xref: /openbmc/linux/arch/mips/jazz/jazzdma.c (revision 1da177e4)
1 /*
2  * Mips Jazz DMA controller support
3  * Copyright (C) 1995, 1996 by Andreas Busse
4  *
5  * NOTE: Some of the argument checking could be removed when
6  * things have settled down. Also, instead of returning 0xffffffff
7  * on failure of vdma_alloc() one could leave page #0 unused
8  * and return the more usual NULL pointer as logical address.
9  */
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/bootmem.h>
16 #include <linux/spinlock.h>
17 #include <asm/mipsregs.h>
18 #include <asm/jazz.h>
19 #include <asm/io.h>
20 #include <asm/uaccess.h>
21 #include <asm/dma.h>
22 #include <asm/jazzdma.h>
23 #include <asm/pgtable.h>
24 
25 /*
26  * Set this to one to enable additional vdma debug code.
27  */
28 #define CONF_DEBUG_VDMA 0
29 
30 static unsigned long vdma_pagetable_start;
31 
32 static DEFINE_SPINLOCK(vdma_lock);
33 
34 /*
35  * Debug stuff
36  */
37 #define vdma_debug     ((CONF_DEBUG_VDMA) ? debuglvl : 0)
38 
39 static int debuglvl = 3;
40 
41 /*
42  * Initialize the pagetable with a one-to-one mapping of
43  * the first 16 Mbytes of main memory and declare all
44  * entries to be unused. Using this method will at least
45  * allow some early device driver operations to work.
46  */
47 static inline void vdma_pgtbl_init(void)
48 {
49 	VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
50 	unsigned long paddr = 0;
51 	int i;
52 
53 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
54 		pgtbl[i].frame = paddr;
55 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
56 		paddr += VDMA_PAGESIZE;
57 	}
58 }
59 
60 /*
61  * Initialize the Jazz R4030 dma controller
62  */
63 void __init vdma_init(void)
64 {
65 	/*
66 	 * Allocate 32k of memory for DMA page tables.  This needs to be page
67 	 * aligned and should be uncached to avoid cache flushing after every
68 	 * update.
69 	 */
70 	vdma_pagetable_start = alloc_bootmem_low_pages(VDMA_PGTBL_SIZE);
71 	if (!vdma_pagetable_start)
72 		BUG();
73 	dma_cache_wback_inv(vdma_pagetable_start, VDMA_PGTBL_SIZE);
74 	vdma_pagetable_start = KSEG1ADDR(vdma_pagetable_start);
75 
76 	/*
77 	 * Clear the R4030 translation table
78 	 */
79 	vdma_pgtbl_init();
80 
81 	r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
82 			  CPHYSADDR(vdma_pagetable_start));
83 	r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
84 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
85 
86 	printk("VDMA: R4030 DMA pagetables initialized.\n");
87 }
88 
89 /*
90  * Allocate DMA pagetables using a simple first-fit algorithm
91  */
92 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
93 {
94 	VDMA_PGTBL_ENTRY *entry = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
95 	int first, last, pages, frame, i;
96 	unsigned long laddr, flags;
97 
98 	/* check arguments */
99 
100 	if (paddr > 0x1fffffff) {
101 		if (vdma_debug)
102 			printk("vdma_alloc: Invalid physical address: %08lx\n",
103 			       paddr);
104 		return VDMA_ERROR;	/* invalid physical address */
105 	}
106 	if (size > 0x400000 || size == 0) {
107 		if (vdma_debug)
108 			printk("vdma_alloc: Invalid size: %08lx\n", size);
109 		return VDMA_ERROR;	/* invalid physical address */
110 	}
111 
112 	spin_lock_irqsave(&vdma_lock, flags);
113 	/*
114 	 * Find free chunk
115 	 */
116 	pages = (size + 4095) >> 12;	/* no. of pages to allocate */
117 	first = 0;
118 	while (1) {
119 		while (entry[first].owner != VDMA_PAGE_EMPTY &&
120 		       first < VDMA_PGTBL_ENTRIES) first++;
121 		if (first + pages > VDMA_PGTBL_ENTRIES) {	/* nothing free */
122 			spin_unlock_irqrestore(&vdma_lock, flags);
123 			return VDMA_ERROR;
124 		}
125 
126 		last = first + 1;
127 		while (entry[last].owner == VDMA_PAGE_EMPTY
128 		       && last - first < pages)
129 			last++;
130 
131 		if (last - first == pages)
132 			break;	/* found */
133 	}
134 
135 	/*
136 	 * Mark pages as allocated
137 	 */
138 	laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
139 	frame = paddr & ~(VDMA_PAGESIZE - 1);
140 
141 	for (i = first; i < last; i++) {
142 		entry[i].frame = frame;
143 		entry[i].owner = laddr;
144 		frame += VDMA_PAGESIZE;
145 	}
146 
147 	/*
148 	 * Update translation table and return logical start address
149 	 */
150 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
151 
152 	if (vdma_debug > 1)
153 		printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
154 		     pages, laddr);
155 
156 	if (vdma_debug > 2) {
157 		printk("LADDR: ");
158 		for (i = first; i < last; i++)
159 			printk("%08x ", i << 12);
160 		printk("\nPADDR: ");
161 		for (i = first; i < last; i++)
162 			printk("%08x ", entry[i].frame);
163 		printk("\nOWNER: ");
164 		for (i = first; i < last; i++)
165 			printk("%08x ", entry[i].owner);
166 		printk("\n");
167 	}
168 
169 	spin_unlock_irqrestore(&vdma_lock, flags);
170 
171 	return laddr;
172 }
173 
174 EXPORT_SYMBOL(vdma_alloc);
175 
176 /*
177  * Free previously allocated dma translation pages
178  * Note that this does NOT change the translation table,
179  * it just marks the free'd pages as unused!
180  */
181 int vdma_free(unsigned long laddr)
182 {
183 	VDMA_PGTBL_ENTRY *pgtbl = (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
184 	int i;
185 
186 	i = laddr >> 12;
187 
188 	if (pgtbl[i].owner != laddr) {
189 		printk
190 		    ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
191 		     laddr);
192 		return -1;
193 	}
194 
195 	while (pgtbl[i].owner == laddr && i < VDMA_PGTBL_ENTRIES) {
196 		pgtbl[i].owner = VDMA_PAGE_EMPTY;
197 		i++;
198 	}
199 
200 	if (vdma_debug > 1)
201 		printk("vdma_free: freed %ld pages starting from %08lx\n",
202 		       i - (laddr >> 12), laddr);
203 
204 	return 0;
205 }
206 
207 EXPORT_SYMBOL(vdma_free);
208 
209 /*
210  * Map certain page(s) to another physical address.
211  * Caller must have allocated the page(s) before.
212  */
213 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
214 {
215 	VDMA_PGTBL_ENTRY *pgtbl =
216 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
217 	int first, pages, npages;
218 
219 	if (laddr > 0xffffff) {
220 		if (vdma_debug)
221 			printk
222 			    ("vdma_map: Invalid logical address: %08lx\n",
223 			     laddr);
224 		return -EINVAL;	/* invalid logical address */
225 	}
226 	if (paddr > 0x1fffffff) {
227 		if (vdma_debug)
228 			printk
229 			    ("vdma_map: Invalid physical address: %08lx\n",
230 			     paddr);
231 		return -EINVAL;	/* invalid physical address */
232 	}
233 
234 	npages = pages =
235 	    (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
236 	first = laddr >> 12;
237 	if (vdma_debug)
238 		printk("vdma_remap: first=%x, pages=%x\n", first, pages);
239 	if (first + pages > VDMA_PGTBL_ENTRIES) {
240 		if (vdma_debug)
241 			printk("vdma_alloc: Invalid size: %08lx\n", size);
242 		return -EINVAL;
243 	}
244 
245 	paddr &= ~(VDMA_PAGESIZE - 1);
246 	while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
247 		if (pgtbl[first].owner != laddr) {
248 			if (vdma_debug)
249 				printk("Trying to remap other's pages.\n");
250 			return -EPERM;	/* not owner */
251 		}
252 		pgtbl[first].frame = paddr;
253 		paddr += VDMA_PAGESIZE;
254 		first++;
255 		pages--;
256 	}
257 
258 	/*
259 	 * Update translation table
260 	 */
261 	r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
262 
263 	if (vdma_debug > 2) {
264 		int i;
265 		pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
266 		first = laddr >> 12;
267 		printk("LADDR: ");
268 		for (i = first; i < first + pages; i++)
269 			printk("%08x ", i << 12);
270 		printk("\nPADDR: ");
271 		for (i = first; i < first + pages; i++)
272 			printk("%08x ", pgtbl[i].frame);
273 		printk("\nOWNER: ");
274 		for (i = first; i < first + pages; i++)
275 			printk("%08x ", pgtbl[i].owner);
276 		printk("\n");
277 	}
278 
279 	return 0;
280 }
281 
282 /*
283  * Translate a physical address to a logical address.
284  * This will return the logical address of the first
285  * match.
286  */
287 unsigned long vdma_phys2log(unsigned long paddr)
288 {
289 	int i;
290 	int frame;
291 	VDMA_PGTBL_ENTRY *pgtbl =
292 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
293 
294 	frame = paddr & ~(VDMA_PAGESIZE - 1);
295 
296 	for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
297 		if (pgtbl[i].frame == frame)
298 			break;
299 	}
300 
301 	if (i == VDMA_PGTBL_ENTRIES)
302 		return ~0UL;
303 
304 	return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
305 }
306 
307 EXPORT_SYMBOL(vdma_phys2log);
308 
309 /*
310  * Translate a logical DMA address to a physical address
311  */
312 unsigned long vdma_log2phys(unsigned long laddr)
313 {
314 	VDMA_PGTBL_ENTRY *pgtbl =
315 	    (VDMA_PGTBL_ENTRY *) vdma_pagetable_start;
316 
317 	return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
318 }
319 
320 EXPORT_SYMBOL(vdma_log2phys);
321 
322 /*
323  * Print DMA statistics
324  */
325 void vdma_stats(void)
326 {
327 	int i;
328 
329 	printk("vdma_stats: CONFIG: %08x\n",
330 	       r4030_read_reg32(JAZZ_R4030_CONFIG));
331 	printk("R4030 translation table base: %08x\n",
332 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
333 	printk("R4030 translation table limit: %08x\n",
334 	       r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
335 	printk("vdma_stats: INV_ADDR: %08x\n",
336 	       r4030_read_reg32(JAZZ_R4030_INV_ADDR));
337 	printk("vdma_stats: R_FAIL_ADDR: %08x\n",
338 	       r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
339 	printk("vdma_stats: M_FAIL_ADDR: %08x\n",
340 	       r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
341 	printk("vdma_stats: IRQ_SOURCE: %08x\n",
342 	       r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
343 	printk("vdma_stats: I386_ERROR: %08x\n",
344 	       r4030_read_reg32(JAZZ_R4030_I386_ERROR));
345 	printk("vdma_chnl_modes:   ");
346 	for (i = 0; i < 8; i++)
347 		printk("%04x ",
348 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
349 						   (i << 5)));
350 	printk("\n");
351 	printk("vdma_chnl_enables: ");
352 	for (i = 0; i < 8; i++)
353 		printk("%04x ",
354 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
355 						   (i << 5)));
356 	printk("\n");
357 }
358 
359 /*
360  * DMA transfer functions
361  */
362 
363 /*
364  * Enable a DMA channel. Also clear any error conditions.
365  */
366 void vdma_enable(int channel)
367 {
368 	int status;
369 
370 	if (vdma_debug)
371 		printk("vdma_enable: channel %d\n", channel);
372 
373 	/*
374 	 * Check error conditions first
375 	 */
376 	status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
377 	if (status & 0x400)
378 		printk("VDMA: Channel %d: Address error!\n", channel);
379 	if (status & 0x200)
380 		printk("VDMA: Channel %d: Memory error!\n", channel);
381 
382 	/*
383 	 * Clear all interrupt flags
384 	 */
385 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
386 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
387 					   (channel << 5)) | R4030_TC_INTR
388 			  | R4030_MEM_INTR | R4030_ADDR_INTR);
389 
390 	/*
391 	 * Enable the desired channel
392 	 */
393 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
394 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
395 					   (channel << 5)) |
396 			  R4030_CHNL_ENABLE);
397 }
398 
399 EXPORT_SYMBOL(vdma_enable);
400 
401 /*
402  * Disable a DMA channel
403  */
404 void vdma_disable(int channel)
405 {
406 	if (vdma_debug) {
407 		int status =
408 		    r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
409 				     (channel << 5));
410 
411 		printk("vdma_disable: channel %d\n", channel);
412 		printk("VDMA: channel %d status: %04x (%s) mode: "
413 		       "%02x addr: %06x count: %06x\n",
414 		       channel, status,
415 		       ((status & 0x600) ? "ERROR" : "OK"),
416 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
417 						   (channel << 5)),
418 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
419 						   (channel << 5)),
420 		       (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
421 						   (channel << 5)));
422 	}
423 
424 	r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
425 			  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
426 					   (channel << 5)) &
427 			  ~R4030_CHNL_ENABLE);
428 
429 	/*
430 	 * After disabling a DMA channel a remote bus register should be
431 	 * read to ensure that the current DMA acknowledge cycle is completed.
432 	 */
433 	*((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
434 }
435 
436 EXPORT_SYMBOL(vdma_disable);
437 
438 /*
439  * Set DMA mode. This function accepts the mode values used
440  * to set a PC-style DMA controller. For the SCSI and FDC
441  * channels, we also set the default modes each time we're
442  * called.
443  * NOTE: The FAST and BURST dma modes are supported by the
444  * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
445  * for now.
446  */
447 void vdma_set_mode(int channel, int mode)
448 {
449 	if (vdma_debug)
450 		printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
451 		       mode);
452 
453 	switch (channel) {
454 	case JAZZ_SCSI_DMA:	/* scsi */
455 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
456 /*			  R4030_MODE_FAST | */
457 /*			  R4030_MODE_BURST | */
458 				  R4030_MODE_INTR_EN |
459 				  R4030_MODE_WIDTH_16 |
460 				  R4030_MODE_ATIME_80);
461 		break;
462 
463 	case JAZZ_FLOPPY_DMA:	/* floppy */
464 		r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
465 /*			  R4030_MODE_FAST | */
466 /*			  R4030_MODE_BURST | */
467 				  R4030_MODE_INTR_EN |
468 				  R4030_MODE_WIDTH_8 |
469 				  R4030_MODE_ATIME_120);
470 		break;
471 
472 	case JAZZ_AUDIOL_DMA:
473 	case JAZZ_AUDIOR_DMA:
474 		printk("VDMA: Audio DMA not supported yet.\n");
475 		break;
476 
477 	default:
478 		printk
479 		    ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
480 		     channel);
481 	}
482 
483 	switch (mode) {
484 	case DMA_MODE_READ:
485 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
486 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
487 						   (channel << 5)) &
488 				  ~R4030_CHNL_WRITE);
489 		break;
490 
491 	case DMA_MODE_WRITE:
492 		r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
493 				  r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
494 						   (channel << 5)) |
495 				  R4030_CHNL_WRITE);
496 		break;
497 
498 	default:
499 		printk
500 		    ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
501 		     mode);
502 	}
503 }
504 
505 EXPORT_SYMBOL(vdma_set_mode);
506 
507 /*
508  * Set Transfer Address
509  */
510 void vdma_set_addr(int channel, long addr)
511 {
512 	if (vdma_debug)
513 		printk("vdma_set_addr: channel %d, addr %lx\n", channel,
514 		       addr);
515 
516 	r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
517 }
518 
519 EXPORT_SYMBOL(vdma_set_addr);
520 
521 /*
522  * Set Transfer Count
523  */
524 void vdma_set_count(int channel, int count)
525 {
526 	if (vdma_debug)
527 		printk("vdma_set_count: channel %d, count %08x\n", channel,
528 		       (unsigned) count);
529 
530 	r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
531 }
532 
533 EXPORT_SYMBOL(vdma_set_count);
534 
535 /*
536  * Get Residual
537  */
538 int vdma_get_residue(int channel)
539 {
540 	int residual;
541 
542 	residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
543 
544 	if (vdma_debug)
545 		printk("vdma_get_residual: channel %d: residual=%d\n",
546 		       channel, residual);
547 
548 	return residual;
549 }
550 
551 /*
552  * Get DMA channel enable register
553  */
554 int vdma_get_enable(int channel)
555 {
556 	int enable;
557 
558 	enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
559 
560 	if (vdma_debug)
561 		printk("vdma_get_enable: channel %d: enable=%d\n", channel,
562 		       enable);
563 
564 	return enable;
565 }
566