xref: /openbmc/linux/arch/mips/include/asm/uaccess.h (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8  * Copyright (C) 2007  Maciej W. Rozycki
9  * Copyright (C) 2014, Imagination Technologies Ltd.
10  */
11 #ifndef _ASM_UACCESS_H
12 #define _ASM_UACCESS_H
13 
14 #include <linux/kernel.h>
15 #include <linux/errno.h>
16 #include <linux/thread_info.h>
17 #include <asm/asm-eva.h>
18 
19 /*
20  * The fs value determines whether argument validity checking should be
21  * performed or not.  If get_fs() == USER_DS, checking is performed, with
22  * get_fs() == KERNEL_DS, checking is bypassed.
23  *
24  * For historical reasons, these macros are grossly misnamed.
25  */
26 #ifdef CONFIG_32BIT
27 
28 #ifdef CONFIG_KVM_GUEST
29 #define __UA_LIMIT 0x40000000UL
30 #else
31 #define __UA_LIMIT 0x80000000UL
32 #endif
33 
34 #define __UA_ADDR	".word"
35 #define __UA_LA		"la"
36 #define __UA_ADDU	"addu"
37 #define __UA_t0		"$8"
38 #define __UA_t1		"$9"
39 
40 #endif /* CONFIG_32BIT */
41 
42 #ifdef CONFIG_64BIT
43 
44 extern u64 __ua_limit;
45 
46 #define __UA_LIMIT	__ua_limit
47 
48 #define __UA_ADDR	".dword"
49 #define __UA_LA		"dla"
50 #define __UA_ADDU	"daddu"
51 #define __UA_t0		"$12"
52 #define __UA_t1		"$13"
53 
54 #endif /* CONFIG_64BIT */
55 
56 /*
57  * USER_DS is a bitmask that has the bits set that may not be set in a valid
58  * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
59  * the arithmetic we're doing only works if the limit is a power of two, so
60  * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
61  * address in this range it's the process's problem, not ours :-)
62  */
63 
64 #ifdef CONFIG_KVM_GUEST
65 #define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
66 #define USER_DS		((mm_segment_t) { 0xC0000000UL })
67 #else
68 #define KERNEL_DS	((mm_segment_t) { 0UL })
69 #define USER_DS		((mm_segment_t) { __UA_LIMIT })
70 #endif
71 
72 #define VERIFY_READ    0
73 #define VERIFY_WRITE   1
74 
75 #define get_ds()	(KERNEL_DS)
76 #define get_fs()	(current_thread_info()->addr_limit)
77 #define set_fs(x)	(current_thread_info()->addr_limit = (x))
78 
79 #define segment_eq(a, b)	((a).seg == (b).seg)
80 
81 
82 /*
83  * Is a address valid? This does a straighforward calculation rather
84  * than tests.
85  *
86  * Address valid if:
87  *  - "addr" doesn't have any high-bits set
88  *  - AND "size" doesn't have any high-bits set
89  *  - AND "addr+size" doesn't have any high-bits set
90  *  - OR we are in kernel mode.
91  *
92  * __ua_size() is a trick to avoid runtime checking of positive constant
93  * sizes; for those we already know at compile time that the size is ok.
94  */
95 #define __ua_size(size)							\
96 	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
97 
98 /*
99  * access_ok: - Checks if a user space pointer is valid
100  * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
101  *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
102  *	  to write to a block, it is always safe to read from it.
103  * @addr: User space pointer to start of block to check
104  * @size: Size of block to check
105  *
106  * Context: User context only.	This function may sleep.
107  *
108  * Checks if a pointer to a block of memory in user space is valid.
109  *
110  * Returns true (nonzero) if the memory block may be valid, false (zero)
111  * if it is definitely invalid.
112  *
113  * Note that, depending on architecture, this function probably just
114  * checks that the pointer is in the user space range - after calling
115  * this function, memory access functions may still return -EFAULT.
116  */
117 
118 #define __access_mask get_fs().seg
119 
120 #define __access_ok(addr, size, mask)					\
121 ({									\
122 	unsigned long __addr = (unsigned long) (addr);			\
123 	unsigned long __size = size;					\
124 	unsigned long __mask = mask;					\
125 	unsigned long __ok;						\
126 									\
127 	__chk_user_ptr(addr);						\
128 	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
129 		__ua_size(__size)));					\
130 	__ok == 0;							\
131 })
132 
133 #define access_ok(type, addr, size)					\
134 	likely(__access_ok((addr), (size), __access_mask))
135 
136 /*
137  * put_user: - Write a simple value into user space.
138  * @x:	 Value to copy to user space.
139  * @ptr: Destination address, in user space.
140  *
141  * Context: User context only.	This function may sleep.
142  *
143  * This macro copies a single simple value from kernel space to user
144  * space.  It supports simple types like char and int, but not larger
145  * data types like structures or arrays.
146  *
147  * @ptr must have pointer-to-simple-variable type, and @x must be assignable
148  * to the result of dereferencing @ptr.
149  *
150  * Returns zero on success, or -EFAULT on error.
151  */
152 #define put_user(x,ptr) \
153 	__put_user_check((x), (ptr), sizeof(*(ptr)))
154 
155 /*
156  * get_user: - Get a simple variable from user space.
157  * @x:	 Variable to store result.
158  * @ptr: Source address, in user space.
159  *
160  * Context: User context only.	This function may sleep.
161  *
162  * This macro copies a single simple variable from user space to kernel
163  * space.  It supports simple types like char and int, but not larger
164  * data types like structures or arrays.
165  *
166  * @ptr must have pointer-to-simple-variable type, and the result of
167  * dereferencing @ptr must be assignable to @x without a cast.
168  *
169  * Returns zero on success, or -EFAULT on error.
170  * On error, the variable @x is set to zero.
171  */
172 #define get_user(x,ptr) \
173 	__get_user_check((x), (ptr), sizeof(*(ptr)))
174 
175 /*
176  * __put_user: - Write a simple value into user space, with less checking.
177  * @x:	 Value to copy to user space.
178  * @ptr: Destination address, in user space.
179  *
180  * Context: User context only.	This function may sleep.
181  *
182  * This macro copies a single simple value from kernel space to user
183  * space.  It supports simple types like char and int, but not larger
184  * data types like structures or arrays.
185  *
186  * @ptr must have pointer-to-simple-variable type, and @x must be assignable
187  * to the result of dereferencing @ptr.
188  *
189  * Caller must check the pointer with access_ok() before calling this
190  * function.
191  *
192  * Returns zero on success, or -EFAULT on error.
193  */
194 #define __put_user(x,ptr) \
195 	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
196 
197 /*
198  * __get_user: - Get a simple variable from user space, with less checking.
199  * @x:	 Variable to store result.
200  * @ptr: Source address, in user space.
201  *
202  * Context: User context only.	This function may sleep.
203  *
204  * This macro copies a single simple variable from user space to kernel
205  * space.  It supports simple types like char and int, but not larger
206  * data types like structures or arrays.
207  *
208  * @ptr must have pointer-to-simple-variable type, and the result of
209  * dereferencing @ptr must be assignable to @x without a cast.
210  *
211  * Caller must check the pointer with access_ok() before calling this
212  * function.
213  *
214  * Returns zero on success, or -EFAULT on error.
215  * On error, the variable @x is set to zero.
216  */
217 #define __get_user(x,ptr) \
218 	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
219 
220 struct __large_struct { unsigned long buf[100]; };
221 #define __m(x) (*(struct __large_struct __user *)(x))
222 
223 /*
224  * Yuck.  We need two variants, one for 64bit operation and one
225  * for 32 bit mode and old iron.
226  */
227 #ifndef CONFIG_EVA
228 #define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
229 #else
230 /*
231  * Kernel specific functions for EVA. We need to use normal load instructions
232  * to read data from kernel when operating in EVA mode. We use these macros to
233  * avoid redefining __get_user_asm for EVA.
234  */
235 #undef _loadd
236 #undef _loadw
237 #undef _loadh
238 #undef _loadb
239 #ifdef CONFIG_32BIT
240 #define _loadd			_loadw
241 #else
242 #define _loadd(reg, addr)	"ld " reg ", " addr
243 #endif
244 #define _loadw(reg, addr)	"lw " reg ", " addr
245 #define _loadh(reg, addr)	"lh " reg ", " addr
246 #define _loadb(reg, addr)	"lb " reg ", " addr
247 
248 #define __get_kernel_common(val, size, ptr)				\
249 do {									\
250 	switch (size) {							\
251 	case 1: __get_data_asm(val, _loadb, ptr); break;		\
252 	case 2: __get_data_asm(val, _loadh, ptr); break;		\
253 	case 4: __get_data_asm(val, _loadw, ptr); break;		\
254 	case 8: __GET_DW(val, _loadd, ptr); break;			\
255 	default: __get_user_unknown(); break;				\
256 	}								\
257 } while (0)
258 #endif
259 
260 #ifdef CONFIG_32BIT
261 #define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
262 #endif
263 #ifdef CONFIG_64BIT
264 #define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
265 #endif
266 
267 extern void __get_user_unknown(void);
268 
269 #define __get_user_common(val, size, ptr)				\
270 do {									\
271 	switch (size) {							\
272 	case 1: __get_data_asm(val, user_lb, ptr); break;		\
273 	case 2: __get_data_asm(val, user_lh, ptr); break;		\
274 	case 4: __get_data_asm(val, user_lw, ptr); break;		\
275 	case 8: __GET_DW(val, user_ld, ptr); break;			\
276 	default: __get_user_unknown(); break;				\
277 	}								\
278 } while (0)
279 
280 #define __get_user_nocheck(x, ptr, size)				\
281 ({									\
282 	int __gu_err;							\
283 									\
284 	if (segment_eq(get_fs(), get_ds())) {				\
285 		__get_kernel_common((x), size, ptr);			\
286 	} else {							\
287 		__chk_user_ptr(ptr);					\
288 		__get_user_common((x), size, ptr);			\
289 	}								\
290 	__gu_err;							\
291 })
292 
293 #define __get_user_check(x, ptr, size)					\
294 ({									\
295 	int __gu_err = -EFAULT;						\
296 	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
297 									\
298 	might_fault();							\
299 	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
300 		if (segment_eq(get_fs(), get_ds()))			\
301 			__get_kernel_common((x), size, __gu_ptr);	\
302 		else							\
303 			__get_user_common((x), size, __gu_ptr);		\
304 	} else								\
305 		(x) = 0;						\
306 									\
307 	__gu_err;							\
308 })
309 
310 #define __get_data_asm(val, insn, addr)					\
311 {									\
312 	long __gu_tmp;							\
313 									\
314 	__asm__ __volatile__(						\
315 	"1:	"insn("%1", "%3")"				\n"	\
316 	"2:							\n"	\
317 	"	.insn						\n"	\
318 	"	.section .fixup,\"ax\"				\n"	\
319 	"3:	li	%0, %4					\n"	\
320 	"	move	%1, $0					\n"	\
321 	"	j	2b					\n"	\
322 	"	.previous					\n"	\
323 	"	.section __ex_table,\"a\"			\n"	\
324 	"	"__UA_ADDR "\t1b, 3b				\n"	\
325 	"	.previous					\n"	\
326 	: "=r" (__gu_err), "=r" (__gu_tmp)				\
327 	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
328 									\
329 	(val) = (__typeof__(*(addr))) __gu_tmp;				\
330 }
331 
332 /*
333  * Get a long long 64 using 32 bit registers.
334  */
335 #define __get_data_asm_ll32(val, insn, addr)				\
336 {									\
337 	union {								\
338 		unsigned long long	l;				\
339 		__typeof__(*(addr))	t;				\
340 	} __gu_tmp;							\
341 									\
342 	__asm__ __volatile__(						\
343 	"1:	" insn("%1", "(%3)")"				\n"	\
344 	"2:	" insn("%D1", "4(%3)")"				\n"	\
345 	"3:							\n"	\
346 	"	.insn						\n"	\
347 	"	.section	.fixup,\"ax\"			\n"	\
348 	"4:	li	%0, %4					\n"	\
349 	"	move	%1, $0					\n"	\
350 	"	move	%D1, $0					\n"	\
351 	"	j	3b					\n"	\
352 	"	.previous					\n"	\
353 	"	.section	__ex_table,\"a\"		\n"	\
354 	"	" __UA_ADDR "	1b, 4b				\n"	\
355 	"	" __UA_ADDR "	2b, 4b				\n"	\
356 	"	.previous					\n"	\
357 	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
358 	: "0" (0), "r" (addr), "i" (-EFAULT));				\
359 									\
360 	(val) = __gu_tmp.t;						\
361 }
362 
363 #ifndef CONFIG_EVA
364 #define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
365 #else
366 /*
367  * Kernel specific functions for EVA. We need to use normal load instructions
368  * to read data from kernel when operating in EVA mode. We use these macros to
369  * avoid redefining __get_data_asm for EVA.
370  */
371 #undef _stored
372 #undef _storew
373 #undef _storeh
374 #undef _storeb
375 #ifdef CONFIG_32BIT
376 #define _stored			_storew
377 #else
378 #define _stored(reg, addr)	"ld " reg ", " addr
379 #endif
380 
381 #define _storew(reg, addr)	"sw " reg ", " addr
382 #define _storeh(reg, addr)	"sh " reg ", " addr
383 #define _storeb(reg, addr)	"sb " reg ", " addr
384 
385 #define __put_kernel_common(ptr, size)					\
386 do {									\
387 	switch (size) {							\
388 	case 1: __put_data_asm(_storeb, ptr); break;			\
389 	case 2: __put_data_asm(_storeh, ptr); break;			\
390 	case 4: __put_data_asm(_storew, ptr); break;			\
391 	case 8: __PUT_DW(_stored, ptr); break;				\
392 	default: __put_user_unknown(); break;				\
393 	}								\
394 } while(0)
395 #endif
396 
397 /*
398  * Yuck.  We need two variants, one for 64bit operation and one
399  * for 32 bit mode and old iron.
400  */
401 #ifdef CONFIG_32BIT
402 #define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
403 #endif
404 #ifdef CONFIG_64BIT
405 #define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
406 #endif
407 
408 #define __put_user_common(ptr, size)					\
409 do {									\
410 	switch (size) {							\
411 	case 1: __put_data_asm(user_sb, ptr); break;			\
412 	case 2: __put_data_asm(user_sh, ptr); break;			\
413 	case 4: __put_data_asm(user_sw, ptr); break;			\
414 	case 8: __PUT_DW(user_sd, ptr); break;				\
415 	default: __put_user_unknown(); break;				\
416 	}								\
417 } while (0)
418 
419 #define __put_user_nocheck(x, ptr, size)				\
420 ({									\
421 	__typeof__(*(ptr)) __pu_val;					\
422 	int __pu_err = 0;						\
423 									\
424 	__pu_val = (x);							\
425 	if (segment_eq(get_fs(), get_ds())) {				\
426 		__put_kernel_common(ptr, size);				\
427 	} else {							\
428 		__chk_user_ptr(ptr);					\
429 		__put_user_common(ptr, size);				\
430 	}								\
431 	__pu_err;							\
432 })
433 
434 #define __put_user_check(x, ptr, size)					\
435 ({									\
436 	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
437 	__typeof__(*(ptr)) __pu_val = (x);				\
438 	int __pu_err = -EFAULT;						\
439 									\
440 	might_fault();							\
441 	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
442 		if (segment_eq(get_fs(), get_ds()))			\
443 			__put_kernel_common(__pu_addr, size);		\
444 		else							\
445 			__put_user_common(__pu_addr, size);		\
446 	}								\
447 									\
448 	__pu_err;							\
449 })
450 
451 #define __put_data_asm(insn, ptr)					\
452 {									\
453 	__asm__ __volatile__(						\
454 	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
455 	"2:							\n"	\
456 	"	.insn						\n"	\
457 	"	.section	.fixup,\"ax\"			\n"	\
458 	"3:	li	%0, %4					\n"	\
459 	"	j	2b					\n"	\
460 	"	.previous					\n"	\
461 	"	.section	__ex_table,\"a\"		\n"	\
462 	"	" __UA_ADDR "	1b, 3b				\n"	\
463 	"	.previous					\n"	\
464 	: "=r" (__pu_err)						\
465 	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
466 	  "i" (-EFAULT));						\
467 }
468 
469 #define __put_data_asm_ll32(insn, ptr)					\
470 {									\
471 	__asm__ __volatile__(						\
472 	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
473 	"2:	"insn("%D2", "4(%3)")"				\n"	\
474 	"3:							\n"	\
475 	"	.insn						\n"	\
476 	"	.section	.fixup,\"ax\"			\n"	\
477 	"4:	li	%0, %4					\n"	\
478 	"	j	3b					\n"	\
479 	"	.previous					\n"	\
480 	"	.section	__ex_table,\"a\"		\n"	\
481 	"	" __UA_ADDR "	1b, 4b				\n"	\
482 	"	" __UA_ADDR "	2b, 4b				\n"	\
483 	"	.previous"						\
484 	: "=r" (__pu_err)						\
485 	: "0" (0), "r" (__pu_val), "r" (ptr),				\
486 	  "i" (-EFAULT));						\
487 }
488 
489 extern void __put_user_unknown(void);
490 
491 /*
492  * ul{b,h,w} are macros and there are no equivalent macros for EVA.
493  * EVA unaligned access is handled in the ADE exception handler.
494  */
495 #ifndef CONFIG_EVA
496 /*
497  * put_user_unaligned: - Write a simple value into user space.
498  * @x:	 Value to copy to user space.
499  * @ptr: Destination address, in user space.
500  *
501  * Context: User context only.	This function may sleep.
502  *
503  * This macro copies a single simple value from kernel space to user
504  * space.  It supports simple types like char and int, but not larger
505  * data types like structures or arrays.
506  *
507  * @ptr must have pointer-to-simple-variable type, and @x must be assignable
508  * to the result of dereferencing @ptr.
509  *
510  * Returns zero on success, or -EFAULT on error.
511  */
512 #define put_user_unaligned(x,ptr)	\
513 	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
514 
515 /*
516  * get_user_unaligned: - Get a simple variable from user space.
517  * @x:	 Variable to store result.
518  * @ptr: Source address, in user space.
519  *
520  * Context: User context only.	This function may sleep.
521  *
522  * This macro copies a single simple variable from user space to kernel
523  * space.  It supports simple types like char and int, but not larger
524  * data types like structures or arrays.
525  *
526  * @ptr must have pointer-to-simple-variable type, and the result of
527  * dereferencing @ptr must be assignable to @x without a cast.
528  *
529  * Returns zero on success, or -EFAULT on error.
530  * On error, the variable @x is set to zero.
531  */
532 #define get_user_unaligned(x,ptr) \
533 	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
534 
535 /*
536  * __put_user_unaligned: - Write a simple value into user space, with less checking.
537  * @x:	 Value to copy to user space.
538  * @ptr: Destination address, in user space.
539  *
540  * Context: User context only.	This function may sleep.
541  *
542  * This macro copies a single simple value from kernel space to user
543  * space.  It supports simple types like char and int, but not larger
544  * data types like structures or arrays.
545  *
546  * @ptr must have pointer-to-simple-variable type, and @x must be assignable
547  * to the result of dereferencing @ptr.
548  *
549  * Caller must check the pointer with access_ok() before calling this
550  * function.
551  *
552  * Returns zero on success, or -EFAULT on error.
553  */
554 #define __put_user_unaligned(x,ptr) \
555 	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
556 
557 /*
558  * __get_user_unaligned: - Get a simple variable from user space, with less checking.
559  * @x:	 Variable to store result.
560  * @ptr: Source address, in user space.
561  *
562  * Context: User context only.	This function may sleep.
563  *
564  * This macro copies a single simple variable from user space to kernel
565  * space.  It supports simple types like char and int, but not larger
566  * data types like structures or arrays.
567  *
568  * @ptr must have pointer-to-simple-variable type, and the result of
569  * dereferencing @ptr must be assignable to @x without a cast.
570  *
571  * Caller must check the pointer with access_ok() before calling this
572  * function.
573  *
574  * Returns zero on success, or -EFAULT on error.
575  * On error, the variable @x is set to zero.
576  */
577 #define __get_user_unaligned(x,ptr) \
578 	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
579 
580 /*
581  * Yuck.  We need two variants, one for 64bit operation and one
582  * for 32 bit mode and old iron.
583  */
584 #ifdef CONFIG_32BIT
585 #define __GET_USER_UNALIGNED_DW(val, ptr)				\
586 	__get_user_unaligned_asm_ll32(val, ptr)
587 #endif
588 #ifdef CONFIG_64BIT
589 #define __GET_USER_UNALIGNED_DW(val, ptr)				\
590 	__get_user_unaligned_asm(val, "uld", ptr)
591 #endif
592 
593 extern void __get_user_unaligned_unknown(void);
594 
595 #define __get_user_unaligned_common(val, size, ptr)			\
596 do {									\
597 	switch (size) {							\
598 	case 1: __get_data_asm(val, "lb", ptr); break;			\
599 	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
600 	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
601 	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
602 	default: __get_user_unaligned_unknown(); break;			\
603 	}								\
604 } while (0)
605 
606 #define __get_user_unaligned_nocheck(x,ptr,size)			\
607 ({									\
608 	int __gu_err;							\
609 									\
610 	__get_user_unaligned_common((x), size, ptr);			\
611 	__gu_err;							\
612 })
613 
614 #define __get_user_unaligned_check(x,ptr,size)				\
615 ({									\
616 	int __gu_err = -EFAULT;						\
617 	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
618 									\
619 	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
620 		__get_user_unaligned_common((x), size, __gu_ptr);	\
621 									\
622 	__gu_err;							\
623 })
624 
625 #define __get_data_unaligned_asm(val, insn, addr)			\
626 {									\
627 	long __gu_tmp;							\
628 									\
629 	__asm__ __volatile__(						\
630 	"1:	" insn "	%1, %3				\n"	\
631 	"2:							\n"	\
632 	"	.insn						\n"	\
633 	"	.section .fixup,\"ax\"				\n"	\
634 	"3:	li	%0, %4					\n"	\
635 	"	move	%1, $0					\n"	\
636 	"	j	2b					\n"	\
637 	"	.previous					\n"	\
638 	"	.section __ex_table,\"a\"			\n"	\
639 	"	"__UA_ADDR "\t1b, 3b				\n"	\
640 	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
641 	"	.previous					\n"	\
642 	: "=r" (__gu_err), "=r" (__gu_tmp)				\
643 	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
644 									\
645 	(val) = (__typeof__(*(addr))) __gu_tmp;				\
646 }
647 
648 /*
649  * Get a long long 64 using 32 bit registers.
650  */
651 #define __get_user_unaligned_asm_ll32(val, addr)			\
652 {									\
653 	unsigned long long __gu_tmp;					\
654 									\
655 	__asm__ __volatile__(						\
656 	"1:	ulw	%1, (%3)				\n"	\
657 	"2:	ulw	%D1, 4(%3)				\n"	\
658 	"	move	%0, $0					\n"	\
659 	"3:							\n"	\
660 	"	.insn						\n"	\
661 	"	.section	.fixup,\"ax\"			\n"	\
662 	"4:	li	%0, %4					\n"	\
663 	"	move	%1, $0					\n"	\
664 	"	move	%D1, $0					\n"	\
665 	"	j	3b					\n"	\
666 	"	.previous					\n"	\
667 	"	.section	__ex_table,\"a\"		\n"	\
668 	"	" __UA_ADDR "	1b, 4b				\n"	\
669 	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
670 	"	" __UA_ADDR "	2b, 4b				\n"	\
671 	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
672 	"	.previous					\n"	\
673 	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
674 	: "0" (0), "r" (addr), "i" (-EFAULT));				\
675 	(val) = (__typeof__(*(addr))) __gu_tmp;				\
676 }
677 
678 /*
679  * Yuck.  We need two variants, one for 64bit operation and one
680  * for 32 bit mode and old iron.
681  */
682 #ifdef CONFIG_32BIT
683 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
684 #endif
685 #ifdef CONFIG_64BIT
686 #define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
687 #endif
688 
689 #define __put_user_unaligned_common(ptr, size)				\
690 do {									\
691 	switch (size) {							\
692 	case 1: __put_data_asm("sb", ptr); break;			\
693 	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
694 	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
695 	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
696 	default: __put_user_unaligned_unknown(); break;			\
697 } while (0)
698 
699 #define __put_user_unaligned_nocheck(x,ptr,size)			\
700 ({									\
701 	__typeof__(*(ptr)) __pu_val;					\
702 	int __pu_err = 0;						\
703 									\
704 	__pu_val = (x);							\
705 	__put_user_unaligned_common(ptr, size);				\
706 	__pu_err;							\
707 })
708 
709 #define __put_user_unaligned_check(x,ptr,size)				\
710 ({									\
711 	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
712 	__typeof__(*(ptr)) __pu_val = (x);				\
713 	int __pu_err = -EFAULT;						\
714 									\
715 	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
716 		__put_user_unaligned_common(__pu_addr, size);		\
717 									\
718 	__pu_err;							\
719 })
720 
721 #define __put_user_unaligned_asm(insn, ptr)				\
722 {									\
723 	__asm__ __volatile__(						\
724 	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
725 	"2:							\n"	\
726 	"	.insn						\n"	\
727 	"	.section	.fixup,\"ax\"			\n"	\
728 	"3:	li	%0, %4					\n"	\
729 	"	j	2b					\n"	\
730 	"	.previous					\n"	\
731 	"	.section	__ex_table,\"a\"		\n"	\
732 	"	" __UA_ADDR "	1b, 3b				\n"	\
733 	"	.previous					\n"	\
734 	: "=r" (__pu_err)						\
735 	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
736 	  "i" (-EFAULT));						\
737 }
738 
739 #define __put_user_unaligned_asm_ll32(ptr)				\
740 {									\
741 	__asm__ __volatile__(						\
742 	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
743 	"2:	sw	%D2, 4(%3)				\n"	\
744 	"3:							\n"	\
745 	"	.insn						\n"	\
746 	"	.section	.fixup,\"ax\"			\n"	\
747 	"4:	li	%0, %4					\n"	\
748 	"	j	3b					\n"	\
749 	"	.previous					\n"	\
750 	"	.section	__ex_table,\"a\"		\n"	\
751 	"	" __UA_ADDR "	1b, 4b				\n"	\
752 	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
753 	"	" __UA_ADDR "	2b, 4b				\n"	\
754 	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
755 	"	.previous"						\
756 	: "=r" (__pu_err)						\
757 	: "0" (0), "r" (__pu_val), "r" (ptr),				\
758 	  "i" (-EFAULT));						\
759 }
760 
761 extern void __put_user_unaligned_unknown(void);
762 #endif
763 
764 /*
765  * We're generating jump to subroutines which will be outside the range of
766  * jump instructions
767  */
768 #ifdef MODULE
769 #define __MODULE_JAL(destination)					\
770 	".set\tnoat\n\t"						\
771 	__UA_LA "\t$1, " #destination "\n\t"				\
772 	"jalr\t$1\n\t"							\
773 	".set\tat\n\t"
774 #else
775 #define __MODULE_JAL(destination)					\
776 	"jal\t" #destination "\n\t"
777 #endif
778 
779 #if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
780 					      defined(CONFIG_CPU_HAS_PREFETCH))
781 #define DADDI_SCRATCH "$3"
782 #else
783 #define DADDI_SCRATCH "$0"
784 #endif
785 
786 extern size_t __copy_user(void *__to, const void *__from, size_t __n);
787 
788 #ifndef CONFIG_EVA
789 #define __invoke_copy_to_user(to, from, n)				\
790 ({									\
791 	register void __user *__cu_to_r __asm__("$4");			\
792 	register const void *__cu_from_r __asm__("$5");			\
793 	register long __cu_len_r __asm__("$6");				\
794 									\
795 	__cu_to_r = (to);						\
796 	__cu_from_r = (from);						\
797 	__cu_len_r = (n);						\
798 	__asm__ __volatile__(						\
799 	__MODULE_JAL(__copy_user)					\
800 	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
801 	:								\
802 	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
803 	  DADDI_SCRATCH, "memory");					\
804 	__cu_len_r;							\
805 })
806 
807 #define __invoke_copy_to_kernel(to, from, n)				\
808 	__invoke_copy_to_user(to, from, n)
809 
810 #endif
811 
812 /*
813  * __copy_to_user: - Copy a block of data into user space, with less checking.
814  * @to:	  Destination address, in user space.
815  * @from: Source address, in kernel space.
816  * @n:	  Number of bytes to copy.
817  *
818  * Context: User context only.	This function may sleep.
819  *
820  * Copy data from kernel space to user space.  Caller must check
821  * the specified block with access_ok() before calling this function.
822  *
823  * Returns number of bytes that could not be copied.
824  * On success, this will be zero.
825  */
826 #define __copy_to_user(to, from, n)					\
827 ({									\
828 	void __user *__cu_to;						\
829 	const void *__cu_from;						\
830 	long __cu_len;							\
831 									\
832 	__cu_to = (to);							\
833 	__cu_from = (from);						\
834 	__cu_len = (n);							\
835 	might_fault();							\
836 	if (segment_eq(get_fs(), get_ds()))				\
837 		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
838 						   __cu_len);		\
839 	else								\
840 		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
841 						 __cu_len);		\
842 	__cu_len;							\
843 })
844 
845 extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
846 
847 #define __copy_to_user_inatomic(to, from, n)				\
848 ({									\
849 	void __user *__cu_to;						\
850 	const void *__cu_from;						\
851 	long __cu_len;							\
852 									\
853 	__cu_to = (to);							\
854 	__cu_from = (from);						\
855 	__cu_len = (n);							\
856 	if (segment_eq(get_fs(), get_ds()))				\
857 		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
858 						   __cu_len);		\
859 	else								\
860 		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
861 						 __cu_len);		\
862 	__cu_len;							\
863 })
864 
865 #define __copy_from_user_inatomic(to, from, n)				\
866 ({									\
867 	void *__cu_to;							\
868 	const void __user *__cu_from;					\
869 	long __cu_len;							\
870 									\
871 	__cu_to = (to);							\
872 	__cu_from = (from);						\
873 	__cu_len = (n);							\
874 	if (segment_eq(get_fs(), get_ds()))				\
875 		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
876 							      __cu_from,\
877 							      __cu_len);\
878 	else								\
879 		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
880 							    __cu_from,	\
881 							    __cu_len);	\
882 	__cu_len;							\
883 })
884 
885 /*
886  * copy_to_user: - Copy a block of data into user space.
887  * @to:	  Destination address, in user space.
888  * @from: Source address, in kernel space.
889  * @n:	  Number of bytes to copy.
890  *
891  * Context: User context only.	This function may sleep.
892  *
893  * Copy data from kernel space to user space.
894  *
895  * Returns number of bytes that could not be copied.
896  * On success, this will be zero.
897  */
898 #define copy_to_user(to, from, n)					\
899 ({									\
900 	void __user *__cu_to;						\
901 	const void *__cu_from;						\
902 	long __cu_len;							\
903 									\
904 	__cu_to = (to);							\
905 	__cu_from = (from);						\
906 	__cu_len = (n);							\
907 	if (segment_eq(get_fs(), get_ds())) {				\
908 		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
909 						   __cu_from,		\
910 						   __cu_len);		\
911 	} else {							\
912 		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
913 			might_fault();                                  \
914 			__cu_len = __invoke_copy_to_user(__cu_to,	\
915 							 __cu_from,	\
916 							 __cu_len);     \
917 		}							\
918 	}								\
919 	__cu_len;							\
920 })
921 
922 #ifndef CONFIG_EVA
923 
924 #define __invoke_copy_from_user(to, from, n)				\
925 ({									\
926 	register void *__cu_to_r __asm__("$4");				\
927 	register const void __user *__cu_from_r __asm__("$5");		\
928 	register long __cu_len_r __asm__("$6");				\
929 									\
930 	__cu_to_r = (to);						\
931 	__cu_from_r = (from);						\
932 	__cu_len_r = (n);						\
933 	__asm__ __volatile__(						\
934 	".set\tnoreorder\n\t"						\
935 	__MODULE_JAL(__copy_user)					\
936 	".set\tnoat\n\t"						\
937 	__UA_ADDU "\t$1, %1, %2\n\t"					\
938 	".set\tat\n\t"							\
939 	".set\treorder"							\
940 	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
941 	:								\
942 	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
943 	  DADDI_SCRATCH, "memory");					\
944 	__cu_len_r;							\
945 })
946 
947 #define __invoke_copy_from_kernel(to, from, n)				\
948 	__invoke_copy_from_user(to, from, n)
949 
950 /* For userland <-> userland operations */
951 #define ___invoke_copy_in_user(to, from, n)				\
952 	__invoke_copy_from_user(to, from, n)
953 
954 /* For kernel <-> kernel operations */
955 #define ___invoke_copy_in_kernel(to, from, n)				\
956 	__invoke_copy_from_user(to, from, n)
957 
958 #define __invoke_copy_from_user_inatomic(to, from, n)			\
959 ({									\
960 	register void *__cu_to_r __asm__("$4");				\
961 	register const void __user *__cu_from_r __asm__("$5");		\
962 	register long __cu_len_r __asm__("$6");				\
963 									\
964 	__cu_to_r = (to);						\
965 	__cu_from_r = (from);						\
966 	__cu_len_r = (n);						\
967 	__asm__ __volatile__(						\
968 	".set\tnoreorder\n\t"						\
969 	__MODULE_JAL(__copy_user_inatomic)				\
970 	".set\tnoat\n\t"						\
971 	__UA_ADDU "\t$1, %1, %2\n\t"					\
972 	".set\tat\n\t"							\
973 	".set\treorder"							\
974 	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
975 	:								\
976 	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
977 	  DADDI_SCRATCH, "memory");					\
978 	__cu_len_r;							\
979 })
980 
981 #define __invoke_copy_from_kernel_inatomic(to, from, n)			\
982 	__invoke_copy_from_user_inatomic(to, from, n)			\
983 
984 #else
985 
986 /* EVA specific functions */
987 
988 extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
989 				       size_t __n);
990 extern size_t __copy_from_user_eva(void *__to, const void *__from,
991 				   size_t __n);
992 extern size_t __copy_to_user_eva(void *__to, const void *__from,
993 				 size_t __n);
994 extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
995 
996 #define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
997 ({									\
998 	register void *__cu_to_r __asm__("$4");				\
999 	register const void __user *__cu_from_r __asm__("$5");		\
1000 	register long __cu_len_r __asm__("$6");				\
1001 									\
1002 	__cu_to_r = (to);						\
1003 	__cu_from_r = (from);						\
1004 	__cu_len_r = (n);						\
1005 	__asm__ __volatile__(						\
1006 	".set\tnoreorder\n\t"						\
1007 	__MODULE_JAL(func_ptr)						\
1008 	".set\tnoat\n\t"						\
1009 	__UA_ADDU "\t$1, %1, %2\n\t"					\
1010 	".set\tat\n\t"							\
1011 	".set\treorder"							\
1012 	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1013 	:								\
1014 	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1015 	  DADDI_SCRATCH, "memory");					\
1016 	__cu_len_r;							\
1017 })
1018 
1019 #define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1020 ({									\
1021 	register void *__cu_to_r __asm__("$4");				\
1022 	register const void __user *__cu_from_r __asm__("$5");		\
1023 	register long __cu_len_r __asm__("$6");				\
1024 									\
1025 	__cu_to_r = (to);						\
1026 	__cu_from_r = (from);						\
1027 	__cu_len_r = (n);						\
1028 	__asm__ __volatile__(						\
1029 	__MODULE_JAL(func_ptr)						\
1030 	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1031 	:								\
1032 	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1033 	  DADDI_SCRATCH, "memory");					\
1034 	__cu_len_r;							\
1035 })
1036 
1037 /*
1038  * Source or destination address is in userland. We need to go through
1039  * the TLB
1040  */
1041 #define __invoke_copy_from_user(to, from, n)				\
1042 	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1043 
1044 #define __invoke_copy_from_user_inatomic(to, from, n)			\
1045 	__invoke_copy_from_user_eva_generic(to, from, n,		\
1046 					    __copy_user_inatomic_eva)
1047 
1048 #define __invoke_copy_to_user(to, from, n)				\
1049 	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1050 
1051 #define ___invoke_copy_in_user(to, from, n)				\
1052 	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1053 
1054 /*
1055  * Source or destination address in the kernel. We are not going through
1056  * the TLB
1057  */
1058 #define __invoke_copy_from_kernel(to, from, n)				\
1059 	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1060 
1061 #define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1062 	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1063 
1064 #define __invoke_copy_to_kernel(to, from, n)				\
1065 	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1066 
1067 #define ___invoke_copy_in_kernel(to, from, n)				\
1068 	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1069 
1070 #endif /* CONFIG_EVA */
1071 
1072 /*
1073  * __copy_from_user: - Copy a block of data from user space, with less checking.
1074  * @to:	  Destination address, in kernel space.
1075  * @from: Source address, in user space.
1076  * @n:	  Number of bytes to copy.
1077  *
1078  * Context: User context only.	This function may sleep.
1079  *
1080  * Copy data from user space to kernel space.  Caller must check
1081  * the specified block with access_ok() before calling this function.
1082  *
1083  * Returns number of bytes that could not be copied.
1084  * On success, this will be zero.
1085  *
1086  * If some data could not be copied, this function will pad the copied
1087  * data to the requested size using zero bytes.
1088  */
1089 #define __copy_from_user(to, from, n)					\
1090 ({									\
1091 	void *__cu_to;							\
1092 	const void __user *__cu_from;					\
1093 	long __cu_len;							\
1094 									\
1095 	__cu_to = (to);							\
1096 	__cu_from = (from);						\
1097 	__cu_len = (n);							\
1098 	might_fault();							\
1099 	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
1100 					   __cu_len);			\
1101 	__cu_len;							\
1102 })
1103 
1104 /*
1105  * copy_from_user: - Copy a block of data from user space.
1106  * @to:	  Destination address, in kernel space.
1107  * @from: Source address, in user space.
1108  * @n:	  Number of bytes to copy.
1109  *
1110  * Context: User context only.	This function may sleep.
1111  *
1112  * Copy data from user space to kernel space.
1113  *
1114  * Returns number of bytes that could not be copied.
1115  * On success, this will be zero.
1116  *
1117  * If some data could not be copied, this function will pad the copied
1118  * data to the requested size using zero bytes.
1119  */
1120 #define copy_from_user(to, from, n)					\
1121 ({									\
1122 	void *__cu_to;							\
1123 	const void __user *__cu_from;					\
1124 	long __cu_len;							\
1125 									\
1126 	__cu_to = (to);							\
1127 	__cu_from = (from);						\
1128 	__cu_len = (n);							\
1129 	if (segment_eq(get_fs(), get_ds())) {				\
1130 		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1131 						     __cu_from,		\
1132 						     __cu_len);		\
1133 	} else {							\
1134 		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1135 			might_fault();                                  \
1136 			__cu_len = __invoke_copy_from_user(__cu_to,	\
1137 							   __cu_from,	\
1138 							   __cu_len);   \
1139 		}							\
1140 	}								\
1141 	__cu_len;							\
1142 })
1143 
1144 #define __copy_in_user(to, from, n)					\
1145 ({									\
1146 	void __user *__cu_to;						\
1147 	const void __user *__cu_from;					\
1148 	long __cu_len;							\
1149 									\
1150 	__cu_to = (to);							\
1151 	__cu_from = (from);						\
1152 	__cu_len = (n);							\
1153 	if (segment_eq(get_fs(), get_ds())) {				\
1154 		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1155 						    __cu_len);		\
1156 	} else {							\
1157 		might_fault();						\
1158 		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1159 						  __cu_len);		\
1160 	}								\
1161 	__cu_len;							\
1162 })
1163 
1164 #define copy_in_user(to, from, n)					\
1165 ({									\
1166 	void __user *__cu_to;						\
1167 	const void __user *__cu_from;					\
1168 	long __cu_len;							\
1169 									\
1170 	__cu_to = (to);							\
1171 	__cu_from = (from);						\
1172 	__cu_len = (n);							\
1173 	if (segment_eq(get_fs(), get_ds())) {				\
1174 		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1175 						    __cu_len);		\
1176 	} else {							\
1177 		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1178 			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1179 			might_fault();					\
1180 			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1181 							  __cu_from,	\
1182 							  __cu_len);	\
1183 		}							\
1184 	}								\
1185 	__cu_len;							\
1186 })
1187 
1188 /*
1189  * __clear_user: - Zero a block of memory in user space, with less checking.
1190  * @to:	  Destination address, in user space.
1191  * @n:	  Number of bytes to zero.
1192  *
1193  * Zero a block of memory in user space.  Caller must check
1194  * the specified block with access_ok() before calling this function.
1195  *
1196  * Returns number of bytes that could not be cleared.
1197  * On success, this will be zero.
1198  */
1199 static inline __kernel_size_t
1200 __clear_user(void __user *addr, __kernel_size_t size)
1201 {
1202 	__kernel_size_t res;
1203 
1204 	might_fault();
1205 	__asm__ __volatile__(
1206 		"move\t$4, %1\n\t"
1207 		"move\t$5, $0\n\t"
1208 		"move\t$6, %2\n\t"
1209 		__MODULE_JAL(__bzero)
1210 		"move\t%0, $6"
1211 		: "=r" (res)
1212 		: "r" (addr), "r" (size)
1213 		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1214 
1215 	return res;
1216 }
1217 
1218 #define clear_user(addr,n)						\
1219 ({									\
1220 	void __user * __cl_addr = (addr);				\
1221 	unsigned long __cl_size = (n);					\
1222 	if (__cl_size && access_ok(VERIFY_WRITE,			\
1223 					__cl_addr, __cl_size))		\
1224 		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1225 	__cl_size;							\
1226 })
1227 
1228 /*
1229  * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1230  * @dst:   Destination address, in kernel space.  This buffer must be at
1231  *	   least @count bytes long.
1232  * @src:   Source address, in user space.
1233  * @count: Maximum number of bytes to copy, including the trailing NUL.
1234  *
1235  * Copies a NUL-terminated string from userspace to kernel space.
1236  * Caller must check the specified block with access_ok() before calling
1237  * this function.
1238  *
1239  * On success, returns the length of the string (not including the trailing
1240  * NUL).
1241  *
1242  * If access to userspace fails, returns -EFAULT (some data may have been
1243  * copied).
1244  *
1245  * If @count is smaller than the length of the string, copies @count bytes
1246  * and returns @count.
1247  */
1248 static inline long
1249 __strncpy_from_user(char *__to, const char __user *__from, long __len)
1250 {
1251 	long res;
1252 
1253 	if (segment_eq(get_fs(), get_ds())) {
1254 		__asm__ __volatile__(
1255 			"move\t$4, %1\n\t"
1256 			"move\t$5, %2\n\t"
1257 			"move\t$6, %3\n\t"
1258 			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1259 			"move\t%0, $2"
1260 			: "=r" (res)
1261 			: "r" (__to), "r" (__from), "r" (__len)
1262 			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1263 	} else {
1264 		might_fault();
1265 		__asm__ __volatile__(
1266 			"move\t$4, %1\n\t"
1267 			"move\t$5, %2\n\t"
1268 			"move\t$6, %3\n\t"
1269 			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1270 			"move\t%0, $2"
1271 			: "=r" (res)
1272 			: "r" (__to), "r" (__from), "r" (__len)
1273 			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1274 	}
1275 
1276 	return res;
1277 }
1278 
1279 /*
1280  * strncpy_from_user: - Copy a NUL terminated string from userspace.
1281  * @dst:   Destination address, in kernel space.  This buffer must be at
1282  *	   least @count bytes long.
1283  * @src:   Source address, in user space.
1284  * @count: Maximum number of bytes to copy, including the trailing NUL.
1285  *
1286  * Copies a NUL-terminated string from userspace to kernel space.
1287  *
1288  * On success, returns the length of the string (not including the trailing
1289  * NUL).
1290  *
1291  * If access to userspace fails, returns -EFAULT (some data may have been
1292  * copied).
1293  *
1294  * If @count is smaller than the length of the string, copies @count bytes
1295  * and returns @count.
1296  */
1297 static inline long
1298 strncpy_from_user(char *__to, const char __user *__from, long __len)
1299 {
1300 	long res;
1301 
1302 	if (segment_eq(get_fs(), get_ds())) {
1303 		__asm__ __volatile__(
1304 			"move\t$4, %1\n\t"
1305 			"move\t$5, %2\n\t"
1306 			"move\t$6, %3\n\t"
1307 			__MODULE_JAL(__strncpy_from_kernel_asm)
1308 			"move\t%0, $2"
1309 			: "=r" (res)
1310 			: "r" (__to), "r" (__from), "r" (__len)
1311 			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1312 	} else {
1313 		might_fault();
1314 		__asm__ __volatile__(
1315 			"move\t$4, %1\n\t"
1316 			"move\t$5, %2\n\t"
1317 			"move\t$6, %3\n\t"
1318 			__MODULE_JAL(__strncpy_from_user_asm)
1319 			"move\t%0, $2"
1320 			: "=r" (res)
1321 			: "r" (__to), "r" (__from), "r" (__len)
1322 			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1323 	}
1324 
1325 	return res;
1326 }
1327 
1328 /*
1329  * strlen_user: - Get the size of a string in user space.
1330  * @str: The string to measure.
1331  *
1332  * Context: User context only.	This function may sleep.
1333  *
1334  * Get the size of a NUL-terminated string in user space.
1335  *
1336  * Returns the size of the string INCLUDING the terminating NUL.
1337  * On exception, returns 0.
1338  *
1339  * If there is a limit on the length of a valid string, you may wish to
1340  * consider using strnlen_user() instead.
1341  */
1342 static inline long strlen_user(const char __user *s)
1343 {
1344 	long res;
1345 
1346 	if (segment_eq(get_fs(), get_ds())) {
1347 		__asm__ __volatile__(
1348 			"move\t$4, %1\n\t"
1349 			__MODULE_JAL(__strlen_kernel_asm)
1350 			"move\t%0, $2"
1351 			: "=r" (res)
1352 			: "r" (s)
1353 			: "$2", "$4", __UA_t0, "$31");
1354 	} else {
1355 		might_fault();
1356 		__asm__ __volatile__(
1357 			"move\t$4, %1\n\t"
1358 			__MODULE_JAL(__strlen_kernel_asm)
1359 			"move\t%0, $2"
1360 			: "=r" (res)
1361 			: "r" (s)
1362 			: "$2", "$4", __UA_t0, "$31");
1363 	}
1364 
1365 	return res;
1366 }
1367 
1368 /* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1369 static inline long __strnlen_user(const char __user *s, long n)
1370 {
1371 	long res;
1372 
1373 	if (segment_eq(get_fs(), get_ds())) {
1374 		__asm__ __volatile__(
1375 			"move\t$4, %1\n\t"
1376 			"move\t$5, %2\n\t"
1377 			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1378 			"move\t%0, $2"
1379 			: "=r" (res)
1380 			: "r" (s), "r" (n)
1381 			: "$2", "$4", "$5", __UA_t0, "$31");
1382 	} else {
1383 		might_fault();
1384 		__asm__ __volatile__(
1385 			"move\t$4, %1\n\t"
1386 			"move\t$5, %2\n\t"
1387 			__MODULE_JAL(__strnlen_user_nocheck_asm)
1388 			"move\t%0, $2"
1389 			: "=r" (res)
1390 			: "r" (s), "r" (n)
1391 			: "$2", "$4", "$5", __UA_t0, "$31");
1392 	}
1393 
1394 	return res;
1395 }
1396 
1397 /*
1398  * strnlen_user: - Get the size of a string in user space.
1399  * @str: The string to measure.
1400  *
1401  * Context: User context only.	This function may sleep.
1402  *
1403  * Get the size of a NUL-terminated string in user space.
1404  *
1405  * Returns the size of the string INCLUDING the terminating NUL.
1406  * On exception, returns 0.
1407  * If the string is too long, returns a value greater than @n.
1408  */
1409 static inline long strnlen_user(const char __user *s, long n)
1410 {
1411 	long res;
1412 
1413 	might_fault();
1414 	if (segment_eq(get_fs(), get_ds())) {
1415 		__asm__ __volatile__(
1416 			"move\t$4, %1\n\t"
1417 			"move\t$5, %2\n\t"
1418 			__MODULE_JAL(__strnlen_kernel_asm)
1419 			"move\t%0, $2"
1420 			: "=r" (res)
1421 			: "r" (s), "r" (n)
1422 			: "$2", "$4", "$5", __UA_t0, "$31");
1423 	} else {
1424 		__asm__ __volatile__(
1425 			"move\t$4, %1\n\t"
1426 			"move\t$5, %2\n\t"
1427 			__MODULE_JAL(__strnlen_user_asm)
1428 			"move\t%0, $2"
1429 			: "=r" (res)
1430 			: "r" (s), "r" (n)
1431 			: "$2", "$4", "$5", __UA_t0, "$31");
1432 	}
1433 
1434 	return res;
1435 }
1436 
1437 struct exception_table_entry
1438 {
1439 	unsigned long insn;
1440 	unsigned long nextinsn;
1441 };
1442 
1443 extern int fixup_exception(struct pt_regs *regs);
1444 
1445 #endif /* _ASM_UACCESS_H */
1446