xref: /openbmc/linux/arch/mips/kernel/kgdb.c (revision 4800cd83)
1 /*
2  *  Originally written by Glenn Engel, Lake Stevens Instrument Division
3  *
4  *  Contributed by HP Systems
5  *
6  *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
7  *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
8  *
9  *  Copyright (C) 1995 Andreas Busse
10  *
11  *  Copyright (C) 2003 MontaVista Software Inc.
12  *  Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
13  *
14  *  Copyright (C) 2004-2005 MontaVista Software Inc.
15  *  Author: Manish Lachwani, mlachwani@mvista.com or manish@koffee-break.com
16  *
17  *  Copyright (C) 2007-2008 Wind River Systems, Inc.
18  *  Author/Maintainer: Jason Wessel, jason.wessel@windriver.com
19  *
20  *  This file is licensed under the terms of the GNU General Public License
21  *  version 2. This program is licensed "as is" without any warranty of any
22  *  kind, whether express or implied.
23  */
24 
25 #include <linux/ptrace.h>		/* for linux pt_regs struct */
26 #include <linux/kgdb.h>
27 #include <linux/kdebug.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30 #include <asm/inst.h>
31 #include <asm/fpu.h>
32 #include <asm/cacheflush.h>
33 #include <asm/processor.h>
34 #include <asm/sigcontext.h>
35 
36 static struct hard_trap_info {
37 	unsigned char tt;	/* Trap type code for MIPS R3xxx and R4xxx */
38 	unsigned char signo;	/* Signal that we map this trap into */
39 } hard_trap_info[] = {
40 	{ 6, SIGBUS },		/* instruction bus error */
41 	{ 7, SIGBUS },		/* data bus error */
42 	{ 9, SIGTRAP },		/* break */
43 /*	{ 11, SIGILL },	*/	/* CPU unusable */
44 	{ 12, SIGFPE },		/* overflow */
45 	{ 13, SIGTRAP },	/* trap */
46 	{ 14, SIGSEGV },	/* virtual instruction cache coherency */
47 	{ 15, SIGFPE },		/* floating point exception */
48 	{ 23, SIGSEGV },	/* watch */
49 	{ 31, SIGSEGV },	/* virtual data cache coherency */
50 	{ 0, 0}			/* Must be last */
51 };
52 
53 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54 {
55 	{ "zero", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
56 	{ "at", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
57 	{ "v0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
58 	{ "v1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
59 	{ "a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
60 	{ "a1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
61 	{ "a2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
62 	{ "a3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
63 	{ "t0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
64 	{ "t1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
65 	{ "t2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
66 	{ "t3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
67 	{ "t4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
68 	{ "t5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
69 	{ "t6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
70 	{ "t7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
71 	{ "s0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
72 	{ "s1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
73 	{ "s2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
74 	{ "s3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
75 	{ "s4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
76 	{ "s5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
77 	{ "s6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
78 	{ "s7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
79 	{ "t8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
80 	{ "t9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
81 	{ "k0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
82 	{ "k1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
83 	{ "gp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
84 	{ "sp", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
85 	{ "s8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
86 	{ "ra", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
87 	{ "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_status) },
88 	{ "lo", GDB_SIZEOF_REG, offsetof(struct pt_regs, lo) },
89 	{ "hi", GDB_SIZEOF_REG, offsetof(struct pt_regs, hi) },
90 	{ "bad", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_badvaddr) },
91 	{ "cause", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_cause) },
92 	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, cp0_epc) },
93 	{ "f0", GDB_SIZEOF_REG, 0 },
94 	{ "f1", GDB_SIZEOF_REG, 1 },
95 	{ "f2", GDB_SIZEOF_REG, 2 },
96 	{ "f3", GDB_SIZEOF_REG, 3 },
97 	{ "f4", GDB_SIZEOF_REG, 4 },
98 	{ "f5", GDB_SIZEOF_REG, 5 },
99 	{ "f6", GDB_SIZEOF_REG, 6 },
100 	{ "f7", GDB_SIZEOF_REG, 7 },
101 	{ "f8", GDB_SIZEOF_REG, 8 },
102 	{ "f9", GDB_SIZEOF_REG, 9 },
103 	{ "f10", GDB_SIZEOF_REG, 10 },
104 	{ "f11", GDB_SIZEOF_REG, 11 },
105 	{ "f12", GDB_SIZEOF_REG, 12 },
106 	{ "f13", GDB_SIZEOF_REG, 13 },
107 	{ "f14", GDB_SIZEOF_REG, 14 },
108 	{ "f15", GDB_SIZEOF_REG, 15 },
109 	{ "f16", GDB_SIZEOF_REG, 16 },
110 	{ "f17", GDB_SIZEOF_REG, 17 },
111 	{ "f18", GDB_SIZEOF_REG, 18 },
112 	{ "f19", GDB_SIZEOF_REG, 19 },
113 	{ "f20", GDB_SIZEOF_REG, 20 },
114 	{ "f21", GDB_SIZEOF_REG, 21 },
115 	{ "f22", GDB_SIZEOF_REG, 22 },
116 	{ "f23", GDB_SIZEOF_REG, 23 },
117 	{ "f24", GDB_SIZEOF_REG, 24 },
118 	{ "f25", GDB_SIZEOF_REG, 25 },
119 	{ "f26", GDB_SIZEOF_REG, 26 },
120 	{ "f27", GDB_SIZEOF_REG, 27 },
121 	{ "f28", GDB_SIZEOF_REG, 28 },
122 	{ "f29", GDB_SIZEOF_REG, 29 },
123 	{ "f30", GDB_SIZEOF_REG, 30 },
124 	{ "f31", GDB_SIZEOF_REG, 31 },
125 	{ "fsr", GDB_SIZEOF_REG, 0 },
126 	{ "fir", GDB_SIZEOF_REG, 0 },
127 };
128 
129 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
130 {
131 	int fp_reg;
132 
133 	if (regno < 0 || regno >= DBG_MAX_REG_NUM)
134 		return -EINVAL;
135 
136 	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
137 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
138 		       dbg_reg_def[regno].size);
139 	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
140 		/* FP registers 38 -> 69 */
141 		if (!(regs->cp0_status & ST0_CU1))
142 			return 0;
143 		if (regno == 70) {
144 			/* Process the fcr31/fsr (register 70) */
145 			memcpy((void *)&current->thread.fpu.fcr31, mem,
146 			       dbg_reg_def[regno].size);
147 			goto out_save;
148 		} else if (regno == 71) {
149 			/* Ignore the fir (register 71) */
150 			goto out_save;
151 		}
152 		fp_reg = dbg_reg_def[regno].offset;
153 		memcpy((void *)&current->thread.fpu.fpr[fp_reg], mem,
154 		       dbg_reg_def[regno].size);
155 out_save:
156 		restore_fp(current);
157 	}
158 
159 	return 0;
160 }
161 
162 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
163 {
164 	int fp_reg;
165 
166 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
167 		return NULL;
168 
169 	if (dbg_reg_def[regno].offset != -1 && regno < 38) {
170 		/* First 38 registers */
171 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
172 		       dbg_reg_def[regno].size);
173 	} else if (current && dbg_reg_def[regno].offset != -1 && regno < 72) {
174 		/* FP registers 38 -> 69 */
175 		if (!(regs->cp0_status & ST0_CU1))
176 			goto out;
177 		save_fp(current);
178 		if (regno == 70) {
179 			/* Process the fcr31/fsr (register 70) */
180 			memcpy(mem, (void *)&current->thread.fpu.fcr31,
181 			       dbg_reg_def[regno].size);
182 			goto out;
183 		} else if (regno == 71) {
184 			/* Ignore the fir (register 71) */
185 			memset(mem, 0, dbg_reg_def[regno].size);
186 			goto out;
187 		}
188 		fp_reg = dbg_reg_def[regno].offset;
189 		memcpy(mem, (void *)&current->thread.fpu.fpr[fp_reg],
190 		       dbg_reg_def[regno].size);
191 	}
192 
193 out:
194 	return dbg_reg_def[regno].name;
195 
196 }
197 
198 void arch_kgdb_breakpoint(void)
199 {
200 	__asm__ __volatile__(
201 		".globl breakinst\n\t"
202 		".set\tnoreorder\n\t"
203 		"nop\n"
204 		"breakinst:\tbreak\n\t"
205 		"nop\n\t"
206 		".set\treorder");
207 }
208 
209 static void kgdb_call_nmi_hook(void *ignored)
210 {
211 	kgdb_nmicallback(raw_smp_processor_id(), NULL);
212 }
213 
214 void kgdb_roundup_cpus(unsigned long flags)
215 {
216 	local_irq_enable();
217 	smp_call_function(kgdb_call_nmi_hook, NULL, 0);
218 	local_irq_disable();
219 }
220 
221 static int compute_signal(int tt)
222 {
223 	struct hard_trap_info *ht;
224 
225 	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
226 		if (ht->tt == tt)
227 			return ht->signo;
228 
229 	return SIGHUP;		/* default for things we don't know about */
230 }
231 
232 /*
233  * Similar to regs_to_gdb_regs() except that process is sleeping and so
234  * we may not be able to get all the info.
235  */
236 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
237 {
238 	int reg;
239 	struct thread_info *ti = task_thread_info(p);
240 	unsigned long ksp = (unsigned long)ti + THREAD_SIZE - 32;
241 	struct pt_regs *regs = (struct pt_regs *)ksp - 1;
242 #if (KGDB_GDB_REG_SIZE == 32)
243 	u32 *ptr = (u32 *)gdb_regs;
244 #else
245 	u64 *ptr = (u64 *)gdb_regs;
246 #endif
247 
248 	for (reg = 0; reg < 16; reg++)
249 		*(ptr++) = regs->regs[reg];
250 
251 	/* S0 - S7 */
252 	for (reg = 16; reg < 24; reg++)
253 		*(ptr++) = regs->regs[reg];
254 
255 	for (reg = 24; reg < 28; reg++)
256 		*(ptr++) = 0;
257 
258 	/* GP, SP, FP, RA */
259 	for (reg = 28; reg < 32; reg++)
260 		*(ptr++) = regs->regs[reg];
261 
262 	*(ptr++) = regs->cp0_status;
263 	*(ptr++) = regs->lo;
264 	*(ptr++) = regs->hi;
265 	*(ptr++) = regs->cp0_badvaddr;
266 	*(ptr++) = regs->cp0_cause;
267 	*(ptr++) = regs->cp0_epc;
268 }
269 
270 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
271 {
272 	regs->cp0_epc = pc;
273 }
274 
275 /*
276  * Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
277  * then try to fall into the debugger
278  */
279 static int kgdb_mips_notify(struct notifier_block *self, unsigned long cmd,
280 			    void *ptr)
281 {
282 	struct die_args *args = (struct die_args *)ptr;
283 	struct pt_regs *regs = args->regs;
284 	int trap = (regs->cp0_cause & 0x7c) >> 2;
285 
286 	/* Userspace events, ignore. */
287 	if (user_mode(regs))
288 		return NOTIFY_DONE;
289 
290 	if (atomic_read(&kgdb_active) != -1)
291 		kgdb_nmicallback(smp_processor_id(), regs);
292 
293 	if (kgdb_handle_exception(trap, compute_signal(trap), cmd, regs))
294 		return NOTIFY_DONE;
295 
296 	if (atomic_read(&kgdb_setting_breakpoint))
297 		if ((trap == 9) && (regs->cp0_epc == (unsigned long)breakinst))
298 			regs->cp0_epc += 4;
299 
300 	/* In SMP mode, __flush_cache_all does IPI */
301 	local_irq_enable();
302 	__flush_cache_all();
303 
304 	return NOTIFY_STOP;
305 }
306 
307 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
308 int kgdb_ll_trap(int cmd, const char *str,
309 		 struct pt_regs *regs, long err, int trap, int sig)
310 {
311 	struct die_args args = {
312 		.regs	= regs,
313 		.str	= str,
314 		.err	= err,
315 		.trapnr	= trap,
316 		.signr	= sig,
317 
318 	};
319 
320 	if (!kgdb_io_module_registered)
321 		return NOTIFY_DONE;
322 
323 	return kgdb_mips_notify(NULL, cmd, &args);
324 }
325 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
326 
327 static struct notifier_block kgdb_notifier = {
328 	.notifier_call = kgdb_mips_notify,
329 };
330 
331 /*
332  * Handle the 'c' command
333  */
334 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
335 			       char *remcom_in_buffer, char *remcom_out_buffer,
336 			       struct pt_regs *regs)
337 {
338 	char *ptr;
339 	unsigned long address;
340 
341 	switch (remcom_in_buffer[0]) {
342 	case 'c':
343 		/* handle the optional parameter */
344 		ptr = &remcom_in_buffer[1];
345 		if (kgdb_hex2long(&ptr, &address))
346 			regs->cp0_epc = address;
347 
348 		return 0;
349 	}
350 
351 	return -1;
352 }
353 
354 struct kgdb_arch arch_kgdb_ops;
355 
356 /*
357  * We use kgdb_early_setup so that functions we need to call now don't
358  * cause trouble when called again later.
359  */
360 int kgdb_arch_init(void)
361 {
362 	union mips_instruction insn = {
363 		.r_format = {
364 			.opcode = spec_op,
365 			.func   = break_op,
366 		}
367 	};
368 	memcpy(arch_kgdb_ops.gdb_bpt_instr, insn.byte, BREAK_INSTR_SIZE);
369 
370 	register_die_notifier(&kgdb_notifier);
371 
372 	return 0;
373 }
374 
375 /*
376  *	kgdb_arch_exit - Perform any architecture specific uninitalization.
377  *
378  *	This function will handle the uninitalization of any architecture
379  *	specific callbacks, for dynamic registration and unregistration.
380  */
381 void kgdb_arch_exit(void)
382 {
383 	unregister_die_notifier(&kgdb_notifier);
384 }
385