xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision 64c70b1c)
1 /*
2  * Mips Jazz DMA controller support
3  * Copyright (C) 1995, 1996 by Andreas Busse
4  *
5  * NOTE: Some of the argument checking could be removed when
6  * things have settled down. Also, instead of returning 0xffffffff
7  * on failure of vdma_alloc() one could leave page #0 unused
8  * and return the more usual NULL pointer as logical address.
9  */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/spinlock.h>
17 #include <asm/mipsregs.h>
18 #include <asm/jazz.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/dma.h>
22 #include <asm/jazzdma.h>
23 #include <asm/pgtable.h>
24 
25 /*
26  * Set this to one to enable additional vdma debug code.
27  */
28 #define CONF_DEBUG_VDMA 0
29 
30 static unsigned long vdma_pagetable_start;
31 
32 static DEFINE_SPINLOCK(vdma_lock);
33 
34 /*
35  * Debug stuff
36  */
37 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
38 
39 static int debuglvl = 3;
40 
41 /*
42  * Initialize the pagetable with a one-to-one mapping of
43  * the first 16 Mbytes of main memory and declare all
44  * entries to be unused. Using this method will at least
45  * allow some early device driver operations to work.
46  */
47 static inline void vdma_pgtbl_init(void)
48 {
49 	VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
50 	unsigned long paddr = 0;
51 	int i;
52 
53 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
54 		pgtbl[i].frame = paddr;
55 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
56 		paddr += VDMA_PAGESIZE;
57 	}
58 }
59 
60 /*
61  * Initialize the Jazz R4030 dma controller
62  */
63 void __init vdma_init(void)
64 {
65 	/*
66 	 * Allocate 32k of memory for DMA page tables.  This needs to be page
67 	 * aligned and should be uncached to avoid cache flushing after every
68 	 * update.
69 	 */
70 	vdma_pagetable_start =
71 		(unsigned long) alloc_bootmem_low_pages(VDMA_PGTBL_SIZE);
72 	if (!vdma_pagetable_start)
73 		BUG();
74 	dma_cache_wback_inv(vdma_pagetable_start, VDMA_PGTBL_SIZE);
75 	vdma_pagetable_start = KSEG1ADDR(vdma_pagetable_start);
76 
77 	/*
78 	 * Clear the R4030 translation table
79 	 */
80 	vdma_pgtbl_init();
81 
82 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
83 			  CPHYSADDR(vdma_pagetable_start));
84 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
85 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
86 
87 	printk("VDMA: R4030 DMA pagetables initialized.\n");
88 }
89 
90 /*
91  * Allocate DMA pagetables using a simple first-fit algorithm
92  */
93 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
94 {
95 	VDMA_PGTBL_ENTRY *entry = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
96 	int first, last, pages, frame, i;
97 	unsigned long laddr, flags;
98 
99 	/* check arguments */
100 
101 	if (paddr > 0x1fffffff) {
102 		if (vdma_debug)
103 			printk("vdma_alloc: Invalid physical address: %08lx\n",
104 			       paddr);
105 		return VDMA_ERROR;	/* invalid physical address */
106 	}
107 	if (size > 0x400000 || size == 0) {
108 		if (vdma_debug)
109 			printk("vdma_alloc: Invalid size: %08lx\n", size);
110 		return VDMA_ERROR;	/* invalid physical address */
111 	}
112 
113 	spin_lock_irqsave(&vdma_lock, flags);
114 	/*
115 	 * Find free chunk
116 	 */
117 	pages = (size + 4095) >> 12;	/* no. of pages to allocate */
118 	first = 0;
119 	while (1) {
120 		while (entry[first].owner != VDMA_PAGE_EMPTY &&
121 		       first < VDMA_PGTBL_ENTRIES) first++;
122 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
123 			spin_unlock_irqrestore(&vdma_lock, flags);
124 			return VDMA_ERROR;
125 		}
126 
127 		last = first + 1;
128 		while (entry[last].owner == VDMA_PAGE_EMPTY
129 		       && last - first < pages)
130 			last++;
131 
132 		if (last - first == pages)
133 			break;	/* found */
134 	}
135 
136 	/*
137 	 * Mark pages as allocated
138 	 */
139 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
140 	frame = paddr & ~(VDMA_PAGESIZE - 1);
141 
142 	for (i = first; i < last; i++) {
143 		entry[i].frame = frame;
144 		entry[i].owner = laddr;
145 		frame += VDMA_PAGESIZE;
146 	}
147 
148 	/*
149 	 * Update translation table and return logical start address
150 	 */
151 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
152 
153 	if (vdma_debug > 1)
154 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
155 		     pages, laddr);
156 
157 	if (vdma_debug > 2) {
158 		printk("LADDR: ");
159 		for (i = first; i < last; i++)
160 			printk("%08x ", i << 12);
161 		printk("\nPADDR: ");
162 		for (i = first; i < last; i++)
163 			printk("%08x ", entry[i].frame);
164 		printk("\nOWNER: ");
165 		for (i = first; i < last; i++)
166 			printk("%08x ", entry[i].owner);
167 		printk("\n");
168 	}
169 
170 	spin_unlock_irqrestore(&vdma_lock, flags);
171 
172 	return laddr;
173 }
174 
175 EXPORT_SYMBOL(vdma_alloc);
176 
177 /*
178  * Free previously allocated dma translation pages
179  * Note that this does NOT change the translation table,
180  * it just marks the free'd pages as unused!
181  */
182 int vdma_free(unsigned long laddr)
183 {
184 	VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
185 	int i;
186 
187 	i = laddr >> 12;
188 
189 	if (pgtbl[i].owner != laddr) {
190 		printk
191 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
192 		     laddr);
193 		return -1;
194 	}
195 
196 	while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) {
197 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
198 		i++;
199 	}
200 
201 	if (vdma_debug > 1)
202 		printk("vdma_free: freed %ld pages starting from %08lx\n",
203 		       i - (laddr >> 12), laddr);
204 
205 	return 0;
206 }
207 
208 EXPORT_SYMBOL(vdma_free);
209 
210 /*
211  * Map certain page(s) to another physical address.
212  * Caller must have allocated the page(s) before.
213  */
214 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
215 {
216 	VDMA_PGTBL_ENTRY *pgtbl =
217 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
218 	int first, pages, npages;
219 
220 	if (laddr > 0xffffff) {
221 		if (vdma_debug)
222 			printk
223 			    ("vdma_map: Invalid logical address: %08lx\n",
224 			     laddr);
225 		return -EINVAL;	/* invalid logical address */
226 	}
227 	if (paddr > 0x1fffffff) {
228 		if (vdma_debug)
229 			printk
230 			    ("vdma_map: Invalid physical address: %08lx\n",
231 			     paddr);
232 		return -EINVAL;	/* invalid physical address */
233 	}
234 
235 	npages = pages =
236 	    (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
237 	first = laddr >> 12;
238 	if (vdma_debug)
239 		printk("vdma_remap: first=%x, pages=%x\n", first, pages);
240 	if (first + pages > VDMA_PGTBL_ENTRIES) {
241 		if (vdma_debug)
242 			printk("vdma_alloc: Invalid size: %08lx\n", size);
243 		return -EINVAL;
244 	}
245 
246 	paddr &= ~(VDMA_PAGESIZE - 1);
247 	while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
248 		if (pgtbl[first].owner != laddr) {
249 			if (vdma_debug)
250 				printk("Trying to remap other's pages.\n");
251 			return -EPERM;	/* not owner */
252 		}
253 		pgtbl[first].frame = paddr;
254 		paddr += VDMA_PAGESIZE;
255 		first++;
256 		pages--;
257 	}
258 
259 	/*
260 	 * Update translation table
261 	 */
262 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
263 
264 	if (vdma_debug > 2) {
265 		int i;
266 		pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
267 		first = laddr >> 12;
268 		printk("LADDR: ");
269 		for (i = first; i < first + pages; i++)
270 			printk("%08x ", i << 12);
271 		printk("\nPADDR: ");
272 		for (i = first; i < first + pages; i++)
273 			printk("%08x ", pgtbl[i].frame);
274 		printk("\nOWNER: ");
275 		for (i = first; i < first + pages; i++)
276 			printk("%08x ", pgtbl[i].owner);
277 		printk("\n");
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * Translate a physical address to a logical address.
285  * This will return the logical address of the first
286  * match.
287  */
288 unsigned long vdma_phys2log(unsigned long paddr)
289 {
290 	int i;
291 	int frame;
292 	VDMA_PGTBL_ENTRY *pgtbl =
293 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
294 
295 	frame = paddr & ~(VDMA_PAGESIZE - 1);
296 
297 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
298 		if (pgtbl[i].frame == frame)
299 			break;
300 	}
301 
302 	if (i == VDMA_PGTBL_ENTRIES)
303 		return ~0UL;
304 
305 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
306 }
307 
308 EXPORT_SYMBOL(vdma_phys2log);
309 
310 /*
311  * Translate a logical DMA address to a physical address
312  */
313 unsigned long vdma_log2phys(unsigned long laddr)
314 {
315 	VDMA_PGTBL_ENTRY *pgtbl =
316 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
317 
318 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
319 }
320 
321 EXPORT_SYMBOL(vdma_log2phys);
322 
323 /*
324  * Print DMA statistics
325  */
326 void vdma_stats(void)
327 {
328 	int i;
329 
330 	printk("vdma_stats: CONFIG: %08x\n",
331 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
332 	printk("R4030 translation table base: %08x\n",
333 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
334 	printk("R4030 translation table limit: %08x\n",
335 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
336 	printk("vdma_stats: INV_ADDR: %08x\n",
337 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
338 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
339 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
340 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
341 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
342 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
343 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
344 	printk("vdma_stats: I386_ERROR: %08x\n",
345 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
346 	printk("vdma_chnl_modes:   ");
347 	for (i = 0; i < 8; i++)
348 		printk("%04x ",
349 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
350 						   (i << 5)));
351 	printk("\n");
352 	printk("vdma_chnl_enables: ");
353 	for (i = 0; i < 8; i++)
354 		printk("%04x ",
355 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
356 						   (i << 5)));
357 	printk("\n");
358 }
359 
360 /*
361  * DMA transfer functions
362  */
363 
364 /*
365  * Enable a DMA channel. Also clear any error conditions.
366  */
367 void vdma_enable(int channel)
368 {
369 	int status;
370 
371 	if (vdma_debug)
372 		printk("vdma_enable: channel %d\n", channel);
373 
374 	/*
375 	 * Check error conditions first
376 	 */
377 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
378 	if (status & 0x400)
379 		printk("VDMA: Channel %d: Address error!\n", channel);
380 	if (status & 0x200)
381 		printk("VDMA: Channel %d: Memory error!\n", channel);
382 
383 	/*
384 	 * Clear all interrupt flags
385 	 */
386 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
387 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
388 					   (channel << 5)) | R4030_TC_INTR
389 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
390 
391 	/*
392 	 * Enable the desired channel
393 	 */
394 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
395 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
396 					   (channel << 5)) |
397 			  R4030_CHNL_ENABLE);
398 }
399 
400 EXPORT_SYMBOL(vdma_enable);
401 
402 /*
403  * Disable a DMA channel
404  */
405 void vdma_disable(int channel)
406 {
407 	if (vdma_debug) {
408 		int status =
409 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
410 				     (channel << 5));
411 
412 		printk("vdma_disable: channel %d\n", channel);
413 		printk("VDMA: channel %d status: %04x (%s) mode: "
414 		       "%02x addr: %06x count: %06x\n",
415 		       channel, status,
416 		       ((status & 0x600) ? "ERROR" : "OK"),
417 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
418 						   (channel << 5)),
419 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
420 						   (channel << 5)),
421 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
422 						   (channel << 5)));
423 	}
424 
425 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
426 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
427 					   (channel << 5)) &
428 			  ~R4030_CHNL_ENABLE);
429 
430 	/*
431 	 * After disabling a DMA channel a remote bus register should be
432 	 * read to ensure that the current DMA acknowledge cycle is completed.
433 	 */
434 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
435 }
436 
437 EXPORT_SYMBOL(vdma_disable);
438 
439 /*
440  * Set DMA mode. This function accepts the mode values used
441  * to set a PC-style DMA controller. For the SCSI and FDC
442  * channels, we also set the default modes each time we're
443  * called.
444  * NOTE: The FAST and BURST dma modes are supported by the
445  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
446  * for now.
447  */
448 void vdma_set_mode(int channel, int mode)
449 {
450 	if (vdma_debug)
451 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
452 		       mode);
453 
454 	switch (channel) {
455 	case JAZZ_SCSI_DMA:	/* scsi */
456 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
457 /*			  R4030_MODE_FAST | */
458 /*			  R4030_MODE_BURST | */
459 				  R4030_MODE_INTR_EN |
460 				  R4030_MODE_WIDTH_16 |
461 				  R4030_MODE_ATIME_80);
462 		break;
463 
464 	case JAZZ_FLOPPY_DMA:	/* floppy */
465 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
466 /*			  R4030_MODE_FAST | */
467 /*			  R4030_MODE_BURST | */
468 				  R4030_MODE_INTR_EN |
469 				  R4030_MODE_WIDTH_8 |
470 				  R4030_MODE_ATIME_120);
471 		break;
472 
473 	case JAZZ_AUDIOL_DMA:
474 	case JAZZ_AUDIOR_DMA:
475 		printk("VDMA: Audio DMA not supported yet.\n");
476 		break;
477 
478 	default:
479 		printk
480 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
481 		     channel);
482 	}
483 
484 	switch (mode) {
485 	case DMA_MODE_READ:
486 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
487 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
488 						   (channel << 5)) &
489 				  ~R4030_CHNL_WRITE);
490 		break;
491 
492 	case DMA_MODE_WRITE:
493 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
494 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
495 						   (channel << 5)) |
496 				  R4030_CHNL_WRITE);
497 		break;
498 
499 	default:
500 		printk
501 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
502 		     mode);
503 	}
504 }
505 
506 EXPORT_SYMBOL(vdma_set_mode);
507 
508 /*
509  * Set Transfer Address
510  */
511 void vdma_set_addr(int channel, long addr)
512 {
513 	if (vdma_debug)
514 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
515 		       addr);
516 
517 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
518 }
519 
520 EXPORT_SYMBOL(vdma_set_addr);
521 
522 /*
523  * Set Transfer Count
524  */
525 void vdma_set_count(int channel, int count)
526 {
527 	if (vdma_debug)
528 		printk("vdma_set_count: channel %d, count %08x\n", channel,
529 		       (unsigned) count);
530 
531 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
532 }
533 
534 EXPORT_SYMBOL(vdma_set_count);
535 
536 /*
537  * Get Residual
538  */
539 int vdma_get_residue(int channel)
540 {
541 	int residual;
542 
543 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
544 
545 	if (vdma_debug)
546 		printk("vdma_get_residual: channel %d: residual=%d\n",
547 		       channel, residual);
548 
549 	return residual;
550 }
551 
552 /*
553  * Get DMA channel enable register
554  */
555 int vdma_get_enable(int channel)
556 {
557 	int enable;
558 
559 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
560 
561 	if (vdma_debug)
562 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
563 		       enable);
564 
565 	return enable;
566 }
567