1 /* 2 * Copyright (C) 2014 Imagination Technologies 3 * Author: Paul Burton <paul.burton@imgtec.com> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the 7 * Free Software Foundation; either version 2 of the License, or (at your 8 * option) any later version. 9 */ 10 11 #include <linux/binfmts.h> 12 #include <linux/elf.h> 13 #include <linux/export.h> 14 #include <linux/sched.h> 15 16 #include <asm/cpu-features.h> 17 #include <asm/cpu-info.h> 18 19 /* Whether to accept legacy-NaN and 2008-NaN user binaries. */ 20 bool mips_use_nan_legacy; 21 bool mips_use_nan_2008; 22 23 /* FPU modes */ 24 enum { 25 FP_FRE, 26 FP_FR0, 27 FP_FR1, 28 }; 29 30 /** 31 * struct mode_req - ABI FPU mode requirements 32 * @single: The program being loaded needs an FPU but it will only issue 33 * single precision instructions meaning that it can execute in 34 * either FR0 or FR1. 35 * @soft: The soft(-float) requirement means that the program being 36 * loaded needs has no FPU dependency at all (i.e. it has no 37 * FPU instructions). 38 * @fr1: The program being loaded depends on FPU being in FR=1 mode. 39 * @frdefault: The program being loaded depends on the default FPU mode. 40 * That is FR0 for O32 and FR1 for N32/N64. 41 * @fre: The program being loaded depends on FPU with FRE=1. This mode is 42 * a bridge which uses FR=1 whilst still being able to maintain 43 * full compatibility with pre-existing code using the O32 FP32 44 * ABI. 45 * 46 * More information about the FP ABIs can be found here: 47 * 48 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up 49 * 50 */ 51 52 struct mode_req { 53 bool single; 54 bool soft; 55 bool fr1; 56 bool frdefault; 57 bool fre; 58 }; 59 60 static const struct mode_req fpu_reqs[] = { 61 [MIPS_ABI_FP_ANY] = { true, true, true, true, true }, 62 [MIPS_ABI_FP_DOUBLE] = { false, false, false, true, true }, 63 [MIPS_ABI_FP_SINGLE] = { true, false, false, false, false }, 64 [MIPS_ABI_FP_SOFT] = { false, true, false, false, false }, 65 [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false }, 66 [MIPS_ABI_FP_XX] = { false, false, true, true, true }, 67 [MIPS_ABI_FP_64] = { false, false, true, false, false }, 68 [MIPS_ABI_FP_64A] = { false, false, true, false, true } 69 }; 70 71 /* 72 * Mode requirements when .MIPS.abiflags is not present in the ELF. 73 * Not present means that everything is acceptable except FR1. 74 */ 75 static struct mode_req none_req = { true, true, false, true, true }; 76 77 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf, 78 bool is_interp, struct arch_elf_state *state) 79 { 80 union { 81 struct elf32_hdr e32; 82 struct elf64_hdr e64; 83 } *ehdr = _ehdr; 84 struct elf32_phdr *phdr32 = _phdr; 85 struct elf64_phdr *phdr64 = _phdr; 86 struct mips_elf_abiflags_v0 abiflags; 87 bool elf32; 88 u32 flags; 89 int ret; 90 91 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 92 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 93 94 /* Let's see if this is an O32 ELF */ 95 if (elf32) { 96 if (flags & EF_MIPS_FP64) { 97 /* 98 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it 99 * later if needed 100 */ 101 if (is_interp) 102 state->interp_fp_abi = MIPS_ABI_FP_OLD_64; 103 else 104 state->fp_abi = MIPS_ABI_FP_OLD_64; 105 } 106 if (phdr32->p_type != PT_MIPS_ABIFLAGS) 107 return 0; 108 109 if (phdr32->p_filesz < sizeof(abiflags)) 110 return -EINVAL; 111 112 ret = kernel_read(elf, phdr32->p_offset, 113 (char *)&abiflags, 114 sizeof(abiflags)); 115 } else { 116 if (phdr64->p_type != PT_MIPS_ABIFLAGS) 117 return 0; 118 if (phdr64->p_filesz < sizeof(abiflags)) 119 return -EINVAL; 120 121 ret = kernel_read(elf, phdr64->p_offset, 122 (char *)&abiflags, 123 sizeof(abiflags)); 124 } 125 126 if (ret < 0) 127 return ret; 128 if (ret != sizeof(abiflags)) 129 return -EIO; 130 131 /* Record the required FP ABIs for use by mips_check_elf */ 132 if (is_interp) 133 state->interp_fp_abi = abiflags.fp_abi; 134 else 135 state->fp_abi = abiflags.fp_abi; 136 137 return 0; 138 } 139 140 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr, 141 struct arch_elf_state *state) 142 { 143 union { 144 struct elf32_hdr e32; 145 struct elf64_hdr e64; 146 } *ehdr = _ehdr; 147 union { 148 struct elf32_hdr e32; 149 struct elf64_hdr e64; 150 } *iehdr = _interp_ehdr; 151 struct mode_req prog_req, interp_req; 152 int fp_abi, interp_fp_abi, abi0, abi1, max_abi; 153 bool elf32; 154 u32 flags; 155 156 elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 157 flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags; 158 159 /* 160 * Determine the NaN personality, reject the binary if not allowed. 161 * Also ensure that any interpreter matches the executable. 162 */ 163 if (flags & EF_MIPS_NAN2008) { 164 if (mips_use_nan_2008) 165 state->nan_2008 = 1; 166 else 167 return -ENOEXEC; 168 } else { 169 if (mips_use_nan_legacy) 170 state->nan_2008 = 0; 171 else 172 return -ENOEXEC; 173 } 174 if (has_interpreter) { 175 bool ielf32; 176 u32 iflags; 177 178 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32; 179 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags; 180 181 if ((flags ^ iflags) & EF_MIPS_NAN2008) 182 return -ELIBBAD; 183 } 184 185 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 186 return 0; 187 188 fp_abi = state->fp_abi; 189 190 if (has_interpreter) { 191 interp_fp_abi = state->interp_fp_abi; 192 193 abi0 = min(fp_abi, interp_fp_abi); 194 abi1 = max(fp_abi, interp_fp_abi); 195 } else { 196 abi0 = abi1 = fp_abi; 197 } 198 199 if (elf32 && !(flags & EF_MIPS_ABI2)) { 200 /* Default to a mode capable of running code expecting FR=0 */ 201 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0; 202 203 /* Allow all ABIs we know about */ 204 max_abi = MIPS_ABI_FP_64A; 205 } else { 206 /* MIPS64 code always uses FR=1, thus the default is easy */ 207 state->overall_fp_mode = FP_FR1; 208 209 /* Disallow access to the various FPXX & FP64 ABIs */ 210 max_abi = MIPS_ABI_FP_SOFT; 211 } 212 213 if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) || 214 (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN)) 215 return -ELIBBAD; 216 217 /* It's time to determine the FPU mode requirements */ 218 prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0]; 219 interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1]; 220 221 /* 222 * Check whether the program's and interp's ABIs have a matching FPU 223 * mode requirement. 224 */ 225 prog_req.single = interp_req.single && prog_req.single; 226 prog_req.soft = interp_req.soft && prog_req.soft; 227 prog_req.fr1 = interp_req.fr1 && prog_req.fr1; 228 prog_req.frdefault = interp_req.frdefault && prog_req.frdefault; 229 prog_req.fre = interp_req.fre && prog_req.fre; 230 231 /* 232 * Determine the desired FPU mode 233 * 234 * Decision making: 235 * 236 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This 237 * means that we have a combination of program and interpreter 238 * that inherently require the hybrid FP mode. 239 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or 240 * fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU 241 * instructions so we don't care about the mode. We will simply use 242 * the one preferred by the hardware. In fpxx case, that ABI can 243 * handle both FR=1 and FR=0, so, again, we simply choose the one 244 * preferred by the hardware. Next, if we only use single-precision 245 * FPU instructions, and the default ABI FPU mode is not good 246 * (ie single + any ABI combination), we set again the FPU mode to the 247 * one is preferred by the hardware. Next, if we know that the code 248 * will only use single-precision instructions, shown by single being 249 * true but frdefault being false, then we again set the FPU mode to 250 * the one that is preferred by the hardware. 251 * - We want FP_FR1 if that's the only matching mode and the default one 252 * is not good. 253 * - Return with -ELIBADD if we can't find a matching FPU mode. 254 */ 255 if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1) 256 state->overall_fp_mode = FP_FRE; 257 else if ((prog_req.fr1 && prog_req.frdefault) || 258 (prog_req.single && !prog_req.frdefault)) 259 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */ 260 state->overall_fp_mode = ((current_cpu_data.fpu_id & MIPS_FPIR_F64) && 261 cpu_has_mips_r2_r6) ? 262 FP_FR1 : FP_FR0; 263 else if (prog_req.fr1) 264 state->overall_fp_mode = FP_FR1; 265 else if (!prog_req.fre && !prog_req.frdefault && 266 !prog_req.fr1 && !prog_req.single && !prog_req.soft) 267 return -ELIBBAD; 268 269 return 0; 270 } 271 272 static inline void set_thread_fp_mode(int hybrid, int regs32) 273 { 274 if (hybrid) 275 set_thread_flag(TIF_HYBRID_FPREGS); 276 else 277 clear_thread_flag(TIF_HYBRID_FPREGS); 278 if (regs32) 279 set_thread_flag(TIF_32BIT_FPREGS); 280 else 281 clear_thread_flag(TIF_32BIT_FPREGS); 282 } 283 284 void mips_set_personality_fp(struct arch_elf_state *state) 285 { 286 /* 287 * This function is only ever called for O32 ELFs so we should 288 * not be worried about N32/N64 binaries. 289 */ 290 291 if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 292 return; 293 294 switch (state->overall_fp_mode) { 295 case FP_FRE: 296 set_thread_fp_mode(1, 0); 297 break; 298 case FP_FR0: 299 set_thread_fp_mode(0, 1); 300 break; 301 case FP_FR1: 302 set_thread_fp_mode(0, 0); 303 break; 304 default: 305 BUG(); 306 } 307 } 308 309 /* 310 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode 311 * in FCSR according to the ELF NaN personality. 312 */ 313 void mips_set_personality_nan(struct arch_elf_state *state) 314 { 315 struct cpuinfo_mips *c = &boot_cpu_data; 316 struct task_struct *t = current; 317 318 t->thread.fpu.fcr31 = c->fpu_csr31; 319 switch (state->nan_2008) { 320 case 0: 321 break; 322 case 1: 323 if (!(c->fpu_msk31 & FPU_CSR_NAN2008)) 324 t->thread.fpu.fcr31 |= FPU_CSR_NAN2008; 325 if (!(c->fpu_msk31 & FPU_CSR_ABS2008)) 326 t->thread.fpu.fcr31 |= FPU_CSR_ABS2008; 327 break; 328 default: 329 BUG(); 330 } 331 } 332 333 int mips_elf_read_implies_exec(void *elf_ex, int exstack) 334 { 335 if (exstack != EXSTACK_DISABLE_X) { 336 /* The binary doesn't request a non-executable stack */ 337 return 1; 338 } 339 340 if (!cpu_has_rixi) { 341 /* The CPU doesn't support non-executable memory */ 342 return 1; 343 } 344 345 return 0; 346 } 347 EXPORT_SYMBOL(mips_elf_read_implies_exec); 348