xref: /openbmc/linux/arch/mips/kernel/cevt-r4k.c (revision 2a598d0b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 MIPS Technologies, Inc.
7  * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8  */
9 #include <linux/clockchips.h>
10 #include <linux/interrupt.h>
11 #include <linux/cpufreq.h>
12 #include <linux/percpu.h>
13 #include <linux/smp.h>
14 #include <linux/irq.h>
15 
16 #include <asm/time.h>
17 #include <asm/cevt-r4k.h>
18 
19 static int mips_next_event(unsigned long delta,
20 			   struct clock_event_device *evt)
21 {
22 	unsigned int cnt;
23 	int res;
24 
25 	cnt = read_c0_count();
26 	cnt += delta;
27 	write_c0_compare(cnt);
28 	res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
29 	return res;
30 }
31 
32 /**
33  * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
34  *
35  * Running under virtualisation can introduce overhead into mips_next_event() in
36  * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
37  * potentially with an unnatural frequency, which makes a fixed min_delta_ns
38  * value inappropriate as it may be too small.
39  *
40  * It can also introduce occasional latency from the guest being descheduled.
41  *
42  * This function calculates a good minimum delta based roughly on the 75th
43  * percentile of the time taken to do the mips_next_event() sequence, in order
44  * to handle potentially higher overhead while also eliminating outliers due to
45  * unpredictable hypervisor latency (which can be handled by retries).
46  *
47  * Return:	An appropriate minimum delta for the clock event device.
48  */
49 static unsigned int calculate_min_delta(void)
50 {
51 	unsigned int cnt, i, j, k, l;
52 	unsigned int buf1[4], buf2[3];
53 	unsigned int min_delta;
54 
55 	/*
56 	 * Calculate the median of 5 75th percentiles of 5 samples of how long
57 	 * it takes to set CP0_Compare = CP0_Count + delta.
58 	 */
59 	for (i = 0; i < 5; ++i) {
60 		for (j = 0; j < 5; ++j) {
61 			/*
62 			 * This is like the code in mips_next_event(), and
63 			 * directly measures the borderline "safe" delta.
64 			 */
65 			cnt = read_c0_count();
66 			write_c0_compare(cnt);
67 			cnt = read_c0_count() - cnt;
68 
69 			/* Sorted insert into buf1 */
70 			for (k = 0; k < j; ++k) {
71 				if (cnt < buf1[k]) {
72 					l = min_t(unsigned int,
73 						  j, ARRAY_SIZE(buf1) - 1);
74 					for (; l > k; --l)
75 						buf1[l] = buf1[l - 1];
76 					break;
77 				}
78 			}
79 			if (k < ARRAY_SIZE(buf1))
80 				buf1[k] = cnt;
81 		}
82 
83 		/* Sorted insert of 75th percentile into buf2 */
84 		for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
85 			if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
86 				l = min_t(unsigned int,
87 					  i, ARRAY_SIZE(buf2) - 1);
88 				for (; l > k; --l)
89 					buf2[l] = buf2[l - 1];
90 				break;
91 			}
92 		}
93 		if (k < ARRAY_SIZE(buf2))
94 			buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
95 	}
96 
97 	/* Use 2 * median of 75th percentiles */
98 	min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
99 
100 	/* Don't go too low */
101 	if (min_delta < 0x300)
102 		min_delta = 0x300;
103 
104 	pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
105 		 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
106 	return min_delta;
107 }
108 
109 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
110 int cp0_timer_irq_installed;
111 
112 /*
113  * Possibly handle a performance counter interrupt.
114  * Return true if the timer interrupt should not be checked
115  */
116 static inline int handle_perf_irq(int r2)
117 {
118 	/*
119 	 * The performance counter overflow interrupt may be shared with the
120 	 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
121 	 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
122 	 * and we can't reliably determine if a counter interrupt has also
123 	 * happened (!r2) then don't check for a timer interrupt.
124 	 */
125 	return (cp0_perfcount_irq < 0) &&
126 		perf_irq() == IRQ_HANDLED &&
127 		!r2;
128 }
129 
130 irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
131 {
132 	const int r2 = cpu_has_mips_r2_r6;
133 	struct clock_event_device *cd;
134 	int cpu = smp_processor_id();
135 
136 	/*
137 	 * Suckage alert:
138 	 * Before R2 of the architecture there was no way to see if a
139 	 * performance counter interrupt was pending, so we have to run
140 	 * the performance counter interrupt handler anyway.
141 	 */
142 	if (handle_perf_irq(r2))
143 		return IRQ_HANDLED;
144 
145 	/*
146 	 * The same applies to performance counter interrupts.	But with the
147 	 * above we now know that the reason we got here must be a timer
148 	 * interrupt.  Being the paranoiacs we are we check anyway.
149 	 */
150 	if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
151 		/* Clear Count/Compare Interrupt */
152 		write_c0_compare(read_c0_compare());
153 		cd = &per_cpu(mips_clockevent_device, cpu);
154 		cd->event_handler(cd);
155 
156 		return IRQ_HANDLED;
157 	}
158 
159 	return IRQ_NONE;
160 }
161 
162 struct irqaction c0_compare_irqaction = {
163 	.handler = c0_compare_interrupt,
164 	/*
165 	 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
166 	 * such as perf counter and FDC interrupts.
167 	 */
168 	.flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
169 	.name = "timer",
170 };
171 
172 
173 void mips_event_handler(struct clock_event_device *dev)
174 {
175 }
176 
177 /*
178  * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
179  */
180 static int c0_compare_int_pending(void)
181 {
182 	/* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
183 	return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
184 }
185 
186 /*
187  * Compare interrupt can be routed and latched outside the core,
188  * so wait up to worst case number of cycle counter ticks for timer interrupt
189  * changes to propagate to the cause register.
190  */
191 #define COMPARE_INT_SEEN_TICKS 50
192 
193 int c0_compare_int_usable(void)
194 {
195 	unsigned int delta;
196 	unsigned int cnt;
197 
198 	/*
199 	 * IP7 already pending?	 Try to clear it by acking the timer.
200 	 */
201 	if (c0_compare_int_pending()) {
202 		cnt = read_c0_count();
203 		write_c0_compare(cnt - 1);
204 		back_to_back_c0_hazard();
205 		while (read_c0_count() < (cnt  + COMPARE_INT_SEEN_TICKS))
206 			if (!c0_compare_int_pending())
207 				break;
208 		if (c0_compare_int_pending())
209 			return 0;
210 	}
211 
212 	for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
213 		cnt = read_c0_count();
214 		cnt += delta;
215 		write_c0_compare(cnt);
216 		back_to_back_c0_hazard();
217 		if ((int)(read_c0_count() - cnt) < 0)
218 		    break;
219 		/* increase delta if the timer was already expired */
220 	}
221 
222 	while ((int)(read_c0_count() - cnt) <= 0)
223 		;	/* Wait for expiry  */
224 
225 	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
226 		if (c0_compare_int_pending())
227 			break;
228 	if (!c0_compare_int_pending())
229 		return 0;
230 	cnt = read_c0_count();
231 	write_c0_compare(cnt - 1);
232 	back_to_back_c0_hazard();
233 	while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
234 		if (!c0_compare_int_pending())
235 			break;
236 	if (c0_compare_int_pending())
237 		return 0;
238 
239 	/*
240 	 * Feels like a real count / compare timer.
241 	 */
242 	return 1;
243 }
244 
245 unsigned int __weak get_c0_compare_int(void)
246 {
247 	return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
248 }
249 
250 #ifdef CONFIG_CPU_FREQ
251 
252 static unsigned long mips_ref_freq;
253 
254 static int r4k_cpufreq_callback(struct notifier_block *nb,
255 				unsigned long val, void *data)
256 {
257 	struct cpufreq_freqs *freq = data;
258 	struct clock_event_device *cd;
259 	unsigned long rate;
260 	int cpu;
261 
262 	if (!mips_ref_freq)
263 		mips_ref_freq = freq->old;
264 
265 	if (val == CPUFREQ_POSTCHANGE) {
266 		rate = cpufreq_scale(mips_hpt_frequency, mips_ref_freq,
267 				     freq->new);
268 
269 		for_each_cpu(cpu, freq->policy->cpus) {
270 			cd = &per_cpu(mips_clockevent_device, cpu);
271 
272 			clockevents_update_freq(cd, rate);
273 		}
274 	}
275 
276 	return 0;
277 }
278 
279 static struct notifier_block r4k_cpufreq_notifier = {
280 	.notifier_call  = r4k_cpufreq_callback,
281 };
282 
283 static int __init r4k_register_cpufreq_notifier(void)
284 {
285 	return cpufreq_register_notifier(&r4k_cpufreq_notifier,
286 					 CPUFREQ_TRANSITION_NOTIFIER);
287 
288 }
289 core_initcall(r4k_register_cpufreq_notifier);
290 
291 #endif /* !CONFIG_CPU_FREQ */
292 
293 int r4k_clockevent_init(void)
294 {
295 	unsigned long flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED;
296 	unsigned int cpu = smp_processor_id();
297 	struct clock_event_device *cd;
298 	unsigned int irq, min_delta;
299 
300 	if (!cpu_has_counter || !mips_hpt_frequency)
301 		return -ENXIO;
302 
303 	if (!c0_compare_int_usable())
304 		return -ENXIO;
305 
306 	/*
307 	 * With vectored interrupts things are getting platform specific.
308 	 * get_c0_compare_int is a hook to allow a platform to return the
309 	 * interrupt number of its liking.
310 	 */
311 	irq = get_c0_compare_int();
312 
313 	cd = &per_cpu(mips_clockevent_device, cpu);
314 
315 	cd->name		= "MIPS";
316 	cd->features		= CLOCK_EVT_FEAT_ONESHOT |
317 				  CLOCK_EVT_FEAT_C3STOP |
318 				  CLOCK_EVT_FEAT_PERCPU;
319 
320 	min_delta		= calculate_min_delta();
321 
322 	cd->rating		= 300;
323 	cd->irq			= irq;
324 	cd->cpumask		= cpumask_of(cpu);
325 	cd->set_next_event	= mips_next_event;
326 	cd->event_handler	= mips_event_handler;
327 
328 	clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
329 
330 	if (cp0_timer_irq_installed)
331 		return 0;
332 
333 	cp0_timer_irq_installed = 1;
334 
335 	if (request_irq(irq, c0_compare_interrupt, flags, "timer",
336 			c0_compare_interrupt))
337 		pr_err("Failed to request irq %d (timer)\n", irq);
338 
339 	return 0;
340 }
341 
342