xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision 5d331b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Mips Jazz DMA controller support
4  * Copyright (C) 1995, 1996 by Andreas Busse
5  *
6  * NOTE: Some of the argument checking could be removed when
7  * things have settled down. Also, instead of returning 0xffffffff
8  * on failure of vdma_alloc() one could leave page #0 unused
9  * and return the more usual NULL pointer as logical address.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/spinlock.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-direct.h>
20 #include <linux/dma-noncoherent.h>
21 #include <asm/mipsregs.h>
22 #include <asm/jazz.h>
23 #include <asm/io.h>
24 #include <linux/uaccess.h>
25 #include <asm/dma.h>
26 #include <asm/jazzdma.h>
27 #include <asm/pgtable.h>
28 
29 /*
30  * Set this to one to enable additional vdma debug code.
31  */
32 #define CONF_DEBUG_VDMA 0
33 
34 static VDMA_PGTBL_ENTRY *pgtbl;
35 
36 static DEFINE_SPINLOCK(vdma_lock);
37 
38 /*
39  * Debug stuff
40  */
41 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
42 
43 static int debuglvl = 3;
44 
45 /*
46  * Initialize the pagetable with a one-to-one mapping of
47  * the first 16 Mbytes of main memory and declare all
48  * entries to be unused. Using this method will at least
49  * allow some early device driver operations to work.
50  */
51 static inline void vdma_pgtbl_init(void)
52 {
53 	unsigned long paddr = 0;
54 	int i;
55 
56 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
57 		pgtbl[i].frame = paddr;
58 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
59 		paddr += VDMA_PAGESIZE;
60 	}
61 }
62 
63 /*
64  * Initialize the Jazz R4030 dma controller
65  */
66 static int __init vdma_init(void)
67 {
68 	/*
69 	 * Allocate 32k of memory for DMA page tables.	This needs to be page
70 	 * aligned and should be uncached to avoid cache flushing after every
71 	 * update.
72 	 */
73 	pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
74 						    get_order(VDMA_PGTBL_SIZE));
75 	BUG_ON(!pgtbl);
76 	dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
77 	pgtbl = (VDMA_PGTBL_ENTRY *)KSEG1ADDR(pgtbl);
78 
79 	/*
80 	 * Clear the R4030 translation table
81 	 */
82 	vdma_pgtbl_init();
83 
84 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE, CPHYSADDR(pgtbl));
85 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
86 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
87 
88 	printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
89 	return 0;
90 }
91 arch_initcall(vdma_init);
92 
93 /*
94  * Allocate DMA pagetables using a simple first-fit algorithm
95  */
96 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
97 {
98 	int first, last, pages, frame, i;
99 	unsigned long laddr, flags;
100 
101 	/* check arguments */
102 
103 	if (paddr > 0x1fffffff) {
104 		if (vdma_debug)
105 			printk("vdma_alloc: Invalid physical address: %08lx\n",
106 			       paddr);
107 		return VDMA_ERROR;	/* invalid physical address */
108 	}
109 	if (size > 0x400000 || size == 0) {
110 		if (vdma_debug)
111 			printk("vdma_alloc: Invalid size: %08lx\n", size);
112 		return VDMA_ERROR;	/* invalid physical address */
113 	}
114 
115 	spin_lock_irqsave(&vdma_lock, flags);
116 	/*
117 	 * Find free chunk
118 	 */
119 	pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
120 	first = 0;
121 	while (1) {
122 		while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
123 		       first < VDMA_PGTBL_ENTRIES) first++;
124 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
125 			spin_unlock_irqrestore(&vdma_lock, flags);
126 			return VDMA_ERROR;
127 		}
128 
129 		last = first + 1;
130 		while (pgtbl[last].owner == VDMA_PAGE_EMPTY
131 		       && last - first < pages)
132 			last++;
133 
134 		if (last - first == pages)
135 			break;	/* found */
136 		first = last + 1;
137 	}
138 
139 	/*
140 	 * Mark pages as allocated
141 	 */
142 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
143 	frame = paddr & ~(VDMA_PAGESIZE - 1);
144 
145 	for (i = first; i < last; i++) {
146 		pgtbl[i].frame = frame;
147 		pgtbl[i].owner = laddr;
148 		frame += VDMA_PAGESIZE;
149 	}
150 
151 	/*
152 	 * Update translation table and return logical start address
153 	 */
154 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
155 
156 	if (vdma_debug > 1)
157 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
158 		     pages, laddr);
159 
160 	if (vdma_debug > 2) {
161 		printk("LADDR: ");
162 		for (i = first; i < last; i++)
163 			printk("%08x ", i << 12);
164 		printk("\nPADDR: ");
165 		for (i = first; i < last; i++)
166 			printk("%08x ", pgtbl[i].frame);
167 		printk("\nOWNER: ");
168 		for (i = first; i < last; i++)
169 			printk("%08x ", pgtbl[i].owner);
170 		printk("\n");
171 	}
172 
173 	spin_unlock_irqrestore(&vdma_lock, flags);
174 
175 	return laddr;
176 }
177 
178 EXPORT_SYMBOL(vdma_alloc);
179 
180 /*
181  * Free previously allocated dma translation pages
182  * Note that this does NOT change the translation table,
183  * it just marks the free'd pages as unused!
184  */
185 int vdma_free(unsigned long laddr)
186 {
187 	int i;
188 
189 	i = laddr >> 12;
190 
191 	if (pgtbl[i].owner != laddr) {
192 		printk
193 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
194 		     laddr);
195 		return -1;
196 	}
197 
198 	while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
199 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
200 		i++;
201 	}
202 
203 	if (vdma_debug > 1)
204 		printk("vdma_free: freed %ld pages starting from %08lx\n",
205 		       i - (laddr >> 12), laddr);
206 
207 	return 0;
208 }
209 
210 EXPORT_SYMBOL(vdma_free);
211 
212 /*
213  * Map certain page(s) to another physical address.
214  * Caller must have allocated the page(s) before.
215  */
216 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
217 {
218 	int first, pages;
219 
220 	if (laddr > 0xffffff) {
221 		if (vdma_debug)
222 			printk
223 			    ("vdma_map: Invalid logical address: %08lx\n",
224 			     laddr);
225 		return -EINVAL; /* invalid logical address */
226 	}
227 	if (paddr > 0x1fffffff) {
228 		if (vdma_debug)
229 			printk
230 			    ("vdma_map: Invalid physical address: %08lx\n",
231 			     paddr);
232 		return -EINVAL; /* invalid physical address */
233 	}
234 
235 	pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
236 	first = laddr >> 12;
237 	if (vdma_debug)
238 		printk("vdma_remap: first=%x, pages=%x\n", first, pages);
239 	if (first + pages > VDMA_PGTBL_ENTRIES) {
240 		if (vdma_debug)
241 			printk("vdma_alloc: Invalid size: %08lx\n", size);
242 		return -EINVAL;
243 	}
244 
245 	paddr &= ~(VDMA_PAGESIZE - 1);
246 	while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
247 		if (pgtbl[first].owner != laddr) {
248 			if (vdma_debug)
249 				printk("Trying to remap other's pages.\n");
250 			return -EPERM;	/* not owner */
251 		}
252 		pgtbl[first].frame = paddr;
253 		paddr += VDMA_PAGESIZE;
254 		first++;
255 		pages--;
256 	}
257 
258 	/*
259 	 * Update translation table
260 	 */
261 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
262 
263 	if (vdma_debug > 2) {
264 		int i;
265 		pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
266 		first = laddr >> 12;
267 		printk("LADDR: ");
268 		for (i = first; i < first + pages; i++)
269 			printk("%08x ", i << 12);
270 		printk("\nPADDR: ");
271 		for (i = first; i < first + pages; i++)
272 			printk("%08x ", pgtbl[i].frame);
273 		printk("\nOWNER: ");
274 		for (i = first; i < first + pages; i++)
275 			printk("%08x ", pgtbl[i].owner);
276 		printk("\n");
277 	}
278 
279 	return 0;
280 }
281 
282 /*
283  * Translate a physical address to a logical address.
284  * This will return the logical address of the first
285  * match.
286  */
287 unsigned long vdma_phys2log(unsigned long paddr)
288 {
289 	int i;
290 	int frame;
291 
292 	frame = paddr & ~(VDMA_PAGESIZE - 1);
293 
294 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
295 		if (pgtbl[i].frame == frame)
296 			break;
297 	}
298 
299 	if (i == VDMA_PGTBL_ENTRIES)
300 		return ~0UL;
301 
302 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
303 }
304 
305 EXPORT_SYMBOL(vdma_phys2log);
306 
307 /*
308  * Translate a logical DMA address to a physical address
309  */
310 unsigned long vdma_log2phys(unsigned long laddr)
311 {
312 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
313 }
314 
315 EXPORT_SYMBOL(vdma_log2phys);
316 
317 /*
318  * Print DMA statistics
319  */
320 void vdma_stats(void)
321 {
322 	int i;
323 
324 	printk("vdma_stats: CONFIG: %08x\n",
325 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
326 	printk("R4030 translation table base: %08x\n",
327 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
328 	printk("R4030 translation table limit: %08x\n",
329 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
330 	printk("vdma_stats: INV_ADDR: %08x\n",
331 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
332 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
333 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
334 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
335 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
336 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
337 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
338 	printk("vdma_stats: I386_ERROR: %08x\n",
339 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
340 	printk("vdma_chnl_modes:   ");
341 	for (i = 0; i < 8; i++)
342 		printk("%04x ",
343 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
344 						   (i << 5)));
345 	printk("\n");
346 	printk("vdma_chnl_enables: ");
347 	for (i = 0; i < 8; i++)
348 		printk("%04x ",
349 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
350 						   (i << 5)));
351 	printk("\n");
352 }
353 
354 /*
355  * DMA transfer functions
356  */
357 
358 /*
359  * Enable a DMA channel. Also clear any error conditions.
360  */
361 void vdma_enable(int channel)
362 {
363 	int status;
364 
365 	if (vdma_debug)
366 		printk("vdma_enable: channel %d\n", channel);
367 
368 	/*
369 	 * Check error conditions first
370 	 */
371 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
372 	if (status & 0x400)
373 		printk("VDMA: Channel %d: Address error!\n", channel);
374 	if (status & 0x200)
375 		printk("VDMA: Channel %d: Memory error!\n", channel);
376 
377 	/*
378 	 * Clear all interrupt flags
379 	 */
380 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
381 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
382 					   (channel << 5)) | R4030_TC_INTR
383 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
384 
385 	/*
386 	 * Enable the desired channel
387 	 */
388 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
389 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
390 					   (channel << 5)) |
391 			  R4030_CHNL_ENABLE);
392 }
393 
394 EXPORT_SYMBOL(vdma_enable);
395 
396 /*
397  * Disable a DMA channel
398  */
399 void vdma_disable(int channel)
400 {
401 	if (vdma_debug) {
402 		int status =
403 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
404 				     (channel << 5));
405 
406 		printk("vdma_disable: channel %d\n", channel);
407 		printk("VDMA: channel %d status: %04x (%s) mode: "
408 		       "%02x addr: %06x count: %06x\n",
409 		       channel, status,
410 		       ((status & 0x600) ? "ERROR" : "OK"),
411 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
412 						   (channel << 5)),
413 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
414 						   (channel << 5)),
415 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
416 						   (channel << 5)));
417 	}
418 
419 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
420 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
421 					   (channel << 5)) &
422 			  ~R4030_CHNL_ENABLE);
423 
424 	/*
425 	 * After disabling a DMA channel a remote bus register should be
426 	 * read to ensure that the current DMA acknowledge cycle is completed.
427 	 */
428 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
429 }
430 
431 EXPORT_SYMBOL(vdma_disable);
432 
433 /*
434  * Set DMA mode. This function accepts the mode values used
435  * to set a PC-style DMA controller. For the SCSI and FDC
436  * channels, we also set the default modes each time we're
437  * called.
438  * NOTE: The FAST and BURST dma modes are supported by the
439  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
440  * for now.
441  */
442 void vdma_set_mode(int channel, int mode)
443 {
444 	if (vdma_debug)
445 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
446 		       mode);
447 
448 	switch (channel) {
449 	case JAZZ_SCSI_DMA:	/* scsi */
450 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
451 /*			  R4030_MODE_FAST | */
452 /*			  R4030_MODE_BURST | */
453 				  R4030_MODE_INTR_EN |
454 				  R4030_MODE_WIDTH_16 |
455 				  R4030_MODE_ATIME_80);
456 		break;
457 
458 	case JAZZ_FLOPPY_DMA:	/* floppy */
459 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
460 /*			  R4030_MODE_FAST | */
461 /*			  R4030_MODE_BURST | */
462 				  R4030_MODE_INTR_EN |
463 				  R4030_MODE_WIDTH_8 |
464 				  R4030_MODE_ATIME_120);
465 		break;
466 
467 	case JAZZ_AUDIOL_DMA:
468 	case JAZZ_AUDIOR_DMA:
469 		printk("VDMA: Audio DMA not supported yet.\n");
470 		break;
471 
472 	default:
473 		printk
474 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
475 		     channel);
476 	}
477 
478 	switch (mode) {
479 	case DMA_MODE_READ:
480 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
481 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
482 						   (channel << 5)) &
483 				  ~R4030_CHNL_WRITE);
484 		break;
485 
486 	case DMA_MODE_WRITE:
487 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
488 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
489 						   (channel << 5)) |
490 				  R4030_CHNL_WRITE);
491 		break;
492 
493 	default:
494 		printk
495 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
496 		     mode);
497 	}
498 }
499 
500 EXPORT_SYMBOL(vdma_set_mode);
501 
502 /*
503  * Set Transfer Address
504  */
505 void vdma_set_addr(int channel, long addr)
506 {
507 	if (vdma_debug)
508 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
509 		       addr);
510 
511 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
512 }
513 
514 EXPORT_SYMBOL(vdma_set_addr);
515 
516 /*
517  * Set Transfer Count
518  */
519 void vdma_set_count(int channel, int count)
520 {
521 	if (vdma_debug)
522 		printk("vdma_set_count: channel %d, count %08x\n", channel,
523 		       (unsigned) count);
524 
525 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
526 }
527 
528 EXPORT_SYMBOL(vdma_set_count);
529 
530 /*
531  * Get Residual
532  */
533 int vdma_get_residue(int channel)
534 {
535 	int residual;
536 
537 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
538 
539 	if (vdma_debug)
540 		printk("vdma_get_residual: channel %d: residual=%d\n",
541 		       channel, residual);
542 
543 	return residual;
544 }
545 
546 /*
547  * Get DMA channel enable register
548  */
549 int vdma_get_enable(int channel)
550 {
551 	int enable;
552 
553 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
554 
555 	if (vdma_debug)
556 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
557 		       enable);
558 
559 	return enable;
560 }
561 
562 static void *jazz_dma_alloc(struct device *dev, size_t size,
563 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
564 {
565 	void *ret;
566 
567 	ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
568 	if (!ret)
569 		return NULL;
570 
571 	*dma_handle = vdma_alloc(virt_to_phys(ret), size);
572 	if (*dma_handle == VDMA_ERROR) {
573 		dma_direct_free_pages(dev, size, ret, *dma_handle, attrs);
574 		return NULL;
575 	}
576 
577 	if (!(attrs & DMA_ATTR_NON_CONSISTENT)) {
578 		dma_cache_wback_inv((unsigned long)ret, size);
579 		ret = (void *)UNCAC_ADDR(ret);
580 	}
581 	return ret;
582 }
583 
584 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
585 		dma_addr_t dma_handle, unsigned long attrs)
586 {
587 	vdma_free(dma_handle);
588 	if (!(attrs & DMA_ATTR_NON_CONSISTENT))
589 		vaddr = (void *)CAC_ADDR((unsigned long)vaddr);
590 	dma_direct_free_pages(dev, size, vaddr, dma_handle, attrs);
591 }
592 
593 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
594 		unsigned long offset, size_t size, enum dma_data_direction dir,
595 		unsigned long attrs)
596 {
597 	phys_addr_t phys = page_to_phys(page) + offset;
598 
599 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
600 		arch_sync_dma_for_device(dev, phys, size, dir);
601 	return vdma_alloc(phys, size);
602 }
603 
604 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
605 		size_t size, enum dma_data_direction dir, unsigned long attrs)
606 {
607 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
608 		arch_sync_dma_for_cpu(dev, vdma_log2phys(dma_addr), size, dir);
609 	vdma_free(dma_addr);
610 }
611 
612 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
613 		int nents, enum dma_data_direction dir, unsigned long attrs)
614 {
615 	int i;
616 	struct scatterlist *sg;
617 
618 	for_each_sg(sglist, sg, nents, i) {
619 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
620 			arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
621 				dir);
622 		sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
623 		if (sg->dma_address == VDMA_ERROR)
624 			return 0;
625 		sg_dma_len(sg) = sg->length;
626 	}
627 
628 	return nents;
629 }
630 
631 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
632 		int nents, enum dma_data_direction dir, unsigned long attrs)
633 {
634 	int i;
635 	struct scatterlist *sg;
636 
637 	for_each_sg(sglist, sg, nents, i) {
638 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
639 			arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length,
640 				dir);
641 		vdma_free(sg->dma_address);
642 	}
643 }
644 
645 static void jazz_dma_sync_single_for_device(struct device *dev,
646 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
647 {
648 	arch_sync_dma_for_device(dev, vdma_log2phys(addr), size, dir);
649 }
650 
651 static void jazz_dma_sync_single_for_cpu(struct device *dev,
652 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
653 {
654 	arch_sync_dma_for_cpu(dev, vdma_log2phys(addr), size, dir);
655 }
656 
657 static void jazz_dma_sync_sg_for_device(struct device *dev,
658 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
659 {
660 	struct scatterlist *sg;
661 	int i;
662 
663 	for_each_sg(sgl, sg, nents, i)
664 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
665 }
666 
667 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
668 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
669 {
670 	struct scatterlist *sg;
671 	int i;
672 
673 	for_each_sg(sgl, sg, nents, i)
674 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
675 }
676 
677 static int jazz_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
678 {
679 	return dma_addr == VDMA_ERROR;
680 }
681 
682 const struct dma_map_ops jazz_dma_ops = {
683 	.alloc			= jazz_dma_alloc,
684 	.free			= jazz_dma_free,
685 	.map_page		= jazz_dma_map_page,
686 	.unmap_page		= jazz_dma_unmap_page,
687 	.map_sg			= jazz_dma_map_sg,
688 	.unmap_sg		= jazz_dma_unmap_sg,
689 	.sync_single_for_cpu	= jazz_dma_sync_single_for_cpu,
690 	.sync_single_for_device	= jazz_dma_sync_single_for_device,
691 	.sync_sg_for_cpu	= jazz_dma_sync_sg_for_cpu,
692 	.sync_sg_for_device	= jazz_dma_sync_sg_for_device,
693 	.dma_supported		= dma_direct_supported,
694 	.cache_sync		= arch_dma_cache_sync,
695 	.mapping_error		= jazz_dma_mapping_error,
696 };
697 EXPORT_SYMBOL(jazz_dma_ops);
698