista Software Inc. 15 * Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com 16 * 17 * Copyright (C) 2007-2008 Wind River Systems, Inc. 18 * Author/Maintainer: Jason Wessel, jason.wessel@windriver.com 19 * 20 * This file is licensed under the terms of the GNU General Public License 21 * version 2. This program is licensed "as is" without any warranty of any 22 * kind, whether express or implied. 23 */ 24 25 #include <linux/ptrace.h> /* for linux pt_regs struct */ 26 #include <linux/kgdb.h> 27 #include <linux/kdebug.h> 28 #include <linux/sched.h> 29 #include <linux/smp.h> 30 #include <asm/inst.h> 31 #include <asm/fpu.h> 32 #include <asm/cacheflush.h> 33 #include <asm/processor.h> 34 #include <asm/sigcontext.h> 35 #include <asm/uaccess.h> 36 37 static struct hard_trap_info { 38 unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */ 39 unsigned char signo; /* Signal that we map this trap into */ 40 } hard_trap_info[] = { 41 { 6, SIGBUS }, /* instruction bus error */ 42 { 7, SIGBUS }, /* data bus error */ 43 { 9, SIGTRAP }, /* break */ 44 /* { 11, SIGILL }, */ /* CPU unusable */ 45 { 12, SIGFPE }, /* overflow */ 46 { 13, SIGTRAP }, /* trap */ 47 { 14, SIGSEGV }, /* virtual instruction cache coherency */ 48 { 15, SIGFPE }, /* floating point exception */ 49 { 23, SIGSEGV }, /* watch */ 50 { 31, SIGSEGV }, /* virtual data cache coherency */ 51 { 0, 0} /* Must be last */ 52 }; 53 54 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = 55 { 56 { "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) }, 57 { "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) }, 58 { "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) }, 59 { "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) }, 60 { "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) }, 61 { "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) }, 62 { "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) }, 63 { "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) }, 64 { "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) }, 65 { "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) }, 66 { "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) }, 67 { "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) }, 68 { "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) }, 69 { "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) }, 70 { "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) }, 71 { "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) }, 72 { "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) }, 73 { "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) }, 74 { "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) }, 75 { "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) }, 76 { "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) }, 77 { "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) }, 78 { "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) }, 79 { "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) }, 80 { "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) }, 81 { "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) }, 82 { "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) }, 83 { "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) }, 84 { "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) }, 85 { "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) }, 86 { "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) }, 87 { "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) }, 88 { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) }, 89 { "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) }, 90 { "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) }, 91 { "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) }, 92 { "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) }, 93 { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) }, 94 { "f0", GDB_SIZEOF_REG, 0 }, 95 { "f1", GDB_SIZEOF_REG, 1 }, 96 { "f2", GDB_SIZEOF_REG, 2 }, 97 { "f3", GDB_SIZEOF_REG, 3 }, 98 { "f4", GDB_SIZEOF_REG, 4 }, 99 { "f5", GDB_SIZEOF_REG, 5 }, 100 { "f6", GDB_SIZEOF_REG, 6 }, 101 { "f7", GDB_SIZEOF_REG, 7 }, 102 { "f8", GDB_SIZEOF_REG, 8 }, 103 { "f9", GDB_SIZEOF_REG, 9 }, 104 { "f10", GDB_SIZEOF_REG, 10 }, 105 { "f11", GDB_SIZEOF_REG, 11 }, 106 { "f12", GDB_SIZEOF_REG, 12 }, 107 { "f13", GDB_SIZEOF_REG, 13 }, 108 { "f14", GDB_SIZEOF_REG, 14 }, 109 { "f15", GDB_SIZEOF_REG, 15 }, 110 { "f16", GDB_SIZEOF_REG, 16 }, 111 { "f17", GDB_SIZEOF_REG, 17 }, 112 { "f18", GDB_SIZEOF_REG, 18 }, 113 { "f19", GDB_SIZEOF_REG, 19 }, 114 { "f20", GDB_SIZEOF_REG, 20 }, 115 { "f21", GDB_SIZEOF_REG, 21 }, 116 { "f22", GDB_SIZEOF_REG, 22 }, 117 { "f23", GDB_SIZEOF_REG, 23 }, 118 { "f24", GDB_SIZEOF_REG, 24 }, 119 { "f25", GDB_SIZEOF_REG, 25 }, 120 { "f26", GDB_SIZEOF_REG, 26 }, 121 { "f27", GDB_SIZEOF_REG, 27 }, 122 { "f28", GDB_SIZEOF_REG, 28 }, 123 { "f29", GDB_SIZEOF_REG, 29 }, 124 { "f30", GDB_SIZEOF_REG, 30 }, 125 { "f31", GDB_SIZEOF_REG, 31 }, 126 { "fsr", GDB_SIZEOF_REG, 0 }, 127 { "fir", GDB_SIZEOF_REG, 0 }, 128 }; 129 130 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) 131 { 132 int fp_reg; 133 134 if (regno < 0 || regno >= DBG_MAX_REG_NUM) 135 return -EINVAL; 136 137 if (dbg_reg_def[regno].offset != -1 && regno < 38) { 138 memcpy((void *)regs + dbg_reg_def[regno].offset, mem, 139 dbg_reg_def[regno].size); 140 } else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) { 141 /* FP registers 38 -> 69 */ 142 if (!(regs->cp0_status & ST0_CU1)) 143 return 0; 144 if (regno == 70) { 145 /* Process the fcr31/fsr (register 70) */ 146 memcpy((void *)¤t->thread.fpu.fcr31, mem, 147 dbg_reg_def[regno].size); 148 goto out_save; 149 } else if (regno == 71) { 150 /* Ignore the fir (register 71) */ 151 goto out_save; 152 } 153 fp_reg = dbg_reg_def[regno].offset; 154 memcpy((void *)¤t->thread.fpu.fpr[fp_reg], mem, 155 dbg_reg_def[regno].size); 156 out_save: 157 restore_fp(current); 158 } 159 160 return 0; 161 } 162 163 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) 164 { 165 int fp_reg; 166 167 if (regno >= DBG_MAX_REG_NUM || regno < 0) 168 return NULL; 169 170 if (dbg_reg_def[regno].offset != -1 && regno < 38) { 171 /* First 38 registers */ 172 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, 173 dbg_reg_def[regno].size); 174 } else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) { 175 /* FP registers 38 -> 69 */ 176 if (!(regs->cp0_status & ST0_CU1)) 177 goto out; 178 save_fp(current); 179 if (regno == 70) { 180 /* Process the fcr31/fsr (register 70) */ 181 memcpy(mem, (void *)¤t->thread.fpu.fcr31, 182 dbg_reg_def[regno].size); 183 goto out; 184 } else if (regno == 71) { 185 /* Ignore the fir (register 71) */ 186 memset(mem, 0, dbg_reg_def[regno].size); 187 goto out; 188 } 189 fp_reg = dbg_reg_def[regno].offset; 190 memcpy(mem, (void *)¤t->thread.fpu.fpr[fp_reg], 191 dbg_reg_def[regno].size); 192 } 193 194 out: 195 return dbg_reg_def[regno].name; 196 197 } 198 199 void arch_kgdb_breakpoint(void) 200 { 201 __asm__ __volatile__( 202 ".globl breakinst\n\t" 203 ".set\tnoreorder\n\t" 204 "nop\n" 205 "breakinst:\tbreak\n\t" 206 "nop\n\t" 207 ".set\treorder"); 208 } 209 210 static void kgdb_call_nmi_hook(void *ignored) 211 { 212 mm_segment_t old_fs; 213 214 old_fs = get_fs(); 215 set_fs(get_ds()); 216 217 kgdb_nmicallback(raw_smp_processor_id(), NULL); 218 219 set_fs(old_fs); 220 } 221 222 void kgdb_roundup_cpus(unsigned long flags) 223 { 224 local_irq_enable(); 225 smp_call_function(kgdb_call_nmi_hook, NULL, 0); 226 local_irq_disable(); 227 } 228 229 static int compute_signal(int tt) 230 { 231 struct hard_trap_info *ht; 232 233 for (ht = hard_trap_info; ht->tt && ht->signo; ht++) 234 if (ht->tt == tt) 235 return ht->signo; 236 237 return SIGHUP; /* default for things we don't know about */ 238 } 239 240 /* 241 * Similar to regs_to_gdb_regs() except that process is sleeping and so 242 * we may not be able to get all the info. 243 */ 244 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) 245 { 246 int reg; 247 struct thread_info *ti = task_thread_info(p); 248 unsigned long ksp = (unsigned long)ti + THREAD_SIZE - 32; 249 struct pt_regs *regs = (struct pt_regs *)ksp - 1; 250 #if (KGDB_GDB_REG_SIZE == 32) 251 u32 *ptr = (u32 *)gdb_regs; 252 #else 253 u64 *ptr = (u64 *)gdb_regs; 254 #endif 255 256 for (reg = 0; reg < 16; reg++) 257 *(ptr++) = regs->regs[reg]; 258 259 /* S0 - S7 */ 260 for (reg = 16; reg < 24; reg++) 261 *(ptr++) = regs->regs[reg]; 262 263 for (reg = 24; reg < 28; reg++) 264 *(ptr++) = 0; 265 266 /* GP, SP, FP, RA */ 267 for (reg = 28; reg < 32; reg++) 268 *(ptr++) = regs->regs[reg]; 269 270 *(ptr++) = regs->cp0_status; 271 *(ptr++) = regs->lo; 272 *(ptr++) = regs->hi; 273 *(ptr++) = regs->cp0_badvaddr; 274 *(ptr++) = regs->cp0_cause; 275 *(ptr++) = regs->cp0_epc; 276 } 277 278 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc) 279 { 280 regs->cp0_epc = pc; 281 } 282 283 /* 284 * Calls linux_debug_hook before the kernel dies. If KGDB is enabled, 285 * then try to fall into the debugger 286 */ 287 static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd, 288 void *ptr) 289 { 290 struct die_args *args = (struct die_args *)ptr; 291 struct pt_regs *regs = args->regs; 292 int trap = (regs->cp0_cause & 0x7c) >> 2; 293 mm_segment_t old_fs; 294 295 #ifdef CONFIG_KPROBES 296 /* 297 * Return immediately if the kprobes fault notifier has set 298 * DIE_PAGE_FAULT. 299 */ 300 if (cmd == DIE_PAGE_FAULT) 301 return NOTIFY_DONE; 302 #endif /* CONFIG_KPROBES */ 303 304 /* Userspace events, ignore. */ 305 if (user_mode(regs)) 306 return NOTIFY_DONE; 307 308 /* Kernel mode. Set correct address limit */ 309 old_fs = get_fs(); 310 set_fs(get_ds()); 311 312 if (atomic_read(&kgdb_active) != -1) 313 kgdb_nmicallback(smp_processor_id(), regs); 314 315 if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs)) { 316 set_fs(old_fs); 317 return NOTIFY_DONE; 318 } 319 320 if (atomic_read(&kgdb_setting_breakpoint)) 321 if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst)) 322 regs->cp0_epc += 4; 323 324 /* In SMP mode, __flush_cache_all does IPI */ 325 local_irq_enable(); 326 __flush_cache_all(); 327 328 set_fs(old_fs); 329 return NOTIFY_STOP; 330 } 331 332 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 333 int kgdb_ll_trap(int cmd, const char *str, 334 struct pt_regs *regs, long err, int trap, int sig) 335 { 336 struct die_args args = { 337 .regs = regs, 338 .str = str, 339 .err = err, 340 .trapnr = trap, 341 .signr = sig, 342 343 }; 344 345 if (!kgdb_io_module_registered) 346 return NOTIFY_DONE; 347 348 return kgdb_mips_notify(NULL, cmd, &args); 349 } 350 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 351 352 static struct notifier_block kgdb_notifier = { 353 .notifier_call = kgdb_mips_notify, 354 }; 355 356 /* 357 * Handle the 'c' command 358 */ 359 int kgdb_arch_handle_exception(int vector, int signo, int err_code, 360 char *remcom_in_buffer, char *remcom_out_buffer, 361 struct pt_regs *regs) 362 { 363 char *ptr; 364 unsigned long address; 365 366 switch (remcom_in_buffer[0]) { 367 case 'c': 368 /* handle the optional parameter */ 369 ptr = &remcom_in_buffer[1]; 370 if (kgdb_hex2long(&ptr, &address)) 371 regs->cp0_epc = address; 372 373 return 0; 374 } 375 376 return -1; 377 } 378 379 struct kgdb_arch arch_kgdb_ops; 380 381 /* 382 * We use kgdb_early_setup so that functions we need to call now don't 383 * cause trouble when called again later. 384 */ 385 int kgdb_arch_init(void) 386 { 387 union mips_instruction insn = { 388 .r_format = { 389 .opcode = spec_op, 390 .func = break_op, 391 } 392 }; 393 memcpy(arch_kgdb_ops.gdb_bpt_instr, insn.byte, BREAK_INSTR_SIZE); 394 395 register_die_notifier(&kgdb_notifier); 396 397 return 0; 398 } 399 400 /* 401 * kgdb_arch_exit - Perform any architecture specific uninitalization. 402 * 403 * This function will handle the uninitalization of any architecture 404 * specific callbacks, for dynamic registration and unregistration. 405 */ 406 void kgdb_arch_exit(void) 407 { 408 unregister_die_notifier(&kgdb_notifier); 409 } 410