xref: /openbmc/linux/arch/mips/kernel/cevt-r4k.c (revision 82e6fdd6)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 MIPS Technologies, Inc.
7  * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8  */
9 #include <linux/clockchips.h>
10 #include <linux/interrupt.h>
11 #include <linux/percpu.h>
12 #include <linux/smp.h>
13 #include <linux/irq.h>
14 
15 #include <asm/time.h>
16 #include <asm/cevt-r4k.h>
17 
18 static int mips_next_event(unsigned long delta,
19 			   struct clock_event_device *evt)
20 {
21 	unsigned int cnt;
22 	int res;
23 
24 	cnt = read_c0_count();
25 	cnt += delta;
26 	write_c0_compare(cnt);
27 	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
28 	return res;
29 }
30 
31 /**
32  * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
33  *
34  * Running under virtualisation can introduce overhead into mips_next_event() in
35  * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
36  * potentially with an unnatural frequency, which makes a fixed min_delta_ns
37  * value inappropriate as it may be too small.
38  *
39  * It can also introduce occasional latency from the guest being descheduled.
40  *
41  * This function calculates a good minimum delta based roughly on the 75th
42  * percentile of the time taken to do the mips_next_event() sequence, in order
43  * to handle potentially higher overhead while also eliminating outliers due to
44  * unpredictable hypervisor latency (which can be handled by retries).
45  *
46  * Return:	An appropriate minimum delta for the clock event device.
47  */
48 static unsigned int calculate_min_delta(void)
49 {
50 	unsigned int cnt, i, j, k, l;
51 	unsigned int buf1[4], buf2[3];
52 	unsigned int min_delta;
53 
54 	/*
55 	 * Calculate the median of 5 75th percentiles of 5 samples of how long
56 	 * it takes to set CP0_Compare = CP0_Count + delta.
57 	 */
58 	for (i = 0; i < 5; ++i) {
59 		for (j = 0; j < 5; ++j) {
60 			/*
61 			 * This is like the code in mips_next_event(), and
62 			 * directly measures the borderline "safe" delta.
63 			 */
64 			cnt = read_c0_count();
65 			write_c0_compare(cnt);
66 			cnt = read_c0_count() - cnt;
67 
68 			/* Sorted insert into buf1 */
69 			for (k = 0; k < j; ++k) {
70 				if (cnt < buf1[k]) {
71 					l = min_t(unsigned int,
72 						  j, ARRAY_SIZE(buf1) - 1);
73 					for (; l > k; --l)
74 						buf1[l] = buf1[l - 1];
75 					break;
76 				}
77 			}
78 			if (k < ARRAY_SIZE(buf1))
79 				buf1[k] = cnt;
80 		}
81 
82 		/* Sorted insert of 75th percentile into buf2 */
83 		for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
84 			if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
85 				l = min_t(unsigned int,
86 					  i, ARRAY_SIZE(buf2) - 1);
87 				for (; l > k; --l)
88 					buf2[l] = buf2[l - 1];
89 				break;
90 			}
91 		}
92 		if (k < ARRAY_SIZE(buf2))
93 			buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
94 	}
95 
96 	/* Use 2 * median of 75th percentiles */
97 	min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
98 
99 	/* Don't go too low */
100 	if (min_delta < 0x300)
101 		min_delta = 0x300;
102 
103 	pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
104 		 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
105 	return min_delta;
106 }
107 
108 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
109 int cp0_timer_irq_installed;
110 
111 /*
112  * Possibly handle a performance counter interrupt.
113  * Return true if the timer interrupt should not be checked
114  */
115 static inline int handle_perf_irq(int r2)
116 {
117 	/*
118 	 * The performance counter overflow interrupt may be shared with the
119 	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
120 	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
121 	 * and we can't reliably determine if a counter interrupt has also
122 	 * happened (!r2) then don't check for a timer interrupt.
123 	 */
124 	return (cp0_perfcount_irq < 0) &&
125 		perf_irq() == IRQ_HANDLED &&
126 		!r2;
127 }
128 
129 irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
130 {
131 	const int r2 = cpu_has_mips_r2_r6;
132 	struct clock_event_device *cd;
133 	int cpu = smp_processor_id();
134 
135 	/*
136 	 * Suckage alert:
137 	 * Before R2 of the architecture there was no way to see if a
138 	 * performance counter interrupt was pending, so we have to run
139 	 * the performance counter interrupt handler anyway.
140 	 */
141 	if (handle_perf_irq(r2))
142 		return IRQ_HANDLED;
143 
144 	/*
145 	 * The same applies to performance counter interrupts.	But with the
146 	 * above we now know that the reason we got here must be a timer
147 	 * interrupt.  Being the paranoiacs we are we check anyway.
148 	 */
149 	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
150 		/* Clear Count/Compare Interrupt */
151 		write_c0_compare(read_c0_compare());
152 		cd = &per_cpu(mips_clockevent_device, cpu);
153 		cd->event_handler(cd);
154 
155 		return IRQ_HANDLED;
156 	}
157 
158 	return IRQ_NONE;
159 }
160 
161 struct irqaction c0_compare_irqaction = {
162 	.handler = c0_compare_interrupt,
163 	/*
164 	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
165 	 * such as perf counter and FDC interrupts.
166 	 */
167 	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
168 	.name = "timer",
169 };
170 
171 
172 void mips_event_handler(struct clock_event_device *dev)
173 {
174 }
175 
176 /*
177  * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
178  */
179 static int c0_compare_int_pending(void)
180 {
181 	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
182 	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
183 }
184 
185 /*
186  * Compare interrupt can be routed and latched outside the core,
187  * so wait up to worst case number of cycle counter ticks for timer interrupt
188  * changes to propagate to the cause register.
189  */
190 #define COMPARE_INT_SEEN_TICKS 50
191 
192 int c0_compare_int_usable(void)
193 {
194 	unsigned int delta;
195 	unsigned int cnt;
196 
197 #ifdef CONFIG_KVM_GUEST
198     return 1;
199 #endif
200 
201 	/*
202 	 * IP7 already pending?	 Try to clear it by acking the timer.
203 	 */
204 	if (c0_compare_int_pending()) {
205 		cnt = read_c0_count();
206 		write_c0_compare(cnt);
207 		back_to_back_c0_hazard();
208 		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
209 			if (!c0_compare_int_pending())
210 				break;
211 		if (c0_compare_int_pending())
212 			return 0;
213 	}
214 
215 	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
216 		cnt = read_c0_count();
217 		cnt += delta;
218 		write_c0_compare(cnt);
219 		back_to_back_c0_hazard();
220 		if ((int)(read_c0_count() - cnt) < 0)
221 		    break;
222 		/* increase delta if the timer was already expired */
223 	}
224 
225 	while ((int)(read_c0_count() - cnt) <= 0)
226 		;	/* Wait for expiry  */
227 
228 	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
229 		if (c0_compare_int_pending())
230 			break;
231 	if (!c0_compare_int_pending())
232 		return 0;
233 	cnt = read_c0_count();
234 	write_c0_compare(cnt);
235 	back_to_back_c0_hazard();
236 	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
237 		if (!c0_compare_int_pending())
238 			break;
239 	if (c0_compare_int_pending())
240 		return 0;
241 
242 	/*
243 	 * Feels like a real count / compare timer.
244 	 */
245 	return 1;
246 }
247 
248 unsigned int __weak get_c0_compare_int(void)
249 {
250 	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
251 }
252 
253 int r4k_clockevent_init(void)
254 {
255 	unsigned int cpu = smp_processor_id();
256 	struct clock_event_device *cd;
257 	unsigned int irq, min_delta;
258 
259 	if (!cpu_has_counter || !mips_hpt_frequency)
260 		return -ENXIO;
261 
262 	if (!c0_compare_int_usable())
263 		return -ENXIO;
264 
265 	/*
266 	 * With vectored interrupts things are getting platform specific.
267 	 * get_c0_compare_int is a hook to allow a platform to return the
268 	 * interrupt number of its liking.
269 	 */
270 	irq = get_c0_compare_int();
271 
272 	cd = &per_cpu(mips_clockevent_device, cpu);
273 
274 	cd->name		= "MIPS";
275 	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
276 				  CLOCK_EVT_FEAT_C3STOP |
277 				  CLOCK_EVT_FEAT_PERCPU;
278 
279 	min_delta		= calculate_min_delta();
280 
281 	cd->rating		= 300;
282 	cd->irq			= irq;
283 	cd->cpumask		= cpumask_of(cpu);
284 	cd->set_next_event	= mips_next_event;
285 	cd->event_handler	= mips_event_handler;
286 
287 	clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
288 
289 	if (cp0_timer_irq_installed)
290 		return 0;
291 
292 	cp0_timer_irq_installed = 1;
293 
294 	setup_irq(irq, &c0_compare_irqaction);
295 
296 	return 0;
297 }
298 
299