xref: /openbmc/linux/arch/mips/include/asm/octeon/cvmx.h (revision 867e6d38)
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2017 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30 
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/delay.h>
34 
35 enum cvmx_mips_space {
36 	CVMX_MIPS_SPACE_XKSEG = 3LL,
37 	CVMX_MIPS_SPACE_XKPHYS = 2LL,
38 	CVMX_MIPS_SPACE_XSSEG = 1LL,
39 	CVMX_MIPS_SPACE_XUSEG = 0LL
40 };
41 
42 /* These macros for use when using 32 bit pointers. */
43 #define CVMX_MIPS32_SPACE_KSEG0 1l
44 #define CVMX_ADD_SEG32(segment, add) \
45 	(((int32_t)segment << 31) | (int32_t)(add))
46 
47 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
48 
49 /* These macros simplify the process of creating common IO addresses */
50 #define CVMX_ADD_SEG(segment, add) \
51 	((((uint64_t)segment) << 62) | (add))
52 #ifndef CVMX_ADD_IO_SEG
53 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
54 #endif
55 
56 #include <asm/octeon/cvmx-asm.h>
57 #include <asm/octeon/cvmx-packet.h>
58 #include <asm/octeon/cvmx-sysinfo.h>
59 
60 #include <asm/octeon/cvmx-ciu-defs.h>
61 #include <asm/octeon/cvmx-ciu3-defs.h>
62 #include <asm/octeon/cvmx-gpio-defs.h>
63 #include <asm/octeon/cvmx-iob-defs.h>
64 #include <asm/octeon/cvmx-ipd-defs.h>
65 #include <asm/octeon/cvmx-l2c-defs.h>
66 #include <asm/octeon/cvmx-l2d-defs.h>
67 #include <asm/octeon/cvmx-l2t-defs.h>
68 #include <asm/octeon/cvmx-led-defs.h>
69 #include <asm/octeon/cvmx-mio-defs.h>
70 #include <asm/octeon/cvmx-pow-defs.h>
71 
72 #include <asm/octeon/cvmx-bootinfo.h>
73 #include <asm/octeon/cvmx-bootmem.h>
74 #include <asm/octeon/cvmx-l2c.h>
75 
76 #ifndef CVMX_ENABLE_DEBUG_PRINTS
77 #define CVMX_ENABLE_DEBUG_PRINTS 1
78 #endif
79 
80 #if CVMX_ENABLE_DEBUG_PRINTS
81 #define cvmx_dprintf	    printk
82 #else
83 #define cvmx_dprintf(...)   {}
84 #endif
85 
86 #define CVMX_MAX_CORES		(16)
87 #define CVMX_CACHE_LINE_SIZE	(128)	/* In bytes */
88 #define CVMX_CACHE_LINE_MASK	(CVMX_CACHE_LINE_SIZE - 1)	/* In bytes */
89 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
90 #define CAST64(v) ((long long)(long)(v))
91 #define CASTPTR(type, v) ((type *)(long)(v))
92 
93 /*
94  * Returns processor ID, different Linux and simple exec versions
95  * provided in the cvmx-app-init*.c files.
96  */
97 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
98 static inline uint32_t cvmx_get_proc_id(void)
99 {
100 	uint32_t id;
101 	asm("mfc0 %0, $15,0" : "=r"(id));
102 	return id;
103 }
104 
105 /* turn the variable name into a string */
106 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
107 #define CVMX_TMP_STR2(x) #x
108 
109 /**
110  * Builds a bit mask given the required size in bits.
111  *
112  * @bits:   Number of bits in the mask
113  * Returns The mask
114  */ static inline uint64_t cvmx_build_mask(uint64_t bits)
115 {
116 	return ~((~0x0ull) << bits);
117 }
118 
119 /**
120  * Builds a memory address for I/O based on the Major and Sub DID.
121  *
122  * @major_did: 5 bit major did
123  * @sub_did:   3 bit sub did
124  * Returns I/O base address
125  */
126 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
127 					     uint64_t sub_did)
128 {
129 	return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
130 }
131 
132 /**
133  * Perform mask and shift to place the supplied value into
134  * the supplied bit rage.
135  *
136  * Example: cvmx_build_bits(39,24,value)
137  * <pre>
138  * 6	   5	   4	   3	   3	   2	   1
139  * 3	   5	   7	   9	   1	   3	   5	   7	  0
140  * +-------+-------+-------+-------+-------+-------+-------+------+
141  * 000000000000000000000000___________value000000000000000000000000
142  * </pre>
143  *
144  * @high_bit: Highest bit value can occupy (inclusive) 0-63
145  * @low_bit:  Lowest bit value can occupy inclusive 0-high_bit
146  * @value:    Value to use
147  * Returns Value masked and shifted
148  */
149 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
150 				       uint64_t low_bit, uint64_t value)
151 {
152 	return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
153 }
154 
155 /**
156  * Convert a memory pointer (void*) into a hardware compatible
157  * memory address (uint64_t). Octeon hardware widgets don't
158  * understand logical addresses.
159  *
160  * @ptr:    C style memory pointer
161  * Returns Hardware physical address
162  */
163 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
164 {
165 	if (sizeof(void *) == 8) {
166 		/*
167 		 * We're running in 64 bit mode. Normally this means
168 		 * that we can use 40 bits of address space (the
169 		 * hardware limit). Unfortunately there is one case
170 		 * were we need to limit this to 30 bits, sign
171 		 * extended 32 bit. Although these are 64 bits wide,
172 		 * only 30 bits can be used.
173 		 */
174 		if ((CAST64(ptr) >> 62) == 3)
175 			return CAST64(ptr) & cvmx_build_mask(30);
176 		else
177 			return CAST64(ptr) & cvmx_build_mask(40);
178 	} else {
179 		return (long)(ptr) & 0x1fffffff;
180 	}
181 }
182 
183 /**
184  * Convert a hardware physical address (uint64_t) into a
185  * memory pointer (void *).
186  *
187  * @physical_address:
188  *		 Hardware physical address to memory
189  * Returns Pointer to memory
190  */
191 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
192 {
193 	if (sizeof(void *) == 8) {
194 		/* Just set the top bit, avoiding any TLB ugliness */
195 		return CASTPTR(void,
196 			       CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
197 					    physical_address));
198 	} else {
199 		return CASTPTR(void,
200 			       CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
201 					      physical_address));
202 	}
203 }
204 
205 /* The following #if controls the definition of the macro
206     CVMX_BUILD_WRITE64. This macro is used to build a store operation to
207     a full 64bit address. With a 64bit ABI, this can be done with a simple
208     pointer access. 32bit ABIs require more complicated assembly */
209 
210 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
211     a simple volatile pointer */
212 #define CVMX_BUILD_WRITE64(TYPE, ST)					\
213 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val)	\
214 {									\
215     *CASTPTR(volatile TYPE##_t, addr) = val;				\
216 }
217 
218 
219 /* The following #if controls the definition of the macro
220     CVMX_BUILD_READ64. This macro is used to build a load operation from
221     a full 64bit address. With a 64bit ABI, this can be done with a simple
222     pointer access. 32bit ABIs require more complicated assembly */
223 
224 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
225     a simple volatile pointer */
226 #define CVMX_BUILD_READ64(TYPE, LT)					\
227 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr)		\
228 {									\
229 	return *CASTPTR(volatile TYPE##_t, addr);			\
230 }
231 
232 
233 /* The following defines 8 functions for writing to a 64bit address. Each
234     takes two arguments, the address and the value to write.
235     cvmx_write64_int64	    cvmx_write64_uint64
236     cvmx_write64_int32	    cvmx_write64_uint32
237     cvmx_write64_int16	    cvmx_write64_uint16
238     cvmx_write64_int8	    cvmx_write64_uint8 */
239 CVMX_BUILD_WRITE64(int64, "sd");
240 CVMX_BUILD_WRITE64(int32, "sw");
241 CVMX_BUILD_WRITE64(int16, "sh");
242 CVMX_BUILD_WRITE64(int8, "sb");
243 CVMX_BUILD_WRITE64(uint64, "sd");
244 CVMX_BUILD_WRITE64(uint32, "sw");
245 CVMX_BUILD_WRITE64(uint16, "sh");
246 CVMX_BUILD_WRITE64(uint8, "sb");
247 #define cvmx_write64 cvmx_write64_uint64
248 
249 /* The following defines 8 functions for reading from a 64bit address. Each
250     takes the address as the only argument
251     cvmx_read64_int64	    cvmx_read64_uint64
252     cvmx_read64_int32	    cvmx_read64_uint32
253     cvmx_read64_int16	    cvmx_read64_uint16
254     cvmx_read64_int8	    cvmx_read64_uint8 */
255 CVMX_BUILD_READ64(int64, "ld");
256 CVMX_BUILD_READ64(int32, "lw");
257 CVMX_BUILD_READ64(int16, "lh");
258 CVMX_BUILD_READ64(int8, "lb");
259 CVMX_BUILD_READ64(uint64, "ld");
260 CVMX_BUILD_READ64(uint32, "lw");
261 CVMX_BUILD_READ64(uint16, "lhu");
262 CVMX_BUILD_READ64(uint8, "lbu");
263 #define cvmx_read64 cvmx_read64_uint64
264 
265 
266 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
267 {
268 	cvmx_write64(csr_addr, val);
269 
270 	/*
271 	 * Perform an immediate read after every write to an RSL
272 	 * register to force the write to complete. It doesn't matter
273 	 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
274 	 * because it is fast and harmless.
275 	 */
276 	if (((csr_addr >> 40) & 0x7ffff) == (0x118))
277 		cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
278 }
279 
280 static inline void cvmx_writeq_csr(void __iomem *csr_addr, uint64_t val)
281 {
282 	cvmx_write_csr((__force uint64_t)csr_addr, val);
283 }
284 
285 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
286 {
287 	cvmx_write64(io_addr, val);
288 
289 }
290 
291 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
292 {
293 	uint64_t val = cvmx_read64(csr_addr);
294 	return val;
295 }
296 
297 static inline uint64_t cvmx_readq_csr(void __iomem *csr_addr)
298 {
299 	return cvmx_read_csr((__force uint64_t) csr_addr);
300 }
301 
302 static inline void cvmx_send_single(uint64_t data)
303 {
304 	const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
305 	cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
306 }
307 
308 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
309 {
310 	union {
311 		uint64_t u64;
312 		struct {
313 			uint64_t scraddr:8;
314 			uint64_t len:8;
315 			uint64_t addr:48;
316 		} s;
317 	} addr;
318 	addr.u64 = csr_addr;
319 	addr.s.scraddr = scraddr >> 3;
320 	addr.s.len = 1;
321 	cvmx_send_single(addr.u64);
322 }
323 
324 /* Return true if Octeon is CN38XX pass 1 */
325 static inline int cvmx_octeon_is_pass1(void)
326 {
327 #if OCTEON_IS_COMMON_BINARY()
328 	return 0;	/* Pass 1 isn't supported for common binaries */
329 #else
330 /* Now that we know we're built for a specific model, only check CN38XX */
331 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
332 	return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
333 #else
334 	return 0;	/* Built for non CN38XX chip, we're not CN38XX pass1 */
335 #endif
336 #endif
337 }
338 
339 static inline unsigned int cvmx_get_core_num(void)
340 {
341 	unsigned int core_num;
342 	CVMX_RDHWRNV(core_num, 0);
343 	return core_num;
344 }
345 
346 /* Maximum # of bits to define core in node */
347 #define CVMX_NODE_NO_SHIFT	7
348 #define CVMX_NODE_MASK		0x3
349 static inline unsigned int cvmx_get_node_num(void)
350 {
351 	unsigned int core_num = cvmx_get_core_num();
352 
353 	return (core_num >> CVMX_NODE_NO_SHIFT) & CVMX_NODE_MASK;
354 }
355 
356 static inline unsigned int cvmx_get_local_core_num(void)
357 {
358 	return cvmx_get_core_num() & ((1 << CVMX_NODE_NO_SHIFT) - 1);
359 }
360 
361 #define CVMX_NODE_BITS         (2)     /* Number of bits to define a node */
362 #define CVMX_MAX_NODES         (1 << CVMX_NODE_BITS)
363 #define CVMX_NODE_IO_SHIFT     (36)
364 #define CVMX_NODE_MEM_SHIFT    (40)
365 #define CVMX_NODE_IO_MASK      ((uint64_t)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT)
366 
367 static inline void cvmx_write_csr_node(uint64_t node, uint64_t csr_addr,
368 				       uint64_t val)
369 {
370 	uint64_t composite_csr_addr, node_addr;
371 
372 	node_addr = (node & CVMX_NODE_MASK) << CVMX_NODE_IO_SHIFT;
373 	composite_csr_addr = (csr_addr & ~CVMX_NODE_IO_MASK) | node_addr;
374 
375 	cvmx_write64_uint64(composite_csr_addr, val);
376 	if (((csr_addr >> 40) & 0x7ffff) == (0x118))
377 		cvmx_read64_uint64(CVMX_MIO_BOOT_BIST_STAT | node_addr);
378 }
379 
380 static inline uint64_t cvmx_read_csr_node(uint64_t node, uint64_t csr_addr)
381 {
382 	uint64_t node_addr;
383 
384 	node_addr = (csr_addr & ~CVMX_NODE_IO_MASK) |
385 		    (node & CVMX_NODE_MASK) << CVMX_NODE_IO_SHIFT;
386 	return cvmx_read_csr(node_addr);
387 }
388 
389 /**
390  * Returns the number of bits set in the provided value.
391  * Simple wrapper for POP instruction.
392  *
393  * @val:    32 bit value to count set bits in
394  *
395  * Returns Number of bits set
396  */
397 static inline uint32_t cvmx_pop(uint32_t val)
398 {
399 	uint32_t pop;
400 	CVMX_POP(pop, val);
401 	return pop;
402 }
403 
404 /**
405  * Returns the number of bits set in the provided value.
406  * Simple wrapper for DPOP instruction.
407  *
408  * @val:    64 bit value to count set bits in
409  *
410  * Returns Number of bits set
411  */
412 static inline int cvmx_dpop(uint64_t val)
413 {
414 	int pop;
415 	CVMX_DPOP(pop, val);
416 	return pop;
417 }
418 
419 /**
420  * Provide current cycle counter as a return value
421  *
422  * Returns current cycle counter
423  */
424 
425 static inline uint64_t cvmx_get_cycle(void)
426 {
427 	uint64_t cycle;
428 	CVMX_RDHWR(cycle, 31);
429 	return cycle;
430 }
431 
432 /**
433  * Reads a chip global cycle counter.  This counts CPU cycles since
434  * chip reset.	The counter is 64 bit.
435  * This register does not exist on CN38XX pass 1 silicion
436  *
437  * Returns Global chip cycle count since chip reset.
438  */
439 static inline uint64_t cvmx_get_cycle_global(void)
440 {
441 	if (cvmx_octeon_is_pass1())
442 		return 0;
443 	else
444 		return cvmx_read64(CVMX_IPD_CLK_COUNT);
445 }
446 
447 /**
448  * This macro spins on a field waiting for it to reach a value. It
449  * is common in code to need to wait for a specific field in a CSR
450  * to match a specific value. Conceptually this macro expands to:
451  *
452  * 1) read csr at "address" with a csr typedef of "type"
453  * 2) Check if ("type".s."field" "op" "value")
454  * 3) If #2 isn't true loop to #1 unless too much time has passed.
455  */
456 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
457     (									\
458 {									\
459 	int result;							\
460 	do {								\
461 		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
462 			cvmx_sysinfo_get()->cpu_clock_hz / 1000000;	\
463 		type c;							\
464 		while (1) {						\
465 			c.u64 = cvmx_read_csr(address);			\
466 			if ((c.s.field) op(value)) {			\
467 				result = 0;				\
468 				break;					\
469 			} else if (cvmx_get_cycle() > done) {		\
470 				result = -1;				\
471 				break;					\
472 			} else						\
473 				__delay(100);				\
474 		}							\
475 	} while (0);							\
476 	result;								\
477 })
478 
479 /***************************************************************************/
480 
481 /* Return the number of cores available in the chip */
482 static inline uint32_t cvmx_octeon_num_cores(void)
483 {
484 	u64 ciu_fuse_reg;
485 	u64 ciu_fuse;
486 
487 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX))
488 		ciu_fuse_reg = CVMX_CIU3_FUSE;
489 	else
490 		ciu_fuse_reg = CVMX_CIU_FUSE;
491 	ciu_fuse = cvmx_read_csr(ciu_fuse_reg);
492 	return cvmx_dpop(ciu_fuse);
493 }
494 
495 #endif /*  __CVMX_H__  */
496