1 /***********************license start*************** 2 * Author: Cavium Networks 3 * 4 * Contact: support@caviumnetworks.com 5 * This file is part of the OCTEON SDK 6 * 7 * Copyright (c) 2003-2017 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this file; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * or visit http://www.gnu.org/licenses/. 23 * 24 * This file may also be available under a different license from Cavium. 25 * Contact Cavium Networks for more information 26 ***********************license end**************************************/ 27 28 #ifndef __CVMX_H__ 29 #define __CVMX_H__ 30 31 #include <linux/kernel.h> 32 #include <linux/string.h> 33 #include <linux/delay.h> 34 35 enum cvmx_mips_space { 36 CVMX_MIPS_SPACE_XKSEG = 3LL, 37 CVMX_MIPS_SPACE_XKPHYS = 2LL, 38 CVMX_MIPS_SPACE_XSSEG = 1LL, 39 CVMX_MIPS_SPACE_XUSEG = 0LL 40 }; 41 42 /* These macros for use when using 32 bit pointers. */ 43 #define CVMX_MIPS32_SPACE_KSEG0 1l 44 #define CVMX_ADD_SEG32(segment, add) \ 45 (((int32_t)segment << 31) | (int32_t)(add)) 46 47 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS 48 49 /* These macros simplify the process of creating common IO addresses */ 50 #define CVMX_ADD_SEG(segment, add) \ 51 ((((uint64_t)segment) << 62) | (add)) 52 #ifndef CVMX_ADD_IO_SEG 53 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add)) 54 #endif 55 56 #include <asm/octeon/cvmx-asm.h> 57 #include <asm/octeon/cvmx-packet.h> 58 #include <asm/octeon/cvmx-sysinfo.h> 59 60 #include <asm/octeon/cvmx-ciu-defs.h> 61 #include <asm/octeon/cvmx-ciu3-defs.h> 62 #include <asm/octeon/cvmx-gpio-defs.h> 63 #include <asm/octeon/cvmx-iob-defs.h> 64 #include <asm/octeon/cvmx-ipd-defs.h> 65 #include <asm/octeon/cvmx-l2c-defs.h> 66 #include <asm/octeon/cvmx-l2d-defs.h> 67 #include <asm/octeon/cvmx-l2t-defs.h> 68 #include <asm/octeon/cvmx-led-defs.h> 69 #include <asm/octeon/cvmx-mio-defs.h> 70 #include <asm/octeon/cvmx-pow-defs.h> 71 72 #include <asm/octeon/cvmx-bootinfo.h> 73 #include <asm/octeon/cvmx-bootmem.h> 74 #include <asm/octeon/cvmx-l2c.h> 75 76 #ifndef CVMX_ENABLE_DEBUG_PRINTS 77 #define CVMX_ENABLE_DEBUG_PRINTS 1 78 #endif 79 80 #if CVMX_ENABLE_DEBUG_PRINTS 81 #define cvmx_dprintf printk 82 #else 83 #define cvmx_dprintf(...) {} 84 #endif 85 86 #define CVMX_MAX_CORES (16) 87 #define CVMX_CACHE_LINE_SIZE (128) /* In bytes */ 88 #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */ 89 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE))) 90 #define CAST64(v) ((long long)(long)(v)) 91 #define CASTPTR(type, v) ((type *)(long)(v)) 92 93 /* 94 * Returns processor ID, different Linux and simple exec versions 95 * provided in the cvmx-app-init*.c files. 96 */ 97 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure)); 98 static inline uint32_t cvmx_get_proc_id(void) 99 { 100 uint32_t id; 101 asm("mfc0 %0, $15,0" : "=r"(id)); 102 return id; 103 } 104 105 /* turn the variable name into a string */ 106 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x) 107 #define CVMX_TMP_STR2(x) #x 108 109 /** 110 * Builds a bit mask given the required size in bits. 111 * 112 * @bits: Number of bits in the mask 113 * Returns The mask 114 */ static inline uint64_t cvmx_build_mask(uint64_t bits) 115 { 116 return ~((~0x0ull) << bits); 117 } 118 119 /** 120 * Builds a memory address for I/O based on the Major and Sub DID. 121 * 122 * @major_did: 5 bit major did 123 * @sub_did: 3 bit sub did 124 * Returns I/O base address 125 */ 126 static inline uint64_t cvmx_build_io_address(uint64_t major_did, 127 uint64_t sub_did) 128 { 129 return (0x1ull << 48) | (major_did << 43) | (sub_did << 40); 130 } 131 132 /** 133 * Perform mask and shift to place the supplied value into 134 * the supplied bit rage. 135 * 136 * Example: cvmx_build_bits(39,24,value) 137 * <pre> 138 * 6 5 4 3 3 2 1 139 * 3 5 7 9 1 3 5 7 0 140 * +-------+-------+-------+-------+-------+-------+-------+------+ 141 * 000000000000000000000000___________value000000000000000000000000 142 * </pre> 143 * 144 * @high_bit: Highest bit value can occupy (inclusive) 0-63 145 * @low_bit: Lowest bit value can occupy inclusive 0-high_bit 146 * @value: Value to use 147 * Returns Value masked and shifted 148 */ 149 static inline uint64_t cvmx_build_bits(uint64_t high_bit, 150 uint64_t low_bit, uint64_t value) 151 { 152 return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit; 153 } 154 155 /** 156 * Convert a memory pointer (void*) into a hardware compatible 157 * memory address (uint64_t). Octeon hardware widgets don't 158 * understand logical addresses. 159 * 160 * @ptr: C style memory pointer 161 * Returns Hardware physical address 162 */ 163 static inline uint64_t cvmx_ptr_to_phys(void *ptr) 164 { 165 if (sizeof(void *) == 8) { 166 /* 167 * We're running in 64 bit mode. Normally this means 168 * that we can use 40 bits of address space (the 169 * hardware limit). Unfortunately there is one case 170 * were we need to limit this to 30 bits, sign 171 * extended 32 bit. Although these are 64 bits wide, 172 * only 30 bits can be used. 173 */ 174 if ((CAST64(ptr) >> 62) == 3) 175 return CAST64(ptr) & cvmx_build_mask(30); 176 else 177 return CAST64(ptr) & cvmx_build_mask(40); 178 } else { 179 return (long)(ptr) & 0x1fffffff; 180 } 181 } 182 183 /** 184 * Convert a hardware physical address (uint64_t) into a 185 * memory pointer (void *). 186 * 187 * @physical_address: 188 * Hardware physical address to memory 189 * Returns Pointer to memory 190 */ 191 static inline void *cvmx_phys_to_ptr(uint64_t physical_address) 192 { 193 if (sizeof(void *) == 8) { 194 /* Just set the top bit, avoiding any TLB ugliness */ 195 return CASTPTR(void, 196 CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, 197 physical_address)); 198 } else { 199 return CASTPTR(void, 200 CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, 201 physical_address)); 202 } 203 } 204 205 /* The following #if controls the definition of the macro 206 CVMX_BUILD_WRITE64. This macro is used to build a store operation to 207 a full 64bit address. With a 64bit ABI, this can be done with a simple 208 pointer access. 32bit ABIs require more complicated assembly */ 209 210 /* We have a full 64bit ABI. Writing to a 64bit address can be done with 211 a simple volatile pointer */ 212 #define CVMX_BUILD_WRITE64(TYPE, ST) \ 213 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \ 214 { \ 215 *CASTPTR(volatile TYPE##_t, addr) = val; \ 216 } 217 218 219 /* The following #if controls the definition of the macro 220 CVMX_BUILD_READ64. This macro is used to build a load operation from 221 a full 64bit address. With a 64bit ABI, this can be done with a simple 222 pointer access. 32bit ABIs require more complicated assembly */ 223 224 /* We have a full 64bit ABI. Writing to a 64bit address can be done with 225 a simple volatile pointer */ 226 #define CVMX_BUILD_READ64(TYPE, LT) \ 227 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \ 228 { \ 229 return *CASTPTR(volatile TYPE##_t, addr); \ 230 } 231 232 233 /* The following defines 8 functions for writing to a 64bit address. Each 234 takes two arguments, the address and the value to write. 235 cvmx_write64_int64 cvmx_write64_uint64 236 cvmx_write64_int32 cvmx_write64_uint32 237 cvmx_write64_int16 cvmx_write64_uint16 238 cvmx_write64_int8 cvmx_write64_uint8 */ 239 CVMX_BUILD_WRITE64(int64, "sd"); 240 CVMX_BUILD_WRITE64(int32, "sw"); 241 CVMX_BUILD_WRITE64(int16, "sh"); 242 CVMX_BUILD_WRITE64(int8, "sb"); 243 CVMX_BUILD_WRITE64(uint64, "sd"); 244 CVMX_BUILD_WRITE64(uint32, "sw"); 245 CVMX_BUILD_WRITE64(uint16, "sh"); 246 CVMX_BUILD_WRITE64(uint8, "sb"); 247 #define cvmx_write64 cvmx_write64_uint64 248 249 /* The following defines 8 functions for reading from a 64bit address. Each 250 takes the address as the only argument 251 cvmx_read64_int64 cvmx_read64_uint64 252 cvmx_read64_int32 cvmx_read64_uint32 253 cvmx_read64_int16 cvmx_read64_uint16 254 cvmx_read64_int8 cvmx_read64_uint8 */ 255 CVMX_BUILD_READ64(int64, "ld"); 256 CVMX_BUILD_READ64(int32, "lw"); 257 CVMX_BUILD_READ64(int16, "lh"); 258 CVMX_BUILD_READ64(int8, "lb"); 259 CVMX_BUILD_READ64(uint64, "ld"); 260 CVMX_BUILD_READ64(uint32, "lw"); 261 CVMX_BUILD_READ64(uint16, "lhu"); 262 CVMX_BUILD_READ64(uint8, "lbu"); 263 #define cvmx_read64 cvmx_read64_uint64 264 265 266 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val) 267 { 268 cvmx_write64(csr_addr, val); 269 270 /* 271 * Perform an immediate read after every write to an RSL 272 * register to force the write to complete. It doesn't matter 273 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT 274 * because it is fast and harmless. 275 */ 276 if (((csr_addr >> 40) & 0x7ffff) == (0x118)) 277 cvmx_read64(CVMX_MIO_BOOT_BIST_STAT); 278 } 279 280 static inline void cvmx_writeq_csr(void __iomem *csr_addr, uint64_t val) 281 { 282 cvmx_write_csr((__force uint64_t)csr_addr, val); 283 } 284 285 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val) 286 { 287 cvmx_write64(io_addr, val); 288 289 } 290 291 static inline uint64_t cvmx_read_csr(uint64_t csr_addr) 292 { 293 uint64_t val = cvmx_read64(csr_addr); 294 return val; 295 } 296 297 static inline uint64_t cvmx_readq_csr(void __iomem *csr_addr) 298 { 299 return cvmx_read_csr((__force uint64_t) csr_addr); 300 } 301 302 static inline void cvmx_send_single(uint64_t data) 303 { 304 const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull; 305 cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data); 306 } 307 308 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr) 309 { 310 union { 311 uint64_t u64; 312 struct { 313 uint64_t scraddr:8; 314 uint64_t len:8; 315 uint64_t addr:48; 316 } s; 317 } addr; 318 addr.u64 = csr_addr; 319 addr.s.scraddr = scraddr >> 3; 320 addr.s.len = 1; 321 cvmx_send_single(addr.u64); 322 } 323 324 /* Return true if Octeon is CN38XX pass 1 */ 325 static inline int cvmx_octeon_is_pass1(void) 326 { 327 #if OCTEON_IS_COMMON_BINARY() 328 return 0; /* Pass 1 isn't supported for common binaries */ 329 #else 330 /* Now that we know we're built for a specific model, only check CN38XX */ 331 #if OCTEON_IS_MODEL(OCTEON_CN38XX) 332 return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1; 333 #else 334 return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */ 335 #endif 336 #endif 337 } 338 339 static inline unsigned int cvmx_get_core_num(void) 340 { 341 unsigned int core_num; 342 CVMX_RDHWRNV(core_num, 0); 343 return core_num; 344 } 345 346 /* Maximum # of bits to define core in node */ 347 #define CVMX_NODE_NO_SHIFT 7 348 #define CVMX_NODE_MASK 0x3 349 static inline unsigned int cvmx_get_node_num(void) 350 { 351 unsigned int core_num = cvmx_get_core_num(); 352 353 return (core_num >> CVMX_NODE_NO_SHIFT) & CVMX_NODE_MASK; 354 } 355 356 static inline unsigned int cvmx_get_local_core_num(void) 357 { 358 return cvmx_get_core_num() & ((1 << CVMX_NODE_NO_SHIFT) - 1); 359 } 360 361 #define CVMX_NODE_BITS (2) /* Number of bits to define a node */ 362 #define CVMX_MAX_NODES (1 << CVMX_NODE_BITS) 363 #define CVMX_NODE_IO_SHIFT (36) 364 #define CVMX_NODE_MEM_SHIFT (40) 365 #define CVMX_NODE_IO_MASK ((uint64_t)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT) 366 367 static inline void cvmx_write_csr_node(uint64_t node, uint64_t csr_addr, 368 uint64_t val) 369 { 370 uint64_t composite_csr_addr, node_addr; 371 372 node_addr = (node & CVMX_NODE_MASK) << CVMX_NODE_IO_SHIFT; 373 composite_csr_addr = (csr_addr & ~CVMX_NODE_IO_MASK) | node_addr; 374 375 cvmx_write64_uint64(composite_csr_addr, val); 376 if (((csr_addr >> 40) & 0x7ffff) == (0x118)) 377 cvmx_read64_uint64(CVMX_MIO_BOOT_BIST_STAT | node_addr); 378 } 379 380 static inline uint64_t cvmx_read_csr_node(uint64_t node, uint64_t csr_addr) 381 { 382 uint64_t node_addr; 383 384 node_addr = (csr_addr & ~CVMX_NODE_IO_MASK) | 385 (node & CVMX_NODE_MASK) << CVMX_NODE_IO_SHIFT; 386 return cvmx_read_csr(node_addr); 387 } 388 389 /** 390 * Returns the number of bits set in the provided value. 391 * Simple wrapper for POP instruction. 392 * 393 * @val: 32 bit value to count set bits in 394 * 395 * Returns Number of bits set 396 */ 397 static inline uint32_t cvmx_pop(uint32_t val) 398 { 399 uint32_t pop; 400 CVMX_POP(pop, val); 401 return pop; 402 } 403 404 /** 405 * Returns the number of bits set in the provided value. 406 * Simple wrapper for DPOP instruction. 407 * 408 * @val: 64 bit value to count set bits in 409 * 410 * Returns Number of bits set 411 */ 412 static inline int cvmx_dpop(uint64_t val) 413 { 414 int pop; 415 CVMX_DPOP(pop, val); 416 return pop; 417 } 418 419 /** 420 * Provide current cycle counter as a return value 421 * 422 * Returns current cycle counter 423 */ 424 425 static inline uint64_t cvmx_get_cycle(void) 426 { 427 uint64_t cycle; 428 CVMX_RDHWR(cycle, 31); 429 return cycle; 430 } 431 432 /** 433 * Reads a chip global cycle counter. This counts CPU cycles since 434 * chip reset. The counter is 64 bit. 435 * This register does not exist on CN38XX pass 1 silicion 436 * 437 * Returns Global chip cycle count since chip reset. 438 */ 439 static inline uint64_t cvmx_get_cycle_global(void) 440 { 441 if (cvmx_octeon_is_pass1()) 442 return 0; 443 else 444 return cvmx_read64(CVMX_IPD_CLK_COUNT); 445 } 446 447 /** 448 * This macro spins on a field waiting for it to reach a value. It 449 * is common in code to need to wait for a specific field in a CSR 450 * to match a specific value. Conceptually this macro expands to: 451 * 452 * 1) read csr at "address" with a csr typedef of "type" 453 * 2) Check if ("type".s."field" "op" "value") 454 * 3) If #2 isn't true loop to #1 unless too much time has passed. 455 */ 456 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\ 457 ( \ 458 { \ 459 int result; \ 460 do { \ 461 uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \ 462 cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \ 463 type c; \ 464 while (1) { \ 465 c.u64 = cvmx_read_csr(address); \ 466 if ((c.s.field) op(value)) { \ 467 result = 0; \ 468 break; \ 469 } else if (cvmx_get_cycle() > done) { \ 470 result = -1; \ 471 break; \ 472 } else \ 473 __delay(100); \ 474 } \ 475 } while (0); \ 476 result; \ 477 }) 478 479 /***************************************************************************/ 480 481 /* Return the number of cores available in the chip */ 482 static inline uint32_t cvmx_octeon_num_cores(void) 483 { 484 u64 ciu_fuse_reg; 485 u64 ciu_fuse; 486 487 if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) 488 ciu_fuse_reg = CVMX_CIU3_FUSE; 489 else 490 ciu_fuse_reg = CVMX_CIU_FUSE; 491 ciu_fuse = cvmx_read_csr(ciu_fuse_reg); 492 return cvmx_dpop(ciu_fuse); 493 } 494 495 #endif /* __CVMX_H__ */ 496