1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2007 MIPS Technologies, Inc. 7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> 8 */ 9 #include <linux/clockchips.h> 10 #include <linux/interrupt.h> 11 #include <linux/cpufreq.h> 12 #include <linux/percpu.h> 13 #include <linux/smp.h> 14 #include <linux/irq.h> 15 16 #include <asm/time.h> 17 #include <asm/cevt-r4k.h> 18 19 static int mips_next_event(unsigned long delta, 20 struct clock_event_device *evt) 21 { 22 unsigned int cnt; 23 int res; 24 25 cnt = read_c0_count(); 26 cnt += delta; 27 write_c0_compare(cnt); 28 res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; 29 return res; 30 } 31 32 /** 33 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event(). 34 * 35 * Running under virtualisation can introduce overhead into mips_next_event() in 36 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers, 37 * potentially with an unnatural frequency, which makes a fixed min_delta_ns 38 * value inappropriate as it may be too small. 39 * 40 * It can also introduce occasional latency from the guest being descheduled. 41 * 42 * This function calculates a good minimum delta based roughly on the 75th 43 * percentile of the time taken to do the mips_next_event() sequence, in order 44 * to handle potentially higher overhead while also eliminating outliers due to 45 * unpredictable hypervisor latency (which can be handled by retries). 46 * 47 * Return: An appropriate minimum delta for the clock event device. 48 */ 49 static unsigned int calculate_min_delta(void) 50 { 51 unsigned int cnt, i, j, k, l; 52 unsigned int buf1[4], buf2[3]; 53 unsigned int min_delta; 54 55 /* 56 * Calculate the median of 5 75th percentiles of 5 samples of how long 57 * it takes to set CP0_Compare = CP0_Count + delta. 58 */ 59 for (i = 0; i < 5; ++i) { 60 for (j = 0; j < 5; ++j) { 61 /* 62 * This is like the code in mips_next_event(), and 63 * directly measures the borderline "safe" delta. 64 */ 65 cnt = read_c0_count(); 66 write_c0_compare(cnt); 67 cnt = read_c0_count() - cnt; 68 69 /* Sorted insert into buf1 */ 70 for (k = 0; k < j; ++k) { 71 if (cnt < buf1[k]) { 72 l = min_t(unsigned int, 73 j, ARRAY_SIZE(buf1) - 1); 74 for (; l > k; --l) 75 buf1[l] = buf1[l - 1]; 76 break; 77 } 78 } 79 if (k < ARRAY_SIZE(buf1)) 80 buf1[k] = cnt; 81 } 82 83 /* Sorted insert of 75th percentile into buf2 */ 84 for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) { 85 if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) { 86 l = min_t(unsigned int, 87 i, ARRAY_SIZE(buf2) - 1); 88 for (; l > k; --l) 89 buf2[l] = buf2[l - 1]; 90 break; 91 } 92 } 93 if (k < ARRAY_SIZE(buf2)) 94 buf2[k] = buf1[ARRAY_SIZE(buf1) - 1]; 95 } 96 97 /* Use 2 * median of 75th percentiles */ 98 min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2; 99 100 /* Don't go too low */ 101 if (min_delta < 0x300) 102 min_delta = 0x300; 103 104 pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n", 105 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta); 106 return min_delta; 107 } 108 109 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); 110 int cp0_timer_irq_installed; 111 112 /* 113 * Possibly handle a performance counter interrupt. 114 * Return true if the timer interrupt should not be checked 115 */ 116 static inline int handle_perf_irq(int r2) 117 { 118 /* 119 * The performance counter overflow interrupt may be shared with the 120 * timer interrupt (cp0_perfcount_irq < 0). If it is and a 121 * performance counter has overflowed (perf_irq() == IRQ_HANDLED) 122 * and we can't reliably determine if a counter interrupt has also 123 * happened (!r2) then don't check for a timer interrupt. 124 */ 125 return (cp0_perfcount_irq < 0) && 126 perf_irq() == IRQ_HANDLED && 127 !r2; 128 } 129 130 irqreturn_t c0_compare_interrupt(int irq, void *dev_id) 131 { 132 const int r2 = cpu_has_mips_r2_r6; 133 struct clock_event_device *cd; 134 int cpu = smp_processor_id(); 135 136 /* 137 * Suckage alert: 138 * Before R2 of the architecture there was no way to see if a 139 * performance counter interrupt was pending, so we have to run 140 * the performance counter interrupt handler anyway. 141 */ 142 if (handle_perf_irq(r2)) 143 return IRQ_HANDLED; 144 145 /* 146 * The same applies to performance counter interrupts. But with the 147 * above we now know that the reason we got here must be a timer 148 * interrupt. Being the paranoiacs we are we check anyway. 149 */ 150 if (!r2 || (read_c0_cause() & CAUSEF_TI)) { 151 /* Clear Count/Compare Interrupt */ 152 write_c0_compare(read_c0_compare()); 153 cd = &per_cpu(mips_clockevent_device, cpu); 154 cd->event_handler(cd); 155 156 return IRQ_HANDLED; 157 } 158 159 return IRQ_NONE; 160 } 161 162 struct irqaction c0_compare_irqaction = { 163 .handler = c0_compare_interrupt, 164 /* 165 * IRQF_SHARED: The timer interrupt may be shared with other interrupts 166 * such as perf counter and FDC interrupts. 167 */ 168 .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED, 169 .name = "timer", 170 }; 171 172 173 void mips_event_handler(struct clock_event_device *dev) 174 { 175 } 176 177 /* 178 * FIXME: This doesn't hold for the relocated E9000 compare interrupt. 179 */ 180 static int c0_compare_int_pending(void) 181 { 182 /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ 183 return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); 184 } 185 186 /* 187 * Compare interrupt can be routed and latched outside the core, 188 * so wait up to worst case number of cycle counter ticks for timer interrupt 189 * changes to propagate to the cause register. 190 */ 191 #define COMPARE_INT_SEEN_TICKS 50 192 193 int c0_compare_int_usable(void) 194 { 195 unsigned int delta; 196 unsigned int cnt; 197 198 /* 199 * IP7 already pending? Try to clear it by acking the timer. 200 */ 201 if (c0_compare_int_pending()) { 202 cnt = read_c0_count(); 203 write_c0_compare(cnt - 1); 204 back_to_back_c0_hazard(); 205 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 206 if (!c0_compare_int_pending()) 207 break; 208 if (c0_compare_int_pending()) 209 return 0; 210 } 211 212 for (delta = 0x10; delta <= 0x400000; delta <<= 1) { 213 cnt = read_c0_count(); 214 cnt += delta; 215 write_c0_compare(cnt); 216 back_to_back_c0_hazard(); 217 if ((int)(read_c0_count() - cnt) < 0) 218 break; 219 /* increase delta if the timer was already expired */ 220 } 221 222 while ((int)(read_c0_count() - cnt) <= 0) 223 ; /* Wait for expiry */ 224 225 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 226 if (c0_compare_int_pending()) 227 break; 228 if (!c0_compare_int_pending()) 229 return 0; 230 cnt = read_c0_count(); 231 write_c0_compare(cnt - 1); 232 back_to_back_c0_hazard(); 233 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) 234 if (!c0_compare_int_pending()) 235 break; 236 if (c0_compare_int_pending()) 237 return 0; 238 239 /* 240 * Feels like a real count / compare timer. 241 */ 242 return 1; 243 } 244 245 unsigned int __weak get_c0_compare_int(void) 246 { 247 return MIPS_CPU_IRQ_BASE + cp0_compare_irq; 248 } 249 250 #ifdef CONFIG_CPU_FREQ 251 252 static unsigned long mips_ref_freq; 253 254 static int r4k_cpufreq_callback(struct notifier_block *nb, 255 unsigned long val, void *data) 256 { 257 struct cpufreq_freqs *freq = data; 258 struct clock_event_device *cd; 259 unsigned long rate; 260 int cpu; 261 262 if (!mips_ref_freq) 263 mips_ref_freq = freq->old; 264 265 if (val == CPUFREQ_POSTCHANGE) { 266 rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq, 267 freq->new); 268 269 for_each_cpu(cpu, freq->policy->cpus) { 270 cd = &per_cpu(mips_clockevent_device, cpu); 271 272 clockevents_update_freq(cd, rate); 273 } 274 } 275 276 return 0; 277 } 278 279 static struct notifier_block r4k_cpufreq_notifier = { 280 .notifier_call = r4k_cpufreq_callback, 281 }; 282 283 static int __init r4k_register_cpufreq_notifier(void) 284 { 285 return cpufreq_register_notifier(&r4k_cpufreq_notifier, 286 CPUFREQ_TRANSITION_NOTIFIER); 287 288 } 289 core_initcall(r4k_register_cpufreq_notifier); 290 291 #endif /* !CONFIG_CPU_FREQ */ 292 293 int r4k_clockevent_init(void) 294 { 295 unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED; 296 unsigned int cpu = smp_processor_id(); 297 struct clock_event_device *cd; 298 unsigned int irq, min_delta; 299 300 if (!cpu_has_counter || !mips_hpt_frequency) 301 return -ENXIO; 302 303 if (!c0_compare_int_usable()) 304 return -ENXIO; 305 306 cd = &per_cpu(mips_clockevent_device, cpu); 307 308 cd->name = "MIPS"; 309 cd->features = CLOCK_EVT_FEAT_ONESHOT | 310 CLOCK_EVT_FEAT_C3STOP | 311 CLOCK_EVT_FEAT_PERCPU; 312 313 min_delta = calculate_min_delta(); 314 315 cd->rating = 300; 316 cd->cpumask = cpumask_of(cpu); 317 cd->set_next_event = mips_next_event; 318 cd->event_handler = mips_event_handler; 319 320 clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff); 321 322 if (cp0_timer_irq_installed) 323 return 0; 324 325 cp0_timer_irq_installed = 1; 326 327 /* 328 * With vectored interrupts things are getting platform specific. 329 * get_c0_compare_int is a hook to allow a platform to return the 330 * interrupt number of its liking. 331 */ 332 irq = get_c0_compare_int(); 333 334 if (request_irq(irq, c0_compare_interrupt, flags, "timer", 335 c0_compare_interrupt)) 336 pr_err("Failed to request irq %d (timer)\n", irq); 337 338 return 0; 339 } 340 341