xref: /openbmc/linux/arch/mips/include/asm/timex.h (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998, 1999, 2003 by Ralf Baechle
7  * Copyright (C) 2014 by Maciej W. Rozycki
8  */
9 #ifndef _ASM_TIMEX_H
10 #define _ASM_TIMEX_H
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/compiler.h>
15 
16 #include <asm/cpu.h>
17 #include <asm/cpu-features.h>
18 #include <asm/mipsregs.h>
19 #include <asm/cpu-type.h>
20 
21 /*
22  * This is the clock rate of the i8253 PIT.  A MIPS system may not have
23  * a PIT by the symbol is used all over the kernel including some APIs.
24  * So keeping it defined to the number for the PIT is the only sane thing
25  * for now.
26  */
27 #define CLOCK_TICK_RATE 1193182
28 
29 /*
30  * Standard way to access the cycle counter.
31  * Currently only used on SMP for scheduling.
32  *
33  * Only the low 32 bits are available as a continuously counting entity.
34  * But this only means we'll force a reschedule every 8 seconds or so,
35  * which isn't an evil thing.
36  *
37  * We know that all SMP capable CPUs have cycle counters.
38  */
39 
40 typedef unsigned int cycles_t;
41 
42 /*
43  * On R4000/R4400 before version 5.0 an erratum exists such that if the
44  * cycle counter is read in the exact moment that it is matching the
45  * compare register, no interrupt will be generated.
46  *
47  * There is a suggested workaround and also the erratum can't strike if
48  * the compare interrupt isn't being used as the clock source device.
49  * However for now the implementaton of this function doesn't get these
50  * fine details right.
51  */
52 static inline int can_use_mips_counter(unsigned int prid)
53 {
54 	int comp = (prid & PRID_COMP_MASK) != PRID_COMP_LEGACY;
55 
56 	if (__builtin_constant_p(cpu_has_counter) && !cpu_has_counter)
57 		return 0;
58 	else if (__builtin_constant_p(cpu_has_mips_r) && cpu_has_mips_r)
59 		return 1;
60 	else if (likely(!__builtin_constant_p(cpu_has_mips_r) && comp))
61 		return 1;
62 	/* Make sure we don't peek at cpu_data[0].options in the fast path! */
63 	if (!__builtin_constant_p(cpu_has_counter))
64 		asm volatile("" : "=m" (cpu_data[0].options));
65 	if (likely(cpu_has_counter &&
66 		   prid >= (PRID_IMP_R4000 | PRID_REV_ENCODE_44(5, 0))))
67 		return 1;
68 	else
69 		return 0;
70 }
71 
72 static inline cycles_t get_cycles(void)
73 {
74 	if (can_use_mips_counter(read_c0_prid()))
75 		return read_c0_count();
76 	else
77 		return 0;	/* no usable counter */
78 }
79 
80 /*
81  * Like get_cycles - but where c0_count is not available we desperately
82  * use c0_random in an attempt to get at least a little bit of entropy.
83  *
84  * R6000 and R6000A neither have a count register nor a random register.
85  * That leaves no entropy source in the CPU itself.
86  */
87 static inline unsigned long random_get_entropy(void)
88 {
89 	unsigned int prid = read_c0_prid();
90 	unsigned int imp = prid & PRID_IMP_MASK;
91 
92 	if (can_use_mips_counter(prid))
93 		return read_c0_count();
94 	else if (likely(imp != PRID_IMP_R6000 && imp != PRID_IMP_R6000A))
95 		return read_c0_random();
96 	else
97 		return 0;	/* no usable register */
98 }
99 #define random_get_entropy random_get_entropy
100 
101 #endif /* __KERNEL__ */
102 
103 #endif /*  _ASM_TIMEX_H */
104