1 /* 2 * i8253.c 8253/PIT functions 3 * 4 */ 5 #include <linux/clockchips.h> 6 #include <linux/init.h> 7 #include <linux/interrupt.h> 8 #include <linux/jiffies.h> 9 #include <linux/module.h> 10 #include <linux/smp.h> 11 #include <linux/spinlock.h> 12 13 #include <asm/delay.h> 14 #include <asm/i8253.h> 15 #include <asm/io.h> 16 #include <asm/time.h> 17 18 DEFINE_SPINLOCK(i8253_lock); 19 EXPORT_SYMBOL(i8253_lock); 20 21 /* 22 * Initialize the PIT timer. 23 * 24 * This is also called after resume to bring the PIT into operation again. 25 */ 26 static void init_pit_timer(enum clock_event_mode mode, 27 struct clock_event_device *evt) 28 { 29 spin_lock(&i8253_lock); 30 31 switch(mode) { 32 case CLOCK_EVT_MODE_PERIODIC: 33 /* binary, mode 2, LSB/MSB, ch 0 */ 34 outb_p(0x34, PIT_MODE); 35 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ 36 outb(LATCH >> 8 , PIT_CH0); /* MSB */ 37 break; 38 39 case CLOCK_EVT_MODE_SHUTDOWN: 40 case CLOCK_EVT_MODE_UNUSED: 41 if (evt->mode == CLOCK_EVT_MODE_PERIODIC || 42 evt->mode == CLOCK_EVT_MODE_ONESHOT) { 43 outb_p(0x30, PIT_MODE); 44 outb_p(0, PIT_CH0); 45 outb_p(0, PIT_CH0); 46 } 47 break; 48 49 case CLOCK_EVT_MODE_ONESHOT: 50 /* One shot setup */ 51 outb_p(0x38, PIT_MODE); 52 break; 53 54 case CLOCK_EVT_MODE_RESUME: 55 /* Nothing to do here */ 56 break; 57 } 58 spin_unlock(&i8253_lock); 59 } 60 61 /* 62 * Program the next event in oneshot mode 63 * 64 * Delta is given in PIT ticks 65 */ 66 static int pit_next_event(unsigned long delta, struct clock_event_device *evt) 67 { 68 spin_lock(&i8253_lock); 69 outb_p(delta & 0xff , PIT_CH0); /* LSB */ 70 outb(delta >> 8 , PIT_CH0); /* MSB */ 71 spin_unlock(&i8253_lock); 72 73 return 0; 74 } 75 76 /* 77 * On UP the PIT can serve all of the possible timer functions. On SMP systems 78 * it can be solely used for the global tick. 79 * 80 * The profiling and update capabilites are switched off once the local apic is 81 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC - 82 * !using_apic_timer decisions in do_timer_interrupt_hook() 83 */ 84 static struct clock_event_device pit_clockevent = { 85 .name = "pit", 86 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, 87 .set_mode = init_pit_timer, 88 .set_next_event = pit_next_event, 89 .irq = 0, 90 }; 91 92 static irqreturn_t timer_interrupt(int irq, void *dev_id) 93 { 94 pit_clockevent.event_handler(&pit_clockevent); 95 96 return IRQ_HANDLED; 97 } 98 99 static struct irqaction irq0 = { 100 .handler = timer_interrupt, 101 .flags = IRQF_DISABLED | IRQF_NOBALANCING, 102 .name = "timer" 103 }; 104 105 /* 106 * Initialize the conversion factor and the min/max deltas of the clock event 107 * structure and register the clock event source with the framework. 108 */ 109 void __init setup_pit_timer(void) 110 { 111 struct clock_event_device *cd = &pit_clockevent; 112 unsigned int cpu = smp_processor_id(); 113 114 /* 115 * Start pit with the boot cpu mask and make it global after the 116 * IO_APIC has been initialized. 117 */ 118 cd->cpumask = cpumask_of(cpu); 119 clockevent_set_clock(cd, CLOCK_TICK_RATE); 120 cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd); 121 cd->min_delta_ns = clockevent_delta2ns(0xF, cd); 122 clockevents_register_device(cd); 123 124 setup_irq(0, &irq0); 125 } 126 127 /* 128 * Since the PIT overflows every tick, its not very useful 129 * to just read by itself. So use jiffies to emulate a free 130 * running counter: 131 */ 132 static cycle_t pit_read(struct clocksource *cs) 133 { 134 unsigned long flags; 135 int count; 136 u32 jifs; 137 static int old_count; 138 static u32 old_jifs; 139 140 spin_lock_irqsave(&i8253_lock, flags); 141 /* 142 * Although our caller may have the read side of xtime_lock, 143 * this is now a seqlock, and we are cheating in this routine 144 * by having side effects on state that we cannot undo if 145 * there is a collision on the seqlock and our caller has to 146 * retry. (Namely, old_jifs and old_count.) So we must treat 147 * jiffies as volatile despite the lock. We read jiffies 148 * before latching the timer count to guarantee that although 149 * the jiffies value might be older than the count (that is, 150 * the counter may underflow between the last point where 151 * jiffies was incremented and the point where we latch the 152 * count), it cannot be newer. 153 */ 154 jifs = jiffies; 155 outb_p(0x00, PIT_MODE); /* latch the count ASAP */ 156 count = inb_p(PIT_CH0); /* read the latched count */ 157 count |= inb_p(PIT_CH0) << 8; 158 159 /* VIA686a test code... reset the latch if count > max + 1 */ 160 if (count > LATCH) { 161 outb_p(0x34, PIT_MODE); 162 outb_p(LATCH & 0xff, PIT_CH0); 163 outb(LATCH >> 8, PIT_CH0); 164 count = LATCH - 1; 165 } 166 167 /* 168 * It's possible for count to appear to go the wrong way for a 169 * couple of reasons: 170 * 171 * 1. The timer counter underflows, but we haven't handled the 172 * resulting interrupt and incremented jiffies yet. 173 * 2. Hardware problem with the timer, not giving us continuous time, 174 * the counter does small "jumps" upwards on some Pentium systems, 175 * (see c't 95/10 page 335 for Neptun bug.) 176 * 177 * Previous attempts to handle these cases intelligently were 178 * buggy, so we just do the simple thing now. 179 */ 180 if (count > old_count && jifs == old_jifs) { 181 count = old_count; 182 } 183 old_count = count; 184 old_jifs = jifs; 185 186 spin_unlock_irqrestore(&i8253_lock, flags); 187 188 count = (LATCH - 1) - count; 189 190 return (cycle_t)(jifs * LATCH) + count; 191 } 192 193 static struct clocksource clocksource_pit = { 194 .name = "pit", 195 .rating = 110, 196 .read = pit_read, 197 .mask = CLOCKSOURCE_MASK(32), 198 .mult = 0, 199 .shift = 20, 200 }; 201 202 static int __init init_pit_clocksource(void) 203 { 204 if (num_possible_cpus() > 1) /* PIT does not scale! */ 205 return 0; 206 207 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20); 208 return clocksource_register(&clocksource_pit); 209 } 210 arch_initcall(init_pit_clocksource); 211