xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Mips Jazz DMA controller support
4  * Copyright (C) 1995, 1996 by Andreas Busse
5  *
6  * NOTE: Some of the argument checking could be removed when
7  * things have settled down. Also, instead of returning 0xffffffff
8  * on failure of vdma_alloc() one could leave page #0 unused
9  * and return the more usual NULL pointer as logical address.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/spinlock.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-direct.h>
20 #include <linux/dma-noncoherent.h>
21 #include <asm/mipsregs.h>
22 #include <asm/jazz.h>
23 #include <asm/io.h>
24 #include <linux/uaccess.h>
25 #include <asm/dma.h>
26 #include <asm/jazzdma.h>
27 #include <asm/pgtable.h>
28 
29 /*
30  * Set this to one to enable additional vdma debug code.
31  */
32 #define CONF_DEBUG_VDMA 0
33 
34 static VDMA_PGTBL_ENTRY *pgtbl;
35 
36 static DEFINE_SPINLOCK(vdma_lock);
37 
38 /*
39  * Debug stuff
40  */
41 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
42 
43 static int debuglvl = 3;
44 
45 /*
46  * Initialize the pagetable with a one-to-one mapping of
47  * the first 16 Mbytes of main memory and declare all
48  * entries to be unused. Using this method will at least
49  * allow some early device driver operations to work.
50  */
51 static inline void vdma_pgtbl_init(void)
52 {
53 	unsigned long paddr = 0;
54 	int i;
55 
56 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
57 		pgtbl[i].frame = paddr;
58 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
59 		paddr += VDMA_PAGESIZE;
60 	}
61 }
62 
63 /*
64  * Initialize the Jazz R4030 dma controller
65  */
66 static int __init vdma_init(void)
67 {
68 	/*
69 	 * Allocate 32k of memory for DMA page tables.	This needs to be page
70 	 * aligned and should be uncached to avoid cache flushing after every
71 	 * update.
72 	 */
73 	pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
74 						    get_order(VDMA_PGTBL_SIZE));
75 	BUG_ON(!pgtbl);
76 	dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
77 	pgtbl = (VDMA_PGTBL_ENTRY *)CKSEG1ADDR((unsigned long)pgtbl);
78 
79 	/*
80 	 * Clear the R4030 translation table
81 	 */
82 	vdma_pgtbl_init();
83 
84 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
85 			  CPHYSADDR((unsigned long)pgtbl));
86 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
87 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
88 
89 	printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
90 	return 0;
91 }
92 arch_initcall(vdma_init);
93 
94 /*
95  * Allocate DMA pagetables using a simple first-fit algorithm
96  */
97 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
98 {
99 	int first, last, pages, frame, i;
100 	unsigned long laddr, flags;
101 
102 	/* check arguments */
103 
104 	if (paddr > 0x1fffffff) {
105 		if (vdma_debug)
106 			printk("vdma_alloc: Invalid physical address: %08lx\n",
107 			       paddr);
108 		return DMA_MAPPING_ERROR;	/* invalid physical address */
109 	}
110 	if (size > 0x400000 || size == 0) {
111 		if (vdma_debug)
112 			printk("vdma_alloc: Invalid size: %08lx\n", size);
113 		return DMA_MAPPING_ERROR;	/* invalid physical address */
114 	}
115 
116 	spin_lock_irqsave(&vdma_lock, flags);
117 	/*
118 	 * Find free chunk
119 	 */
120 	pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
121 	first = 0;
122 	while (1) {
123 		while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
124 		       first < VDMA_PGTBL_ENTRIES) first++;
125 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
126 			spin_unlock_irqrestore(&vdma_lock, flags);
127 			return DMA_MAPPING_ERROR;
128 		}
129 
130 		last = first + 1;
131 		while (pgtbl[last].owner == VDMA_PAGE_EMPTY
132 		       && last - first < pages)
133 			last++;
134 
135 		if (last - first == pages)
136 			break;	/* found */
137 		first = last + 1;
138 	}
139 
140 	/*
141 	 * Mark pages as allocated
142 	 */
143 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
144 	frame = paddr & ~(VDMA_PAGESIZE - 1);
145 
146 	for (i = first; i < last; i++) {
147 		pgtbl[i].frame = frame;
148 		pgtbl[i].owner = laddr;
149 		frame += VDMA_PAGESIZE;
150 	}
151 
152 	/*
153 	 * Update translation table and return logical start address
154 	 */
155 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
156 
157 	if (vdma_debug > 1)
158 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
159 		     pages, laddr);
160 
161 	if (vdma_debug > 2) {
162 		printk("LADDR: ");
163 		for (i = first; i < last; i++)
164 			printk("%08x ", i << 12);
165 		printk("\nPADDR: ");
166 		for (i = first; i < last; i++)
167 			printk("%08x ", pgtbl[i].frame);
168 		printk("\nOWNER: ");
169 		for (i = first; i < last; i++)
170 			printk("%08x ", pgtbl[i].owner);
171 		printk("\n");
172 	}
173 
174 	spin_unlock_irqrestore(&vdma_lock, flags);
175 
176 	return laddr;
177 }
178 
179 EXPORT_SYMBOL(vdma_alloc);
180 
181 /*
182  * Free previously allocated dma translation pages
183  * Note that this does NOT change the translation table,
184  * it just marks the free'd pages as unused!
185  */
186 int vdma_free(unsigned long laddr)
187 {
188 	int i;
189 
190 	i = laddr >> 12;
191 
192 	if (pgtbl[i].owner != laddr) {
193 		printk
194 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
195 		     laddr);
196 		return -1;
197 	}
198 
199 	while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
200 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
201 		i++;
202 	}
203 
204 	if (vdma_debug > 1)
205 		printk("vdma_free: freed %ld pages starting from %08lx\n",
206 		       i - (laddr >> 12), laddr);
207 
208 	return 0;
209 }
210 
211 EXPORT_SYMBOL(vdma_free);
212 
213 /*
214  * Map certain page(s) to another physical address.
215  * Caller must have allocated the page(s) before.
216  */
217 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
218 {
219 	int first, pages;
220 
221 	if (laddr > 0xffffff) {
222 		if (vdma_debug)
223 			printk
224 			    ("vdma_map: Invalid logical address: %08lx\n",
225 			     laddr);
226 		return -EINVAL; /* invalid logical address */
227 	}
228 	if (paddr > 0x1fffffff) {
229 		if (vdma_debug)
230 			printk
231 			    ("vdma_map: Invalid physical address: %08lx\n",
232 			     paddr);
233 		return -EINVAL; /* invalid physical address */
234 	}
235 
236 	pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
237 	first = laddr >> 12;
238 	if (vdma_debug)
239 		printk("vdma_remap: first=%x, pages=%x\n", first, pages);
240 	if (first + pages > VDMA_PGTBL_ENTRIES) {
241 		if (vdma_debug)
242 			printk("vdma_alloc: Invalid size: %08lx\n", size);
243 		return -EINVAL;
244 	}
245 
246 	paddr &= ~(VDMA_PAGESIZE - 1);
247 	while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
248 		if (pgtbl[first].owner != laddr) {
249 			if (vdma_debug)
250 				printk("Trying to remap other's pages.\n");
251 			return -EPERM;	/* not owner */
252 		}
253 		pgtbl[first].frame = paddr;
254 		paddr += VDMA_PAGESIZE;
255 		first++;
256 		pages--;
257 	}
258 
259 	/*
260 	 * Update translation table
261 	 */
262 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
263 
264 	if (vdma_debug > 2) {
265 		int i;
266 		pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
267 		first = laddr >> 12;
268 		printk("LADDR: ");
269 		for (i = first; i < first + pages; i++)
270 			printk("%08x ", i << 12);
271 		printk("\nPADDR: ");
272 		for (i = first; i < first + pages; i++)
273 			printk("%08x ", pgtbl[i].frame);
274 		printk("\nOWNER: ");
275 		for (i = first; i < first + pages; i++)
276 			printk("%08x ", pgtbl[i].owner);
277 		printk("\n");
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * Translate a physical address to a logical address.
285  * This will return the logical address of the first
286  * match.
287  */
288 unsigned long vdma_phys2log(unsigned long paddr)
289 {
290 	int i;
291 	int frame;
292 
293 	frame = paddr & ~(VDMA_PAGESIZE - 1);
294 
295 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
296 		if (pgtbl[i].frame == frame)
297 			break;
298 	}
299 
300 	if (i == VDMA_PGTBL_ENTRIES)
301 		return ~0UL;
302 
303 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
304 }
305 
306 EXPORT_SYMBOL(vdma_phys2log);
307 
308 /*
309  * Translate a logical DMA address to a physical address
310  */
311 unsigned long vdma_log2phys(unsigned long laddr)
312 {
313 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
314 }
315 
316 EXPORT_SYMBOL(vdma_log2phys);
317 
318 /*
319  * Print DMA statistics
320  */
321 void vdma_stats(void)
322 {
323 	int i;
324 
325 	printk("vdma_stats: CONFIG: %08x\n",
326 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
327 	printk("R4030 translation table base: %08x\n",
328 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
329 	printk("R4030 translation table limit: %08x\n",
330 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
331 	printk("vdma_stats: INV_ADDR: %08x\n",
332 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
333 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
334 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
335 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
336 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
337 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
338 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
339 	printk("vdma_stats: I386_ERROR: %08x\n",
340 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
341 	printk("vdma_chnl_modes:   ");
342 	for (i = 0; i < 8; i++)
343 		printk("%04x ",
344 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
345 						   (i << 5)));
346 	printk("\n");
347 	printk("vdma_chnl_enables: ");
348 	for (i = 0; i < 8; i++)
349 		printk("%04x ",
350 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
351 						   (i << 5)));
352 	printk("\n");
353 }
354 
355 /*
356  * DMA transfer functions
357  */
358 
359 /*
360  * Enable a DMA channel. Also clear any error conditions.
361  */
362 void vdma_enable(int channel)
363 {
364 	int status;
365 
366 	if (vdma_debug)
367 		printk("vdma_enable: channel %d\n", channel);
368 
369 	/*
370 	 * Check error conditions first
371 	 */
372 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
373 	if (status & 0x400)
374 		printk("VDMA: Channel %d: Address error!\n", channel);
375 	if (status & 0x200)
376 		printk("VDMA: Channel %d: Memory error!\n", channel);
377 
378 	/*
379 	 * Clear all interrupt flags
380 	 */
381 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
382 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
383 					   (channel << 5)) | R4030_TC_INTR
384 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
385 
386 	/*
387 	 * Enable the desired channel
388 	 */
389 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
390 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
391 					   (channel << 5)) |
392 			  R4030_CHNL_ENABLE);
393 }
394 
395 EXPORT_SYMBOL(vdma_enable);
396 
397 /*
398  * Disable a DMA channel
399  */
400 void vdma_disable(int channel)
401 {
402 	if (vdma_debug) {
403 		int status =
404 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
405 				     (channel << 5));
406 
407 		printk("vdma_disable: channel %d\n", channel);
408 		printk("VDMA: channel %d status: %04x (%s) mode: "
409 		       "%02x addr: %06x count: %06x\n",
410 		       channel, status,
411 		       ((status & 0x600) ? "ERROR" : "OK"),
412 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
413 						   (channel << 5)),
414 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
415 						   (channel << 5)),
416 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
417 						   (channel << 5)));
418 	}
419 
420 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
421 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
422 					   (channel << 5)) &
423 			  ~R4030_CHNL_ENABLE);
424 
425 	/*
426 	 * After disabling a DMA channel a remote bus register should be
427 	 * read to ensure that the current DMA acknowledge cycle is completed.
428 	 */
429 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
430 }
431 
432 EXPORT_SYMBOL(vdma_disable);
433 
434 /*
435  * Set DMA mode. This function accepts the mode values used
436  * to set a PC-style DMA controller. For the SCSI and FDC
437  * channels, we also set the default modes each time we're
438  * called.
439  * NOTE: The FAST and BURST dma modes are supported by the
440  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
441  * for now.
442  */
443 void vdma_set_mode(int channel, int mode)
444 {
445 	if (vdma_debug)
446 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
447 		       mode);
448 
449 	switch (channel) {
450 	case JAZZ_SCSI_DMA:	/* scsi */
451 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
452 /*			  R4030_MODE_FAST | */
453 /*			  R4030_MODE_BURST | */
454 				  R4030_MODE_INTR_EN |
455 				  R4030_MODE_WIDTH_16 |
456 				  R4030_MODE_ATIME_80);
457 		break;
458 
459 	case JAZZ_FLOPPY_DMA:	/* floppy */
460 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
461 /*			  R4030_MODE_FAST | */
462 /*			  R4030_MODE_BURST | */
463 				  R4030_MODE_INTR_EN |
464 				  R4030_MODE_WIDTH_8 |
465 				  R4030_MODE_ATIME_120);
466 		break;
467 
468 	case JAZZ_AUDIOL_DMA:
469 	case JAZZ_AUDIOR_DMA:
470 		printk("VDMA: Audio DMA not supported yet.\n");
471 		break;
472 
473 	default:
474 		printk
475 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
476 		     channel);
477 	}
478 
479 	switch (mode) {
480 	case DMA_MODE_READ:
481 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
482 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
483 						   (channel << 5)) &
484 				  ~R4030_CHNL_WRITE);
485 		break;
486 
487 	case DMA_MODE_WRITE:
488 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
489 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
490 						   (channel << 5)) |
491 				  R4030_CHNL_WRITE);
492 		break;
493 
494 	default:
495 		printk
496 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
497 		     mode);
498 	}
499 }
500 
501 EXPORT_SYMBOL(vdma_set_mode);
502 
503 /*
504  * Set Transfer Address
505  */
506 void vdma_set_addr(int channel, long addr)
507 {
508 	if (vdma_debug)
509 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
510 		       addr);
511 
512 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
513 }
514 
515 EXPORT_SYMBOL(vdma_set_addr);
516 
517 /*
518  * Set Transfer Count
519  */
520 void vdma_set_count(int channel, int count)
521 {
522 	if (vdma_debug)
523 		printk("vdma_set_count: channel %d, count %08x\n", channel,
524 		       (unsigned) count);
525 
526 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
527 }
528 
529 EXPORT_SYMBOL(vdma_set_count);
530 
531 /*
532  * Get Residual
533  */
534 int vdma_get_residue(int channel)
535 {
536 	int residual;
537 
538 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
539 
540 	if (vdma_debug)
541 		printk("vdma_get_residual: channel %d: residual=%d\n",
542 		       channel, residual);
543 
544 	return residual;
545 }
546 
547 /*
548  * Get DMA channel enable register
549  */
550 int vdma_get_enable(int channel)
551 {
552 	int enable;
553 
554 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
555 
556 	if (vdma_debug)
557 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
558 		       enable);
559 
560 	return enable;
561 }
562 
563 static void *jazz_dma_alloc(struct device *dev, size_t size,
564 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
565 {
566 	void *ret;
567 
568 	ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
569 	if (!ret)
570 		return NULL;
571 
572 	*dma_handle = vdma_alloc(virt_to_phys(ret), size);
573 	if (*dma_handle == DMA_MAPPING_ERROR) {
574 		dma_direct_free_pages(dev, size, ret, *dma_handle, attrs);
575 		return NULL;
576 	}
577 
578 	return ret;
579 }
580 
581 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
582 		dma_addr_t dma_handle, unsigned long attrs)
583 {
584 	vdma_free(dma_handle);
585 	dma_direct_free_pages(dev, size, vaddr, dma_handle, attrs);
586 }
587 
588 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
589 		unsigned long offset, size_t size, enum dma_data_direction dir,
590 		unsigned long attrs)
591 {
592 	phys_addr_t phys = page_to_phys(page) + offset;
593 
594 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
595 		arch_sync_dma_for_device(dev, phys, size, dir);
596 	return vdma_alloc(phys, size);
597 }
598 
599 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
600 		size_t size, enum dma_data_direction dir, unsigned long attrs)
601 {
602 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
603 		arch_sync_dma_for_cpu(dev, vdma_log2phys(dma_addr), size, dir);
604 	vdma_free(dma_addr);
605 }
606 
607 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
608 		int nents, enum dma_data_direction dir, unsigned long attrs)
609 {
610 	int i;
611 	struct scatterlist *sg;
612 
613 	for_each_sg(sglist, sg, nents, i) {
614 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
615 			arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
616 				dir);
617 		sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
618 		if (sg->dma_address == DMA_MAPPING_ERROR)
619 			return 0;
620 		sg_dma_len(sg) = sg->length;
621 	}
622 
623 	return nents;
624 }
625 
626 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
627 		int nents, enum dma_data_direction dir, unsigned long attrs)
628 {
629 	int i;
630 	struct scatterlist *sg;
631 
632 	for_each_sg(sglist, sg, nents, i) {
633 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
634 			arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length,
635 				dir);
636 		vdma_free(sg->dma_address);
637 	}
638 }
639 
640 static void jazz_dma_sync_single_for_device(struct device *dev,
641 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
642 {
643 	arch_sync_dma_for_device(dev, vdma_log2phys(addr), size, dir);
644 }
645 
646 static void jazz_dma_sync_single_for_cpu(struct device *dev,
647 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
648 {
649 	arch_sync_dma_for_cpu(dev, vdma_log2phys(addr), size, dir);
650 }
651 
652 static void jazz_dma_sync_sg_for_device(struct device *dev,
653 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
654 {
655 	struct scatterlist *sg;
656 	int i;
657 
658 	for_each_sg(sgl, sg, nents, i)
659 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
660 }
661 
662 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
663 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
664 {
665 	struct scatterlist *sg;
666 	int i;
667 
668 	for_each_sg(sgl, sg, nents, i)
669 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
670 }
671 
672 const struct dma_map_ops jazz_dma_ops = {
673 	.alloc			= jazz_dma_alloc,
674 	.free			= jazz_dma_free,
675 	.map_page		= jazz_dma_map_page,
676 	.unmap_page		= jazz_dma_unmap_page,
677 	.map_sg			= jazz_dma_map_sg,
678 	.unmap_sg		= jazz_dma_unmap_sg,
679 	.sync_single_for_cpu	= jazz_dma_sync_single_for_cpu,
680 	.sync_single_for_device	= jazz_dma_sync_single_for_device,
681 	.sync_sg_for_cpu	= jazz_dma_sync_sg_for_cpu,
682 	.sync_sg_for_device	= jazz_dma_sync_sg_for_device,
683 	.dma_supported		= dma_direct_supported,
684 	.cache_sync		= arch_dma_cache_sync,
685 	.mmap			= dma_common_mmap,
686 	.get_sgtable		= dma_common_get_sgtable,
687 };
688 EXPORT_SYMBOL(jazz_dma_ops);
689