xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Mips Jazz DMA controller support
3  * Copyright (C) 1995, 1996 by Andreas Busse
4  *
5  * NOTE: Some of the argument checking could be removed when
6  * things have settled down. Also, instead of returning 0xffffffff
7  * on failure of vdma_alloc() one could leave page #0 unused
8  * and return the more usual NULL pointer as logical address.
9  */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/spinlock.h>
17 #include <asm/mipsregs.h>
18 #include <asm/jazz.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/dma.h>
22 #include <asm/jazzdma.h>
23 #include <asm/pgtable.h>
24 
25 /*
26  * Set this to one to enable additional vdma debug code.
27  */
28 #define CONF_DEBUG_VDMA 0
29 
30 static VDMA_PGTBL_ENTRY *pgtbl;
31 
32 static DEFINE_SPINLOCK(vdma_lock);
33 
34 /*
35  * Debug stuff
36  */
37 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
38 
39 static int debuglvl = 3;
40 
41 /*
42  * Initialize the pagetable with a one-to-one mapping of
43  * the first 16 Mbytes of main memory and declare all
44  * entries to be unused. Using this method will at least
45  * allow some early device driver operations to work.
46  */
47 static inline void vdma_pgtbl_init(void)
48 {
49 	unsigned long paddr = 0;
50 	int i;
51 
52 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
53 		pgtbl[i].frame = paddr;
54 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
55 		paddr += VDMA_PAGESIZE;
56 	}
57 }
58 
59 /*
60  * Initialize the Jazz R4030 dma controller
61  */
62 static int __init vdma_init(void)
63 {
64 	/*
65 	 * Allocate 32k of memory for DMA page tables.  This needs to be page
66 	 * aligned and should be uncached to avoid cache flushing after every
67 	 * update.
68 	 */
69 	pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
70 						    get_order(VDMA_PGTBL_SIZE));
71 	if (!pgtbl)
72 		BUG();
73 	dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
74 	pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
75 
76 	/*
77 	 * Clear the R4030 translation table
78 	 */
79 	vdma_pgtbl_init();
80 
81 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
82 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
83 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
84 
85 	printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
86 	return 0;
87 }
88 
89 /*
90  * Allocate DMA pagetables using a simple first-fit algorithm
91  */
92 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
93 {
94 	int first, last, pages, frame, i;
95 	unsigned long laddr, flags;
96 
97 	/* check arguments */
98 
99 	if (paddr > 0x1fffffff) {
100 		if (vdma_debug)
101 			printk("vdma_alloc: Invalid physical address: %08lx\n",
102 			       paddr);
103 		return VDMA_ERROR;	/* invalid physical address */
104 	}
105 	if (size > 0x400000 || size == 0) {
106 		if (vdma_debug)
107 			printk("vdma_alloc: Invalid size: %08lx\n", size);
108 		return VDMA_ERROR;	/* invalid physical address */
109 	}
110 
111 	spin_lock_irqsave(&vdma_lock, flags);
112 	/*
113 	 * Find free chunk
114 	 */
115 	pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
116 	first = 0;
117 	while (1) {
118 		while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
119 		       first < VDMA_PGTBL_ENTRIES) first++;
120 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
121 			spin_unlock_irqrestore(&vdma_lock, flags);
122 			return VDMA_ERROR;
123 		}
124 
125 		last = first + 1;
126 		while (pgtbl[last].owner == VDMA_PAGE_EMPTY
127 		       && last - first < pages)
128 			last++;
129 
130 		if (last - first == pages)
131 			break;	/* found */
132 		first = last + 1;
133 	}
134 
135 	/*
136 	 * Mark pages as allocated
137 	 */
138 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
139 	frame = paddr & ~(VDMA_PAGESIZE - 1);
140 
141 	for (i = first; i < last; i++) {
142 		pgtbl[i].frame = frame;
143 		pgtbl[i].owner = laddr;
144 		frame += VDMA_PAGESIZE;
145 	}
146 
147 	/*
148 	 * Update translation table and return logical start address
149 	 */
150 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
151 
152 	if (vdma_debug > 1)
153 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
154 		     pages, laddr);
155 
156 	if (vdma_debug > 2) {
157 		printk("LADDR: ");
158 		for (i = first; i < last; i++)
159 			printk("%08x ", i << 12);
160 		printk("\nPADDR: ");
161 		for (i = first; i < last; i++)
162 			printk("%08x ", pgtbl[i].frame);
163 		printk("\nOWNER: ");
164 		for (i = first; i < last; i++)
165 			printk("%08x ", pgtbl[i].owner);
166 		printk("\n");
167 	}
168 
169 	spin_unlock_irqrestore(&vdma_lock, flags);
170 
171 	return laddr;
172 }
173 
174 EXPORT_SYMBOL(vdma_alloc);
175 
176 /*
177  * Free previously allocated dma translation pages
178  * Note that this does NOT change the translation table,
179  * it just marks the free'd pages as unused!
180  */
181 int vdma_free(unsigned long laddr)
182 {
183 	int i;
184 
185 	i = laddr >> 12;
186 
187 	if (pgtbl[i].owner != laddr) {
188 		printk
189 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
190 		     laddr);
191 		return -1;
192 	}
193 
194 	while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) {
195 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
196 		i++;
197 	}
198 
199 	if (vdma_debug > 1)
200 		printk("vdma_free: freed %ld pages starting from %08lx\n",
201 		       i - (laddr >> 12), laddr);
202 
203 	return 0;
204 }
205 
206 EXPORT_SYMBOL(vdma_free);
207 
208 /*
209  * Map certain page(s) to another physical address.
210  * Caller must have allocated the page(s) before.
211  */
212 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
213 {
214 	int first, pages, npages;
215 
216 	if (laddr > 0xffffff) {
217 		if (vdma_debug)
218 			printk
219 			    ("vdma_map: Invalid logical address: %08lx\n",
220 			     laddr);
221 		return -EINVAL;	/* invalid logical address */
222 	}
223 	if (paddr > 0x1fffffff) {
224 		if (vdma_debug)
225 			printk
226 			    ("vdma_map: Invalid physical address: %08lx\n",
227 			     paddr);
228 		return -EINVAL;	/* invalid physical address */
229 	}
230 
231 	npages = pages =
232 	    (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
233 	first = laddr >> 12;
234 	if (vdma_debug)
235 		printk("vdma_remap: first=%x, pages=%x\n", first, pages);
236 	if (first + pages > VDMA_PGTBL_ENTRIES) {
237 		if (vdma_debug)
238 			printk("vdma_alloc: Invalid size: %08lx\n", size);
239 		return -EINVAL;
240 	}
241 
242 	paddr &= ~(VDMA_PAGESIZE - 1);
243 	while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
244 		if (pgtbl[first].owner != laddr) {
245 			if (vdma_debug)
246 				printk("Trying to remap other's pages.\n");
247 			return -EPERM;	/* not owner */
248 		}
249 		pgtbl[first].frame = paddr;
250 		paddr += VDMA_PAGESIZE;
251 		first++;
252 		pages--;
253 	}
254 
255 	/*
256 	 * Update translation table
257 	 */
258 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
259 
260 	if (vdma_debug > 2) {
261 		int i;
262 		pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
263 		first = laddr >> 12;
264 		printk("LADDR: ");
265 		for (i = first; i < first + pages; i++)
266 			printk("%08x ", i << 12);
267 		printk("\nPADDR: ");
268 		for (i = first; i < first + pages; i++)
269 			printk("%08x ", pgtbl[i].frame);
270 		printk("\nOWNER: ");
271 		for (i = first; i < first + pages; i++)
272 			printk("%08x ", pgtbl[i].owner);
273 		printk("\n");
274 	}
275 
276 	return 0;
277 }
278 
279 /*
280  * Translate a physical address to a logical address.
281  * This will return the logical address of the first
282  * match.
283  */
284 unsigned long vdma_phys2log(unsigned long paddr)
285 {
286 	int i;
287 	int frame;
288 
289 	frame = paddr & ~(VDMA_PAGESIZE - 1);
290 
291 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
292 		if (pgtbl[i].frame == frame)
293 			break;
294 	}
295 
296 	if (i == VDMA_PGTBL_ENTRIES)
297 		return ~0UL;
298 
299 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
300 }
301 
302 EXPORT_SYMBOL(vdma_phys2log);
303 
304 /*
305  * Translate a logical DMA address to a physical address
306  */
307 unsigned long vdma_log2phys(unsigned long laddr)
308 {
309 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
310 }
311 
312 EXPORT_SYMBOL(vdma_log2phys);
313 
314 /*
315  * Print DMA statistics
316  */
317 void vdma_stats(void)
318 {
319 	int i;
320 
321 	printk("vdma_stats: CONFIG: %08x\n",
322 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
323 	printk("R4030 translation table base: %08x\n",
324 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
325 	printk("R4030 translation table limit: %08x\n",
326 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
327 	printk("vdma_stats: INV_ADDR: %08x\n",
328 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
329 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
330 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
331 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
332 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
333 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
334 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
335 	printk("vdma_stats: I386_ERROR: %08x\n",
336 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
337 	printk("vdma_chnl_modes:   ");
338 	for (i = 0; i < 8; i++)
339 		printk("%04x ",
340 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
341 						   (i << 5)));
342 	printk("\n");
343 	printk("vdma_chnl_enables: ");
344 	for (i = 0; i < 8; i++)
345 		printk("%04x ",
346 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
347 						   (i << 5)));
348 	printk("\n");
349 }
350 
351 /*
352  * DMA transfer functions
353  */
354 
355 /*
356  * Enable a DMA channel. Also clear any error conditions.
357  */
358 void vdma_enable(int channel)
359 {
360 	int status;
361 
362 	if (vdma_debug)
363 		printk("vdma_enable: channel %d\n", channel);
364 
365 	/*
366 	 * Check error conditions first
367 	 */
368 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
369 	if (status & 0x400)
370 		printk("VDMA: Channel %d: Address error!\n", channel);
371 	if (status & 0x200)
372 		printk("VDMA: Channel %d: Memory error!\n", channel);
373 
374 	/*
375 	 * Clear all interrupt flags
376 	 */
377 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
378 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
379 					   (channel << 5)) | R4030_TC_INTR
380 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
381 
382 	/*
383 	 * Enable the desired channel
384 	 */
385 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
386 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
387 					   (channel << 5)) |
388 			  R4030_CHNL_ENABLE);
389 }
390 
391 EXPORT_SYMBOL(vdma_enable);
392 
393 /*
394  * Disable a DMA channel
395  */
396 void vdma_disable(int channel)
397 {
398 	if (vdma_debug) {
399 		int status =
400 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
401 				     (channel << 5));
402 
403 		printk("vdma_disable: channel %d\n", channel);
404 		printk("VDMA: channel %d status: %04x (%s) mode: "
405 		       "%02x addr: %06x count: %06x\n",
406 		       channel, status,
407 		       ((status & 0x600) ? "ERROR" : "OK"),
408 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
409 						   (channel << 5)),
410 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
411 						   (channel << 5)),
412 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
413 						   (channel << 5)));
414 	}
415 
416 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
417 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
418 					   (channel << 5)) &
419 			  ~R4030_CHNL_ENABLE);
420 
421 	/*
422 	 * After disabling a DMA channel a remote bus register should be
423 	 * read to ensure that the current DMA acknowledge cycle is completed.
424 	 */
425 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
426 }
427 
428 EXPORT_SYMBOL(vdma_disable);
429 
430 /*
431  * Set DMA mode. This function accepts the mode values used
432  * to set a PC-style DMA controller. For the SCSI and FDC
433  * channels, we also set the default modes each time we're
434  * called.
435  * NOTE: The FAST and BURST dma modes are supported by the
436  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
437  * for now.
438  */
439 void vdma_set_mode(int channel, int mode)
440 {
441 	if (vdma_debug)
442 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
443 		       mode);
444 
445 	switch (channel) {
446 	case JAZZ_SCSI_DMA:	/* scsi */
447 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
448 /*			  R4030_MODE_FAST | */
449 /*			  R4030_MODE_BURST | */
450 				  R4030_MODE_INTR_EN |
451 				  R4030_MODE_WIDTH_16 |
452 				  R4030_MODE_ATIME_80);
453 		break;
454 
455 	case JAZZ_FLOPPY_DMA:	/* floppy */
456 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
457 /*			  R4030_MODE_FAST | */
458 /*			  R4030_MODE_BURST | */
459 				  R4030_MODE_INTR_EN |
460 				  R4030_MODE_WIDTH_8 |
461 				  R4030_MODE_ATIME_120);
462 		break;
463 
464 	case JAZZ_AUDIOL_DMA:
465 	case JAZZ_AUDIOR_DMA:
466 		printk("VDMA: Audio DMA not supported yet.\n");
467 		break;
468 
469 	default:
470 		printk
471 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
472 		     channel);
473 	}
474 
475 	switch (mode) {
476 	case DMA_MODE_READ:
477 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
478 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
479 						   (channel << 5)) &
480 				  ~R4030_CHNL_WRITE);
481 		break;
482 
483 	case DMA_MODE_WRITE:
484 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
485 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
486 						   (channel << 5)) |
487 				  R4030_CHNL_WRITE);
488 		break;
489 
490 	default:
491 		printk
492 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
493 		     mode);
494 	}
495 }
496 
497 EXPORT_SYMBOL(vdma_set_mode);
498 
499 /*
500  * Set Transfer Address
501  */
502 void vdma_set_addr(int channel, long addr)
503 {
504 	if (vdma_debug)
505 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
506 		       addr);
507 
508 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
509 }
510 
511 EXPORT_SYMBOL(vdma_set_addr);
512 
513 /*
514  * Set Transfer Count
515  */
516 void vdma_set_count(int channel, int count)
517 {
518 	if (vdma_debug)
519 		printk("vdma_set_count: channel %d, count %08x\n", channel,
520 		       (unsigned) count);
521 
522 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
523 }
524 
525 EXPORT_SYMBOL(vdma_set_count);
526 
527 /*
528  * Get Residual
529  */
530 int vdma_get_residue(int channel)
531 {
532 	int residual;
533 
534 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
535 
536 	if (vdma_debug)
537 		printk("vdma_get_residual: channel %d: residual=%d\n",
538 		       channel, residual);
539 
540 	return residual;
541 }
542 
543 /*
544  * Get DMA channel enable register
545  */
546 int vdma_get_enable(int channel)
547 {
548 	int enable;
549 
550 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
551 
552 	if (vdma_debug)
553 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
554 		       enable);
555 
556 	return enable;
557 }
558 
559 arch_initcall(vdma_init);
560