xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Mips Jazz DMA controller support
4  * Copyright (C) 1995, 1996 by Andreas Busse
5  *
6  * NOTE: Some of the argument checking could be removed when
7  * things have settled down. Also, instead of returning 0xffffffff
8  * on failure of vdma_alloc() one could leave page #0 unused
9  * and return the more usual NULL pointer as logical address.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/spinlock.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-map-ops.h>
20 #include <asm/mipsregs.h>
21 #include <asm/jazz.h>
22 #include <asm/io.h>
23 #include <linux/uaccess.h>
24 #include <asm/dma.h>
25 #include <asm/jazzdma.h>
26 
27 /*
28  * Set this to one to enable additional vdma debug code.
29  */
30 #define CONF_DEBUG_VDMA 0
31 
32 static VDMA_PGTBL_ENTRY *pgtbl;
33 
34 static DEFINE_SPINLOCK(vdma_lock);
35 
36 /*
37  * Debug stuff
38  */
39 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
40 
41 static int debuglvl = 3;
42 
43 /*
44  * Initialize the pagetable with a one-to-one mapping of
45  * the first 16 Mbytes of main memory and declare all
46  * entries to be unused. Using this method will at least
47  * allow some early device driver operations to work.
48  */
49 static inline void vdma_pgtbl_init(void)
50 {
51 	unsigned long paddr = 0;
52 	int i;
53 
54 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
55 		pgtbl[i].frame = paddr;
56 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
57 		paddr += VDMA_PAGESIZE;
58 	}
59 }
60 
61 /*
62  * Initialize the Jazz R4030 dma controller
63  */
64 static int __init vdma_init(void)
65 {
66 	/*
67 	 * Allocate 32k of memory for DMA page tables.	This needs to be page
68 	 * aligned and should be uncached to avoid cache flushing after every
69 	 * update.
70 	 */
71 	pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
72 						    get_order(VDMA_PGTBL_SIZE));
73 	BUG_ON(!pgtbl);
74 	dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
75 	pgtbl = (VDMA_PGTBL_ENTRY *)CKSEG1ADDR((unsigned long)pgtbl);
76 
77 	/*
78 	 * Clear the R4030 translation table
79 	 */
80 	vdma_pgtbl_init();
81 
82 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
83 			  CPHYSADDR((unsigned long)pgtbl));
84 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
85 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
86 
87 	printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
88 	return 0;
89 }
90 arch_initcall(vdma_init);
91 
92 /*
93  * Allocate DMA pagetables using a simple first-fit algorithm
94  */
95 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
96 {
97 	int first, last, pages, frame, i;
98 	unsigned long laddr, flags;
99 
100 	/* check arguments */
101 
102 	if (paddr > 0x1fffffff) {
103 		if (vdma_debug)
104 			printk("vdma_alloc: Invalid physical address: %08lx\n",
105 			       paddr);
106 		return DMA_MAPPING_ERROR;	/* invalid physical address */
107 	}
108 	if (size > 0x400000 || size == 0) {
109 		if (vdma_debug)
110 			printk("vdma_alloc: Invalid size: %08lx\n", size);
111 		return DMA_MAPPING_ERROR;	/* invalid physical address */
112 	}
113 
114 	spin_lock_irqsave(&vdma_lock, flags);
115 	/*
116 	 * Find free chunk
117 	 */
118 	pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
119 	first = 0;
120 	while (1) {
121 		while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
122 		       first < VDMA_PGTBL_ENTRIES) first++;
123 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
124 			spin_unlock_irqrestore(&vdma_lock, flags);
125 			return DMA_MAPPING_ERROR;
126 		}
127 
128 		last = first + 1;
129 		while (pgtbl[last].owner == VDMA_PAGE_EMPTY
130 		       && last - first < pages)
131 			last++;
132 
133 		if (last - first == pages)
134 			break;	/* found */
135 		first = last + 1;
136 	}
137 
138 	/*
139 	 * Mark pages as allocated
140 	 */
141 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
142 	frame = paddr & ~(VDMA_PAGESIZE - 1);
143 
144 	for (i = first; i < last; i++) {
145 		pgtbl[i].frame = frame;
146 		pgtbl[i].owner = laddr;
147 		frame += VDMA_PAGESIZE;
148 	}
149 
150 	/*
151 	 * Update translation table and return logical start address
152 	 */
153 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
154 
155 	if (vdma_debug > 1)
156 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
157 		     pages, laddr);
158 
159 	if (vdma_debug > 2) {
160 		printk("LADDR: ");
161 		for (i = first; i < last; i++)
162 			printk("%08x ", i << 12);
163 		printk("\nPADDR: ");
164 		for (i = first; i < last; i++)
165 			printk("%08x ", pgtbl[i].frame);
166 		printk("\nOWNER: ");
167 		for (i = first; i < last; i++)
168 			printk("%08x ", pgtbl[i].owner);
169 		printk("\n");
170 	}
171 
172 	spin_unlock_irqrestore(&vdma_lock, flags);
173 
174 	return laddr;
175 }
176 
177 EXPORT_SYMBOL(vdma_alloc);
178 
179 /*
180  * Free previously allocated dma translation pages
181  * Note that this does NOT change the translation table,
182  * it just marks the free'd pages as unused!
183  */
184 int vdma_free(unsigned long laddr)
185 {
186 	int i;
187 
188 	i = laddr >> 12;
189 
190 	if (pgtbl[i].owner != laddr) {
191 		printk
192 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
193 		     laddr);
194 		return -1;
195 	}
196 
197 	while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
198 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
199 		i++;
200 	}
201 
202 	if (vdma_debug > 1)
203 		printk("vdma_free: freed %ld pages starting from %08lx\n",
204 		       i - (laddr >> 12), laddr);
205 
206 	return 0;
207 }
208 
209 EXPORT_SYMBOL(vdma_free);
210 
211 /*
212  * Translate a physical address to a logical address.
213  * This will return the logical address of the first
214  * match.
215  */
216 unsigned long vdma_phys2log(unsigned long paddr)
217 {
218 	int i;
219 	int frame;
220 
221 	frame = paddr & ~(VDMA_PAGESIZE - 1);
222 
223 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
224 		if (pgtbl[i].frame == frame)
225 			break;
226 	}
227 
228 	if (i == VDMA_PGTBL_ENTRIES)
229 		return ~0UL;
230 
231 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
232 }
233 
234 EXPORT_SYMBOL(vdma_phys2log);
235 
236 /*
237  * Translate a logical DMA address to a physical address
238  */
239 unsigned long vdma_log2phys(unsigned long laddr)
240 {
241 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
242 }
243 
244 EXPORT_SYMBOL(vdma_log2phys);
245 
246 /*
247  * Print DMA statistics
248  */
249 void vdma_stats(void)
250 {
251 	int i;
252 
253 	printk("vdma_stats: CONFIG: %08x\n",
254 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
255 	printk("R4030 translation table base: %08x\n",
256 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
257 	printk("R4030 translation table limit: %08x\n",
258 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
259 	printk("vdma_stats: INV_ADDR: %08x\n",
260 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
261 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
262 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
263 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
264 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
265 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
266 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
267 	printk("vdma_stats: I386_ERROR: %08x\n",
268 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
269 	printk("vdma_chnl_modes:   ");
270 	for (i = 0; i < 8; i++)
271 		printk("%04x ",
272 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
273 						   (i << 5)));
274 	printk("\n");
275 	printk("vdma_chnl_enables: ");
276 	for (i = 0; i < 8; i++)
277 		printk("%04x ",
278 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
279 						   (i << 5)));
280 	printk("\n");
281 }
282 
283 /*
284  * DMA transfer functions
285  */
286 
287 /*
288  * Enable a DMA channel. Also clear any error conditions.
289  */
290 void vdma_enable(int channel)
291 {
292 	int status;
293 
294 	if (vdma_debug)
295 		printk("vdma_enable: channel %d\n", channel);
296 
297 	/*
298 	 * Check error conditions first
299 	 */
300 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
301 	if (status & 0x400)
302 		printk("VDMA: Channel %d: Address error!\n", channel);
303 	if (status & 0x200)
304 		printk("VDMA: Channel %d: Memory error!\n", channel);
305 
306 	/*
307 	 * Clear all interrupt flags
308 	 */
309 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
310 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
311 					   (channel << 5)) | R4030_TC_INTR
312 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
313 
314 	/*
315 	 * Enable the desired channel
316 	 */
317 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
318 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
319 					   (channel << 5)) |
320 			  R4030_CHNL_ENABLE);
321 }
322 
323 EXPORT_SYMBOL(vdma_enable);
324 
325 /*
326  * Disable a DMA channel
327  */
328 void vdma_disable(int channel)
329 {
330 	if (vdma_debug) {
331 		int status =
332 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
333 				     (channel << 5));
334 
335 		printk("vdma_disable: channel %d\n", channel);
336 		printk("VDMA: channel %d status: %04x (%s) mode: "
337 		       "%02x addr: %06x count: %06x\n",
338 		       channel, status,
339 		       ((status & 0x600) ? "ERROR" : "OK"),
340 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
341 						   (channel << 5)),
342 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
343 						   (channel << 5)),
344 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
345 						   (channel << 5)));
346 	}
347 
348 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
349 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
350 					   (channel << 5)) &
351 			  ~R4030_CHNL_ENABLE);
352 
353 	/*
354 	 * After disabling a DMA channel a remote bus register should be
355 	 * read to ensure that the current DMA acknowledge cycle is completed.
356 	 */
357 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
358 }
359 
360 EXPORT_SYMBOL(vdma_disable);
361 
362 /*
363  * Set DMA mode. This function accepts the mode values used
364  * to set a PC-style DMA controller. For the SCSI and FDC
365  * channels, we also set the default modes each time we're
366  * called.
367  * NOTE: The FAST and BURST dma modes are supported by the
368  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
369  * for now.
370  */
371 void vdma_set_mode(int channel, int mode)
372 {
373 	if (vdma_debug)
374 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
375 		       mode);
376 
377 	switch (channel) {
378 	case JAZZ_SCSI_DMA:	/* scsi */
379 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
380 /*			  R4030_MODE_FAST | */
381 /*			  R4030_MODE_BURST | */
382 				  R4030_MODE_INTR_EN |
383 				  R4030_MODE_WIDTH_16 |
384 				  R4030_MODE_ATIME_80);
385 		break;
386 
387 	case JAZZ_FLOPPY_DMA:	/* floppy */
388 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
389 /*			  R4030_MODE_FAST | */
390 /*			  R4030_MODE_BURST | */
391 				  R4030_MODE_INTR_EN |
392 				  R4030_MODE_WIDTH_8 |
393 				  R4030_MODE_ATIME_120);
394 		break;
395 
396 	case JAZZ_AUDIOL_DMA:
397 	case JAZZ_AUDIOR_DMA:
398 		printk("VDMA: Audio DMA not supported yet.\n");
399 		break;
400 
401 	default:
402 		printk
403 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
404 		     channel);
405 	}
406 
407 	switch (mode) {
408 	case DMA_MODE_READ:
409 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
410 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
411 						   (channel << 5)) &
412 				  ~R4030_CHNL_WRITE);
413 		break;
414 
415 	case DMA_MODE_WRITE:
416 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
417 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
418 						   (channel << 5)) |
419 				  R4030_CHNL_WRITE);
420 		break;
421 
422 	default:
423 		printk
424 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
425 		     mode);
426 	}
427 }
428 
429 EXPORT_SYMBOL(vdma_set_mode);
430 
431 /*
432  * Set Transfer Address
433  */
434 void vdma_set_addr(int channel, long addr)
435 {
436 	if (vdma_debug)
437 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
438 		       addr);
439 
440 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
441 }
442 
443 EXPORT_SYMBOL(vdma_set_addr);
444 
445 /*
446  * Set Transfer Count
447  */
448 void vdma_set_count(int channel, int count)
449 {
450 	if (vdma_debug)
451 		printk("vdma_set_count: channel %d, count %08x\n", channel,
452 		       (unsigned) count);
453 
454 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
455 }
456 
457 EXPORT_SYMBOL(vdma_set_count);
458 
459 /*
460  * Get Residual
461  */
462 int vdma_get_residue(int channel)
463 {
464 	int residual;
465 
466 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
467 
468 	if (vdma_debug)
469 		printk("vdma_get_residual: channel %d: residual=%d\n",
470 		       channel, residual);
471 
472 	return residual;
473 }
474 
475 /*
476  * Get DMA channel enable register
477  */
478 int vdma_get_enable(int channel)
479 {
480 	int enable;
481 
482 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
483 
484 	if (vdma_debug)
485 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
486 		       enable);
487 
488 	return enable;
489 }
490 
491 static void *jazz_dma_alloc(struct device *dev, size_t size,
492 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
493 {
494 	struct page *page;
495 	void *ret;
496 
497 	if (attrs & DMA_ATTR_NO_WARN)
498 		gfp |= __GFP_NOWARN;
499 
500 	size = PAGE_ALIGN(size);
501 	page = alloc_pages(gfp, get_order(size));
502 	if (!page)
503 		return NULL;
504 	ret = page_address(page);
505 	memset(ret, 0, size);
506 	*dma_handle = vdma_alloc(virt_to_phys(ret), size);
507 	if (*dma_handle == DMA_MAPPING_ERROR)
508 		goto out_free_pages;
509 	arch_dma_prep_coherent(page, size);
510 	return (void *)(UNCAC_BASE + __pa(ret));
511 
512 out_free_pages:
513 	__free_pages(page, get_order(size));
514 	return NULL;
515 }
516 
517 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
518 		dma_addr_t dma_handle, unsigned long attrs)
519 {
520 	vdma_free(dma_handle);
521 	__free_pages(virt_to_page(vaddr), get_order(size));
522 }
523 
524 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
525 		unsigned long offset, size_t size, enum dma_data_direction dir,
526 		unsigned long attrs)
527 {
528 	phys_addr_t phys = page_to_phys(page) + offset;
529 
530 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
531 		arch_sync_dma_for_device(phys, size, dir);
532 	return vdma_alloc(phys, size);
533 }
534 
535 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
536 		size_t size, enum dma_data_direction dir, unsigned long attrs)
537 {
538 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
539 		arch_sync_dma_for_cpu(vdma_log2phys(dma_addr), size, dir);
540 	vdma_free(dma_addr);
541 }
542 
543 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
544 		int nents, enum dma_data_direction dir, unsigned long attrs)
545 {
546 	int i;
547 	struct scatterlist *sg;
548 
549 	for_each_sg(sglist, sg, nents, i) {
550 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
551 			arch_sync_dma_for_device(sg_phys(sg), sg->length,
552 				dir);
553 		sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
554 		if (sg->dma_address == DMA_MAPPING_ERROR)
555 			return 0;
556 		sg_dma_len(sg) = sg->length;
557 	}
558 
559 	return nents;
560 }
561 
562 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
563 		int nents, enum dma_data_direction dir, unsigned long attrs)
564 {
565 	int i;
566 	struct scatterlist *sg;
567 
568 	for_each_sg(sglist, sg, nents, i) {
569 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
570 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
571 		vdma_free(sg->dma_address);
572 	}
573 }
574 
575 static void jazz_dma_sync_single_for_device(struct device *dev,
576 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
577 {
578 	arch_sync_dma_for_device(vdma_log2phys(addr), size, dir);
579 }
580 
581 static void jazz_dma_sync_single_for_cpu(struct device *dev,
582 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
583 {
584 	arch_sync_dma_for_cpu(vdma_log2phys(addr), size, dir);
585 }
586 
587 static void jazz_dma_sync_sg_for_device(struct device *dev,
588 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
589 {
590 	struct scatterlist *sg;
591 	int i;
592 
593 	for_each_sg(sgl, sg, nents, i)
594 		arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
595 }
596 
597 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
598 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
599 {
600 	struct scatterlist *sg;
601 	int i;
602 
603 	for_each_sg(sgl, sg, nents, i)
604 		arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
605 }
606 
607 const struct dma_map_ops jazz_dma_ops = {
608 	.alloc			= jazz_dma_alloc,
609 	.free			= jazz_dma_free,
610 	.map_page		= jazz_dma_map_page,
611 	.unmap_page		= jazz_dma_unmap_page,
612 	.map_sg			= jazz_dma_map_sg,
613 	.unmap_sg		= jazz_dma_unmap_sg,
614 	.sync_single_for_cpu	= jazz_dma_sync_single_for_cpu,
615 	.sync_single_for_device	= jazz_dma_sync_single_for_device,
616 	.sync_sg_for_cpu	= jazz_dma_sync_sg_for_cpu,
617 	.sync_sg_for_device	= jazz_dma_sync_sg_for_device,
618 	.mmap			= dma_common_mmap,
619 	.get_sgtable		= dma_common_get_sgtable,
620 	.alloc_pages		= dma_common_alloc_pages,
621 	.free_pages		= dma_common_free_pages,
622 };
623 EXPORT_SYMBOL(jazz_dma_ops);
624