xref: /openbmc/linux/arch/mips/include/asm/pgtable.h (revision 6774def6)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2003 Ralf Baechle
7  */
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 #include <linux/mm_types.h>
12 #include <linux/mmzone.h>
13 #ifdef CONFIG_32BIT
14 #include <asm/pgtable-32.h>
15 #endif
16 #ifdef CONFIG_64BIT
17 #include <asm/pgtable-64.h>
18 #endif
19 
20 #include <asm/io.h>
21 #include <asm/pgtable-bits.h>
22 
23 struct mm_struct;
24 struct vm_area_struct;
25 
26 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _CACHE_CACHABLE_NONCOHERENT)
27 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_WRITE | (cpu_has_rixi ? 0 : _PAGE_READ) | \
28 				 _page_cachable_default)
29 #define PAGE_COPY	__pgprot(_PAGE_PRESENT | (cpu_has_rixi ? 0 : _PAGE_READ) | \
30 				 (cpu_has_rixi ?  _PAGE_NO_EXEC : 0) | _page_cachable_default)
31 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | (cpu_has_rixi ? 0 : _PAGE_READ) | \
32 				 _page_cachable_default)
33 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
34 				 _PAGE_GLOBAL | _page_cachable_default)
35 #define PAGE_KERNEL_NC	__pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \
36 				 _PAGE_GLOBAL | _CACHE_CACHABLE_NONCOHERENT)
37 #define PAGE_USERIO	__pgprot(_PAGE_PRESENT | (cpu_has_rixi ? 0 : _PAGE_READ) | _PAGE_WRITE | \
38 				 _page_cachable_default)
39 #define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | \
40 			__WRITEABLE | _PAGE_GLOBAL | _CACHE_UNCACHED)
41 
42 /*
43  * If _PAGE_NO_EXEC is not defined, we can't do page protection for
44  * execute, and consider it to be the same as read. Also, write
45  * permissions imply read permissions. This is the closest we can get
46  * by reasonable means..
47  */
48 
49 /*
50  * Dummy values to fill the table in mmap.c
51  * The real values will be generated at runtime
52  */
53 #define __P000 __pgprot(0)
54 #define __P001 __pgprot(0)
55 #define __P010 __pgprot(0)
56 #define __P011 __pgprot(0)
57 #define __P100 __pgprot(0)
58 #define __P101 __pgprot(0)
59 #define __P110 __pgprot(0)
60 #define __P111 __pgprot(0)
61 
62 #define __S000 __pgprot(0)
63 #define __S001 __pgprot(0)
64 #define __S010 __pgprot(0)
65 #define __S011 __pgprot(0)
66 #define __S100 __pgprot(0)
67 #define __S101 __pgprot(0)
68 #define __S110 __pgprot(0)
69 #define __S111 __pgprot(0)
70 
71 extern unsigned long _page_cachable_default;
72 
73 /*
74  * ZERO_PAGE is a global shared page that is always zero; used
75  * for zero-mapped memory areas etc..
76  */
77 
78 extern unsigned long empty_zero_page;
79 extern unsigned long zero_page_mask;
80 
81 #define ZERO_PAGE(vaddr) \
82 	(virt_to_page((void *)(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask))))
83 #define __HAVE_COLOR_ZERO_PAGE
84 
85 extern void paging_init(void);
86 
87 /*
88  * Conversion functions: convert a page and protection to a page entry,
89  * and a page entry and page directory to the page they refer to.
90  */
91 #define pmd_phys(pmd)		virt_to_phys((void *)pmd_val(pmd))
92 
93 #define __pmd_page(pmd)		(pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT))
94 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
95 #define pmd_page(pmd)		__pmd_page(pmd)
96 #endif /* CONFIG_TRANSPARENT_HUGEPAGE  */
97 
98 #define pmd_page_vaddr(pmd)	pmd_val(pmd)
99 
100 #define htw_stop()							\
101 do {									\
102 	if (cpu_has_htw)						\
103 		write_c0_pwctl(read_c0_pwctl() &			\
104 			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));		\
105 } while(0)
106 
107 #define htw_start()							\
108 do {									\
109 	if (cpu_has_htw)						\
110 		write_c0_pwctl(read_c0_pwctl() |			\
111 			       (1 << MIPS_PWCTL_PWEN_SHIFT));		\
112 } while(0)
113 
114 
115 #define htw_reset()							\
116 do {									\
117 	if (cpu_has_htw) {						\
118 		htw_stop();						\
119 		back_to_back_c0_hazard();				\
120 		htw_start();						\
121 		back_to_back_c0_hazard();				\
122 	}								\
123 } while(0)
124 
125 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
126 	pte_t pteval);
127 
128 #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
129 
130 #define pte_none(pte)		(!(((pte).pte_low | (pte).pte_high) & ~_PAGE_GLOBAL))
131 #define pte_present(pte)	((pte).pte_low & _PAGE_PRESENT)
132 
133 static inline void set_pte(pte_t *ptep, pte_t pte)
134 {
135 	ptep->pte_high = pte.pte_high;
136 	smp_wmb();
137 	ptep->pte_low = pte.pte_low;
138 
139 	if (pte.pte_low & _PAGE_GLOBAL) {
140 		pte_t *buddy = ptep_buddy(ptep);
141 		/*
142 		 * Make sure the buddy is global too (if it's !none,
143 		 * it better already be global)
144 		 */
145 		if (pte_none(*buddy)) {
146 			buddy->pte_low	|= _PAGE_GLOBAL;
147 			buddy->pte_high |= _PAGE_GLOBAL;
148 		}
149 	}
150 }
151 
152 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
153 {
154 	pte_t null = __pte(0);
155 
156 	/* Preserve global status for the pair */
157 	if (ptep_buddy(ptep)->pte_low & _PAGE_GLOBAL)
158 		null.pte_low = null.pte_high = _PAGE_GLOBAL;
159 
160 	set_pte_at(mm, addr, ptep, null);
161 	htw_reset();
162 }
163 #else
164 
165 #define pte_none(pte)		(!(pte_val(pte) & ~_PAGE_GLOBAL))
166 #define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
167 
168 /*
169  * Certain architectures need to do special things when pte's
170  * within a page table are directly modified.  Thus, the following
171  * hook is made available.
172  */
173 static inline void set_pte(pte_t *ptep, pte_t pteval)
174 {
175 	*ptep = pteval;
176 #if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
177 	if (pte_val(pteval) & _PAGE_GLOBAL) {
178 		pte_t *buddy = ptep_buddy(ptep);
179 		/*
180 		 * Make sure the buddy is global too (if it's !none,
181 		 * it better already be global)
182 		 */
183 		if (pte_none(*buddy))
184 			pte_val(*buddy) = pte_val(*buddy) | _PAGE_GLOBAL;
185 	}
186 #endif
187 }
188 
189 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
190 {
191 #if !defined(CONFIG_CPU_R3000) && !defined(CONFIG_CPU_TX39XX)
192 	/* Preserve global status for the pair */
193 	if (pte_val(*ptep_buddy(ptep)) & _PAGE_GLOBAL)
194 		set_pte_at(mm, addr, ptep, __pte(_PAGE_GLOBAL));
195 	else
196 #endif
197 		set_pte_at(mm, addr, ptep, __pte(0));
198 	htw_reset();
199 }
200 #endif
201 
202 /*
203  * (pmds are folded into puds so this doesn't get actually called,
204  * but the define is needed for a generic inline function.)
205  */
206 #define set_pmd(pmdptr, pmdval) do { *(pmdptr) = (pmdval); } while(0)
207 
208 #ifndef __PAGETABLE_PMD_FOLDED
209 /*
210  * (puds are folded into pgds so this doesn't get actually called,
211  * but the define is needed for a generic inline function.)
212  */
213 #define set_pud(pudptr, pudval) do { *(pudptr) = (pudval); } while(0)
214 #endif
215 
216 #define PGD_T_LOG2	(__builtin_ffs(sizeof(pgd_t)) - 1)
217 #define PMD_T_LOG2	(__builtin_ffs(sizeof(pmd_t)) - 1)
218 #define PTE_T_LOG2	(__builtin_ffs(sizeof(pte_t)) - 1)
219 
220 /*
221  * We used to declare this array with size but gcc 3.3 and older are not able
222  * to find that this expression is a constant, so the size is dropped.
223  */
224 extern pgd_t swapper_pg_dir[];
225 
226 /*
227  * The following only work if pte_present() is true.
228  * Undefined behaviour if not..
229  */
230 #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
231 static inline int pte_write(pte_t pte)	{ return pte.pte_low & _PAGE_WRITE; }
232 static inline int pte_dirty(pte_t pte)	{ return pte.pte_low & _PAGE_MODIFIED; }
233 static inline int pte_young(pte_t pte)	{ return pte.pte_low & _PAGE_ACCESSED; }
234 static inline int pte_file(pte_t pte)	{ return pte.pte_low & _PAGE_FILE; }
235 
236 static inline pte_t pte_wrprotect(pte_t pte)
237 {
238 	pte.pte_low  &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
239 	pte.pte_high &= ~_PAGE_SILENT_WRITE;
240 	return pte;
241 }
242 
243 static inline pte_t pte_mkclean(pte_t pte)
244 {
245 	pte.pte_low  &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
246 	pte.pte_high &= ~_PAGE_SILENT_WRITE;
247 	return pte;
248 }
249 
250 static inline pte_t pte_mkold(pte_t pte)
251 {
252 	pte.pte_low  &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
253 	pte.pte_high &= ~_PAGE_SILENT_READ;
254 	return pte;
255 }
256 
257 static inline pte_t pte_mkwrite(pte_t pte)
258 {
259 	pte.pte_low |= _PAGE_WRITE;
260 	if (pte.pte_low & _PAGE_MODIFIED) {
261 		pte.pte_low  |= _PAGE_SILENT_WRITE;
262 		pte.pte_high |= _PAGE_SILENT_WRITE;
263 	}
264 	return pte;
265 }
266 
267 static inline pte_t pte_mkdirty(pte_t pte)
268 {
269 	pte.pte_low |= _PAGE_MODIFIED;
270 	if (pte.pte_low & _PAGE_WRITE) {
271 		pte.pte_low  |= _PAGE_SILENT_WRITE;
272 		pte.pte_high |= _PAGE_SILENT_WRITE;
273 	}
274 	return pte;
275 }
276 
277 static inline pte_t pte_mkyoung(pte_t pte)
278 {
279 	pte.pte_low |= _PAGE_ACCESSED;
280 	if (pte.pte_low & _PAGE_READ) {
281 		pte.pte_low  |= _PAGE_SILENT_READ;
282 		pte.pte_high |= _PAGE_SILENT_READ;
283 	}
284 	return pte;
285 }
286 #else
287 static inline int pte_write(pte_t pte)	{ return pte_val(pte) & _PAGE_WRITE; }
288 static inline int pte_dirty(pte_t pte)	{ return pte_val(pte) & _PAGE_MODIFIED; }
289 static inline int pte_young(pte_t pte)	{ return pte_val(pte) & _PAGE_ACCESSED; }
290 static inline int pte_file(pte_t pte)	{ return pte_val(pte) & _PAGE_FILE; }
291 
292 static inline pte_t pte_wrprotect(pte_t pte)
293 {
294 	pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
295 	return pte;
296 }
297 
298 static inline pte_t pte_mkclean(pte_t pte)
299 {
300 	pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE);
301 	return pte;
302 }
303 
304 static inline pte_t pte_mkold(pte_t pte)
305 {
306 	pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);
307 	return pte;
308 }
309 
310 static inline pte_t pte_mkwrite(pte_t pte)
311 {
312 	pte_val(pte) |= _PAGE_WRITE;
313 	if (pte_val(pte) & _PAGE_MODIFIED)
314 		pte_val(pte) |= _PAGE_SILENT_WRITE;
315 	return pte;
316 }
317 
318 static inline pte_t pte_mkdirty(pte_t pte)
319 {
320 	pte_val(pte) |= _PAGE_MODIFIED;
321 	if (pte_val(pte) & _PAGE_WRITE)
322 		pte_val(pte) |= _PAGE_SILENT_WRITE;
323 	return pte;
324 }
325 
326 static inline pte_t pte_mkyoung(pte_t pte)
327 {
328 	pte_val(pte) |= _PAGE_ACCESSED;
329 	if (cpu_has_rixi) {
330 		if (!(pte_val(pte) & _PAGE_NO_READ))
331 			pte_val(pte) |= _PAGE_SILENT_READ;
332 	} else {
333 		if (pte_val(pte) & _PAGE_READ)
334 			pte_val(pte) |= _PAGE_SILENT_READ;
335 	}
336 	return pte;
337 }
338 
339 #ifdef _PAGE_HUGE
340 static inline int pte_huge(pte_t pte)	{ return pte_val(pte) & _PAGE_HUGE; }
341 
342 static inline pte_t pte_mkhuge(pte_t pte)
343 {
344 	pte_val(pte) |= _PAGE_HUGE;
345 	return pte;
346 }
347 #endif /* _PAGE_HUGE */
348 #endif
349 static inline int pte_special(pte_t pte)	{ return 0; }
350 static inline pte_t pte_mkspecial(pte_t pte)	{ return pte; }
351 
352 /*
353  * Macro to make mark a page protection value as "uncacheable".	 Note
354  * that "protection" is really a misnomer here as the protection value
355  * contains the memory attribute bits, dirty bits, and various other
356  * bits as well.
357  */
358 #define pgprot_noncached pgprot_noncached
359 
360 static inline pgprot_t pgprot_noncached(pgprot_t _prot)
361 {
362 	unsigned long prot = pgprot_val(_prot);
363 
364 	prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;
365 
366 	return __pgprot(prot);
367 }
368 
369 static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
370 {
371 	unsigned long prot = pgprot_val(_prot);
372 
373 	/* cpu_data[0].writecombine is already shifted by _CACHE_SHIFT */
374 	prot = (prot & ~_CACHE_MASK) | cpu_data[0].writecombine;
375 
376 	return __pgprot(prot);
377 }
378 
379 /*
380  * Conversion functions: convert a page and protection to a page entry,
381  * and a page entry and page directory to the page they refer to.
382  */
383 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
384 
385 #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
386 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
387 {
388 	pte.pte_low  &= _PAGE_CHG_MASK;
389 	pte.pte_high &= ~0x3f;
390 	pte.pte_low  |= pgprot_val(newprot);
391 	pte.pte_high |= pgprot_val(newprot) & 0x3f;
392 	return pte;
393 }
394 #else
395 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
396 {
397 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
398 }
399 #endif
400 
401 
402 extern void __update_tlb(struct vm_area_struct *vma, unsigned long address,
403 	pte_t pte);
404 
405 static inline void update_mmu_cache(struct vm_area_struct *vma,
406 	unsigned long address, pte_t *ptep)
407 {
408 	pte_t pte = *ptep;
409 	__update_tlb(vma, address, pte);
410 }
411 
412 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
413 	unsigned long address, pmd_t *pmdp)
414 {
415 	pte_t pte = *(pte_t *)pmdp;
416 
417 	__update_tlb(vma, address, pte);
418 }
419 
420 #define kern_addr_valid(addr)	(1)
421 
422 #ifdef CONFIG_64BIT_PHYS_ADDR
423 extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot);
424 
425 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
426 		unsigned long vaddr,
427 		unsigned long pfn,
428 		unsigned long size,
429 		pgprot_t prot)
430 {
431 	phys_t phys_addr_high = fixup_bigphys_addr(pfn << PAGE_SHIFT, size);
432 	return remap_pfn_range(vma, vaddr, phys_addr_high >> PAGE_SHIFT, size, prot);
433 }
434 #define io_remap_pfn_range io_remap_pfn_range
435 #endif
436 
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 
439 extern int has_transparent_hugepage(void);
440 
441 static inline int pmd_trans_huge(pmd_t pmd)
442 {
443 	return !!(pmd_val(pmd) & _PAGE_HUGE);
444 }
445 
446 static inline pmd_t pmd_mkhuge(pmd_t pmd)
447 {
448 	pmd_val(pmd) |= _PAGE_HUGE;
449 
450 	return pmd;
451 }
452 
453 static inline int pmd_trans_splitting(pmd_t pmd)
454 {
455 	return !!(pmd_val(pmd) & _PAGE_SPLITTING);
456 }
457 
458 static inline pmd_t pmd_mksplitting(pmd_t pmd)
459 {
460 	pmd_val(pmd) |= _PAGE_SPLITTING;
461 
462 	return pmd;
463 }
464 
465 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
466 		       pmd_t *pmdp, pmd_t pmd);
467 
468 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
469 /* Extern to avoid header file madness */
470 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
471 					unsigned long address,
472 					pmd_t *pmdp);
473 
474 #define __HAVE_ARCH_PMD_WRITE
475 static inline int pmd_write(pmd_t pmd)
476 {
477 	return !!(pmd_val(pmd) & _PAGE_WRITE);
478 }
479 
480 static inline pmd_t pmd_wrprotect(pmd_t pmd)
481 {
482 	pmd_val(pmd) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
483 	return pmd;
484 }
485 
486 static inline pmd_t pmd_mkwrite(pmd_t pmd)
487 {
488 	pmd_val(pmd) |= _PAGE_WRITE;
489 	if (pmd_val(pmd) & _PAGE_MODIFIED)
490 		pmd_val(pmd) |= _PAGE_SILENT_WRITE;
491 
492 	return pmd;
493 }
494 
495 static inline int pmd_dirty(pmd_t pmd)
496 {
497 	return !!(pmd_val(pmd) & _PAGE_MODIFIED);
498 }
499 
500 static inline pmd_t pmd_mkclean(pmd_t pmd)
501 {
502 	pmd_val(pmd) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
503 	return pmd;
504 }
505 
506 static inline pmd_t pmd_mkdirty(pmd_t pmd)
507 {
508 	pmd_val(pmd) |= _PAGE_MODIFIED;
509 	if (pmd_val(pmd) & _PAGE_WRITE)
510 		pmd_val(pmd) |= _PAGE_SILENT_WRITE;
511 
512 	return pmd;
513 }
514 
515 static inline int pmd_young(pmd_t pmd)
516 {
517 	return !!(pmd_val(pmd) & _PAGE_ACCESSED);
518 }
519 
520 static inline pmd_t pmd_mkold(pmd_t pmd)
521 {
522 	pmd_val(pmd) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);
523 
524 	return pmd;
525 }
526 
527 static inline pmd_t pmd_mkyoung(pmd_t pmd)
528 {
529 	pmd_val(pmd) |= _PAGE_ACCESSED;
530 
531 	if (cpu_has_rixi) {
532 		if (!(pmd_val(pmd) & _PAGE_NO_READ))
533 			pmd_val(pmd) |= _PAGE_SILENT_READ;
534 	} else {
535 		if (pmd_val(pmd) & _PAGE_READ)
536 			pmd_val(pmd) |= _PAGE_SILENT_READ;
537 	}
538 
539 	return pmd;
540 }
541 
542 /* Extern to avoid header file madness */
543 extern pmd_t mk_pmd(struct page *page, pgprot_t prot);
544 
545 static inline unsigned long pmd_pfn(pmd_t pmd)
546 {
547 	return pmd_val(pmd) >> _PFN_SHIFT;
548 }
549 
550 static inline struct page *pmd_page(pmd_t pmd)
551 {
552 	if (pmd_trans_huge(pmd))
553 		return pfn_to_page(pmd_pfn(pmd));
554 
555 	return pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT);
556 }
557 
558 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
559 {
560 	pmd_val(pmd) = (pmd_val(pmd) & _PAGE_CHG_MASK) | pgprot_val(newprot);
561 	return pmd;
562 }
563 
564 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
565 {
566 	pmd_val(pmd) &= ~(_PAGE_PRESENT | _PAGE_VALID | _PAGE_DIRTY);
567 
568 	return pmd;
569 }
570 
571 /*
572  * The generic version pmdp_get_and_clear uses a version of pmd_clear() with a
573  * different prototype.
574  */
575 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
576 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
577 				       unsigned long address, pmd_t *pmdp)
578 {
579 	pmd_t old = *pmdp;
580 
581 	pmd_clear(pmdp);
582 
583 	return old;
584 }
585 
586 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
587 
588 #include <asm-generic/pgtable.h>
589 
590 /*
591  * uncached accelerated TLB map for video memory access
592  */
593 #ifdef CONFIG_CPU_SUPPORTS_UNCACHED_ACCELERATED
594 #define __HAVE_PHYS_MEM_ACCESS_PROT
595 
596 struct file;
597 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
598 		unsigned long size, pgprot_t vma_prot);
599 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
600 		unsigned long size, pgprot_t *vma_prot);
601 #endif
602 
603 /*
604  * We provide our own get_unmapped area to cope with the virtual aliasing
605  * constraints placed on us by the cache architecture.
606  */
607 #define HAVE_ARCH_UNMAPPED_AREA
608 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
609 
610 /*
611  * No page table caches to initialise
612  */
613 #define pgtable_cache_init()	do { } while (0)
614 
615 #endif /* _ASM_PGTABLE_H */
616