xref: /openbmc/linux/arch/mips/include/asm/octeon/cvmx.h (revision 4f6cce39)
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30 
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 
34 enum cvmx_mips_space {
35 	CVMX_MIPS_SPACE_XKSEG = 3LL,
36 	CVMX_MIPS_SPACE_XKPHYS = 2LL,
37 	CVMX_MIPS_SPACE_XSSEG = 1LL,
38 	CVMX_MIPS_SPACE_XUSEG = 0LL
39 };
40 
41 /* These macros for use when using 32 bit pointers. */
42 #define CVMX_MIPS32_SPACE_KSEG0 1l
43 #define CVMX_ADD_SEG32(segment, add) \
44 	(((int32_t)segment << 31) | (int32_t)(add))
45 
46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
47 
48 /* These macros simplify the process of creating common IO addresses */
49 #define CVMX_ADD_SEG(segment, add) \
50 	((((uint64_t)segment) << 62) | (add))
51 #ifndef CVMX_ADD_IO_SEG
52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
53 #endif
54 
55 #include <asm/octeon/cvmx-asm.h>
56 #include <asm/octeon/cvmx-packet.h>
57 #include <asm/octeon/cvmx-sysinfo.h>
58 
59 #include <asm/octeon/cvmx-ciu-defs.h>
60 #include <asm/octeon/cvmx-ciu3-defs.h>
61 #include <asm/octeon/cvmx-gpio-defs.h>
62 #include <asm/octeon/cvmx-iob-defs.h>
63 #include <asm/octeon/cvmx-ipd-defs.h>
64 #include <asm/octeon/cvmx-l2c-defs.h>
65 #include <asm/octeon/cvmx-l2d-defs.h>
66 #include <asm/octeon/cvmx-l2t-defs.h>
67 #include <asm/octeon/cvmx-led-defs.h>
68 #include <asm/octeon/cvmx-mio-defs.h>
69 #include <asm/octeon/cvmx-pow-defs.h>
70 
71 #include <asm/octeon/cvmx-bootinfo.h>
72 #include <asm/octeon/cvmx-bootmem.h>
73 #include <asm/octeon/cvmx-l2c.h>
74 
75 #ifndef CVMX_ENABLE_DEBUG_PRINTS
76 #define CVMX_ENABLE_DEBUG_PRINTS 1
77 #endif
78 
79 #if CVMX_ENABLE_DEBUG_PRINTS
80 #define cvmx_dprintf	    printk
81 #else
82 #define cvmx_dprintf(...)   {}
83 #endif
84 
85 #define CVMX_MAX_CORES		(16)
86 #define CVMX_CACHE_LINE_SIZE	(128)	/* In bytes */
87 #define CVMX_CACHE_LINE_MASK	(CVMX_CACHE_LINE_SIZE - 1)	/* In bytes */
88 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
89 #define CAST64(v) ((long long)(long)(v))
90 #define CASTPTR(type, v) ((type *)(long)(v))
91 
92 /*
93  * Returns processor ID, different Linux and simple exec versions
94  * provided in the cvmx-app-init*.c files.
95  */
96 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
97 static inline uint32_t cvmx_get_proc_id(void)
98 {
99 	uint32_t id;
100 	asm("mfc0 %0, $15,0" : "=r"(id));
101 	return id;
102 }
103 
104 /* turn the variable name into a string */
105 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
106 #define CVMX_TMP_STR2(x) #x
107 
108 /**
109  * Builds a bit mask given the required size in bits.
110  *
111  * @bits:   Number of bits in the mask
112  * Returns The mask
113  */ static inline uint64_t cvmx_build_mask(uint64_t bits)
114 {
115 	return ~((~0x0ull) << bits);
116 }
117 
118 /**
119  * Builds a memory address for I/O based on the Major and Sub DID.
120  *
121  * @major_did: 5 bit major did
122  * @sub_did:   3 bit sub did
123  * Returns I/O base address
124  */
125 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
126 					     uint64_t sub_did)
127 {
128 	return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
129 }
130 
131 /**
132  * Perform mask and shift to place the supplied value into
133  * the supplied bit rage.
134  *
135  * Example: cvmx_build_bits(39,24,value)
136  * <pre>
137  * 6	   5	   4	   3	   3	   2	   1
138  * 3	   5	   7	   9	   1	   3	   5	   7	  0
139  * +-------+-------+-------+-------+-------+-------+-------+------+
140  * 000000000000000000000000___________value000000000000000000000000
141  * </pre>
142  *
143  * @high_bit: Highest bit value can occupy (inclusive) 0-63
144  * @low_bit:  Lowest bit value can occupy inclusive 0-high_bit
145  * @value:    Value to use
146  * Returns Value masked and shifted
147  */
148 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
149 				       uint64_t low_bit, uint64_t value)
150 {
151 	return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
152 }
153 
154 /**
155  * Convert a memory pointer (void*) into a hardware compatible
156  * memory address (uint64_t). Octeon hardware widgets don't
157  * understand logical addresses.
158  *
159  * @ptr:    C style memory pointer
160  * Returns Hardware physical address
161  */
162 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
163 {
164 	if (sizeof(void *) == 8) {
165 		/*
166 		 * We're running in 64 bit mode. Normally this means
167 		 * that we can use 40 bits of address space (the
168 		 * hardware limit). Unfortunately there is one case
169 		 * were we need to limit this to 30 bits, sign
170 		 * extended 32 bit. Although these are 64 bits wide,
171 		 * only 30 bits can be used.
172 		 */
173 		if ((CAST64(ptr) >> 62) == 3)
174 			return CAST64(ptr) & cvmx_build_mask(30);
175 		else
176 			return CAST64(ptr) & cvmx_build_mask(40);
177 	} else {
178 		return (long)(ptr) & 0x1fffffff;
179 	}
180 }
181 
182 /**
183  * Convert a hardware physical address (uint64_t) into a
184  * memory pointer (void *).
185  *
186  * @physical_address:
187  *		 Hardware physical address to memory
188  * Returns Pointer to memory
189  */
190 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
191 {
192 	if (sizeof(void *) == 8) {
193 		/* Just set the top bit, avoiding any TLB ugliness */
194 		return CASTPTR(void,
195 			       CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
196 					    physical_address));
197 	} else {
198 		return CASTPTR(void,
199 			       CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
200 					      physical_address));
201 	}
202 }
203 
204 /* The following #if controls the definition of the macro
205     CVMX_BUILD_WRITE64. This macro is used to build a store operation to
206     a full 64bit address. With a 64bit ABI, this can be done with a simple
207     pointer access. 32bit ABIs require more complicated assembly */
208 
209 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
210     a simple volatile pointer */
211 #define CVMX_BUILD_WRITE64(TYPE, ST)					\
212 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val)	\
213 {									\
214     *CASTPTR(volatile TYPE##_t, addr) = val;				\
215 }
216 
217 
218 /* The following #if controls the definition of the macro
219     CVMX_BUILD_READ64. This macro is used to build a load operation from
220     a full 64bit address. With a 64bit ABI, this can be done with a simple
221     pointer access. 32bit ABIs require more complicated assembly */
222 
223 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
224     a simple volatile pointer */
225 #define CVMX_BUILD_READ64(TYPE, LT)					\
226 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr)		\
227 {									\
228 	return *CASTPTR(volatile TYPE##_t, addr);			\
229 }
230 
231 
232 /* The following defines 8 functions for writing to a 64bit address. Each
233     takes two arguments, the address and the value to write.
234     cvmx_write64_int64	    cvmx_write64_uint64
235     cvmx_write64_int32	    cvmx_write64_uint32
236     cvmx_write64_int16	    cvmx_write64_uint16
237     cvmx_write64_int8	    cvmx_write64_uint8 */
238 CVMX_BUILD_WRITE64(int64, "sd");
239 CVMX_BUILD_WRITE64(int32, "sw");
240 CVMX_BUILD_WRITE64(int16, "sh");
241 CVMX_BUILD_WRITE64(int8, "sb");
242 CVMX_BUILD_WRITE64(uint64, "sd");
243 CVMX_BUILD_WRITE64(uint32, "sw");
244 CVMX_BUILD_WRITE64(uint16, "sh");
245 CVMX_BUILD_WRITE64(uint8, "sb");
246 #define cvmx_write64 cvmx_write64_uint64
247 
248 /* The following defines 8 functions for reading from a 64bit address. Each
249     takes the address as the only argument
250     cvmx_read64_int64	    cvmx_read64_uint64
251     cvmx_read64_int32	    cvmx_read64_uint32
252     cvmx_read64_int16	    cvmx_read64_uint16
253     cvmx_read64_int8	    cvmx_read64_uint8 */
254 CVMX_BUILD_READ64(int64, "ld");
255 CVMX_BUILD_READ64(int32, "lw");
256 CVMX_BUILD_READ64(int16, "lh");
257 CVMX_BUILD_READ64(int8, "lb");
258 CVMX_BUILD_READ64(uint64, "ld");
259 CVMX_BUILD_READ64(uint32, "lw");
260 CVMX_BUILD_READ64(uint16, "lhu");
261 CVMX_BUILD_READ64(uint8, "lbu");
262 #define cvmx_read64 cvmx_read64_uint64
263 
264 
265 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
266 {
267 	cvmx_write64(csr_addr, val);
268 
269 	/*
270 	 * Perform an immediate read after every write to an RSL
271 	 * register to force the write to complete. It doesn't matter
272 	 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
273 	 * because it is fast and harmless.
274 	 */
275 	if (((csr_addr >> 40) & 0x7ffff) == (0x118))
276 		cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
277 }
278 
279 static inline void cvmx_writeq_csr(void __iomem *csr_addr, uint64_t val)
280 {
281 	cvmx_write_csr((__force uint64_t)csr_addr, val);
282 }
283 
284 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
285 {
286 	cvmx_write64(io_addr, val);
287 
288 }
289 
290 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
291 {
292 	uint64_t val = cvmx_read64(csr_addr);
293 	return val;
294 }
295 
296 static inline uint64_t cvmx_readq_csr(void __iomem *csr_addr)
297 {
298 	return cvmx_read_csr((__force uint64_t) csr_addr);
299 }
300 
301 static inline void cvmx_send_single(uint64_t data)
302 {
303 	const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
304 	cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
305 }
306 
307 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
308 {
309 	union {
310 		uint64_t u64;
311 		struct {
312 			uint64_t scraddr:8;
313 			uint64_t len:8;
314 			uint64_t addr:48;
315 		} s;
316 	} addr;
317 	addr.u64 = csr_addr;
318 	addr.s.scraddr = scraddr >> 3;
319 	addr.s.len = 1;
320 	cvmx_send_single(addr.u64);
321 }
322 
323 /* Return true if Octeon is CN38XX pass 1 */
324 static inline int cvmx_octeon_is_pass1(void)
325 {
326 #if OCTEON_IS_COMMON_BINARY()
327 	return 0;	/* Pass 1 isn't supported for common binaries */
328 #else
329 /* Now that we know we're built for a specific model, only check CN38XX */
330 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
331 	return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
332 #else
333 	return 0;	/* Built for non CN38XX chip, we're not CN38XX pass1 */
334 #endif
335 #endif
336 }
337 
338 static inline unsigned int cvmx_get_core_num(void)
339 {
340 	unsigned int core_num;
341 	CVMX_RDHWRNV(core_num, 0);
342 	return core_num;
343 }
344 
345 /* Maximum # of bits to define core in node */
346 #define CVMX_NODE_NO_SHIFT	7
347 #define CVMX_NODE_MASK		0x3
348 static inline unsigned int cvmx_get_node_num(void)
349 {
350 	unsigned int core_num = cvmx_get_core_num();
351 
352 	return (core_num >> CVMX_NODE_NO_SHIFT) & CVMX_NODE_MASK;
353 }
354 
355 static inline unsigned int cvmx_get_local_core_num(void)
356 {
357 	return cvmx_get_core_num() & ((1 << CVMX_NODE_NO_SHIFT) - 1);
358 }
359 
360 /**
361  * Returns the number of bits set in the provided value.
362  * Simple wrapper for POP instruction.
363  *
364  * @val:    32 bit value to count set bits in
365  *
366  * Returns Number of bits set
367  */
368 static inline uint32_t cvmx_pop(uint32_t val)
369 {
370 	uint32_t pop;
371 	CVMX_POP(pop, val);
372 	return pop;
373 }
374 
375 /**
376  * Returns the number of bits set in the provided value.
377  * Simple wrapper for DPOP instruction.
378  *
379  * @val:    64 bit value to count set bits in
380  *
381  * Returns Number of bits set
382  */
383 static inline int cvmx_dpop(uint64_t val)
384 {
385 	int pop;
386 	CVMX_DPOP(pop, val);
387 	return pop;
388 }
389 
390 /**
391  * Provide current cycle counter as a return value
392  *
393  * Returns current cycle counter
394  */
395 
396 static inline uint64_t cvmx_get_cycle(void)
397 {
398 	uint64_t cycle;
399 	CVMX_RDHWR(cycle, 31);
400 	return cycle;
401 }
402 
403 /**
404  * Wait for the specified number of cycle
405  *
406  */
407 static inline void cvmx_wait(uint64_t cycles)
408 {
409 	uint64_t done = cvmx_get_cycle() + cycles;
410 
411 	while (cvmx_get_cycle() < done)
412 		; /* Spin */
413 }
414 
415 /**
416  * Reads a chip global cycle counter.  This counts CPU cycles since
417  * chip reset.	The counter is 64 bit.
418  * This register does not exist on CN38XX pass 1 silicion
419  *
420  * Returns Global chip cycle count since chip reset.
421  */
422 static inline uint64_t cvmx_get_cycle_global(void)
423 {
424 	if (cvmx_octeon_is_pass1())
425 		return 0;
426 	else
427 		return cvmx_read64(CVMX_IPD_CLK_COUNT);
428 }
429 
430 /**
431  * This macro spins on a field waiting for it to reach a value. It
432  * is common in code to need to wait for a specific field in a CSR
433  * to match a specific value. Conceptually this macro expands to:
434  *
435  * 1) read csr at "address" with a csr typedef of "type"
436  * 2) Check if ("type".s."field" "op" "value")
437  * 3) If #2 isn't true loop to #1 unless too much time has passed.
438  */
439 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
440     (									\
441 {									\
442 	int result;							\
443 	do {								\
444 		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
445 			cvmx_sysinfo_get()->cpu_clock_hz / 1000000;	\
446 		type c;							\
447 		while (1) {						\
448 			c.u64 = cvmx_read_csr(address);			\
449 			if ((c.s.field) op(value)) {			\
450 				result = 0;				\
451 				break;					\
452 			} else if (cvmx_get_cycle() > done) {		\
453 				result = -1;				\
454 				break;					\
455 			} else						\
456 				cvmx_wait(100);				\
457 		}							\
458 	} while (0);							\
459 	result;								\
460 })
461 
462 /***************************************************************************/
463 
464 /* Return the number of cores available in the chip */
465 static inline uint32_t cvmx_octeon_num_cores(void)
466 {
467 	u64 ciu_fuse_reg;
468 	u64 ciu_fuse;
469 
470 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX))
471 		ciu_fuse_reg = CVMX_CIU3_FUSE;
472 	else
473 		ciu_fuse_reg = CVMX_CIU_FUSE;
474 	ciu_fuse = cvmx_read_csr(ciu_fuse_reg);
475 	return cvmx_dpop(ciu_fuse);
476 }
477 
478 #endif /*  __CVMX_H__  */
479