1 /***********************license start*************** 2 * Author: Cavium Networks 3 * 4 * Contact: support@caviumnetworks.com 5 * This file is part of the OCTEON SDK 6 * 7 * Copyright (c) 2003-2017 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this file; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * or visit http://www.gnu.org/licenses/. 23 * 24 * This file may also be available under a different license from Cavium. 25 * Contact Cavium Networks for more information 26 ***********************license end**************************************/ 27 28 #ifndef __CVMX_H__ 29 #define __CVMX_H__ 30 31 #include <linux/kernel.h> 32 #include <linux/string.h> 33 34 enum cvmx_mips_space { 35 CVMX_MIPS_SPACE_XKSEG = 3LL, 36 CVMX_MIPS_SPACE_XKPHYS = 2LL, 37 CVMX_MIPS_SPACE_XSSEG = 1LL, 38 CVMX_MIPS_SPACE_XUSEG = 0LL 39 }; 40 41 /* These macros for use when using 32 bit pointers. */ 42 #define CVMX_MIPS32_SPACE_KSEG0 1l 43 #define CVMX_ADD_SEG32(segment, add) \ 44 (((int32_t)segment << 31) | (int32_t)(add)) 45 46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS 47 48 /* These macros simplify the process of creating common IO addresses */ 49 #define CVMX_ADD_SEG(segment, add) \ 50 ((((uint64_t)segment) << 62) | (add)) 51 #ifndef CVMX_ADD_IO_SEG 52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add)) 53 #endif 54 55 #include <asm/octeon/cvmx-asm.h> 56 #include <asm/octeon/cvmx-packet.h> 57 #include <asm/octeon/cvmx-sysinfo.h> 58 59 #include <asm/octeon/cvmx-ciu-defs.h> 60 #include <asm/octeon/cvmx-ciu3-defs.h> 61 #include <asm/octeon/cvmx-gpio-defs.h> 62 #include <asm/octeon/cvmx-iob-defs.h> 63 #include <asm/octeon/cvmx-ipd-defs.h> 64 #include <asm/octeon/cvmx-l2c-defs.h> 65 #include <asm/octeon/cvmx-l2t-defs.h> 66 #include <asm/octeon/cvmx-led-defs.h> 67 #include <asm/octeon/cvmx-mio-defs.h> 68 #include <asm/octeon/cvmx-pow-defs.h> 69 70 #include <asm/octeon/cvmx-bootinfo.h> 71 #include <asm/octeon/cvmx-bootmem.h> 72 #include <asm/octeon/cvmx-l2c.h> 73 74 #ifndef CVMX_ENABLE_DEBUG_PRINTS 75 #define CVMX_ENABLE_DEBUG_PRINTS 1 76 #endif 77 78 #if CVMX_ENABLE_DEBUG_PRINTS 79 #define cvmx_dprintf printk 80 #else 81 #define cvmx_dprintf(...) {} 82 #endif 83 84 #define CVMX_MAX_CORES (16) 85 #define CVMX_CACHE_LINE_SIZE (128) /* In bytes */ 86 #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */ 87 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE))) 88 #define CAST64(v) ((long long)(long)(v)) 89 #define CASTPTR(type, v) ((type *)(long)(v)) 90 91 /* 92 * Returns processor ID, different Linux and simple exec versions 93 * provided in the cvmx-app-init*.c files. 94 */ 95 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure)); 96 static inline uint32_t cvmx_get_proc_id(void) 97 { 98 uint32_t id; 99 asm("mfc0 %0, $15,0" : "=r"(id)); 100 return id; 101 } 102 103 /* turn the variable name into a string */ 104 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x) 105 #define CVMX_TMP_STR2(x) #x 106 107 /** 108 * Builds a bit mask given the required size in bits. 109 * 110 * @bits: Number of bits in the mask 111 * Returns The mask 112 */ static inline uint64_t cvmx_build_mask(uint64_t bits) 113 { 114 return ~((~0x0ull) << bits); 115 } 116 117 /** 118 * Builds a memory address for I/O based on the Major and Sub DID. 119 * 120 * @major_did: 5 bit major did 121 * @sub_did: 3 bit sub did 122 * Returns I/O base address 123 */ 124 static inline uint64_t cvmx_build_io_address(uint64_t major_did, 125 uint64_t sub_did) 126 { 127 return (0x1ull << 48) | (major_did << 43) | (sub_did << 40); 128 } 129 130 /** 131 * Perform mask and shift to place the supplied value into 132 * the supplied bit rage. 133 * 134 * Example: cvmx_build_bits(39,24,value) 135 * <pre> 136 * 6 5 4 3 3 2 1 137 * 3 5 7 9 1 3 5 7 0 138 * +-------+-------+-------+-------+-------+-------+-------+------+ 139 * 000000000000000000000000___________value000000000000000000000000 140 * </pre> 141 * 142 * @high_bit: Highest bit value can occupy (inclusive) 0-63 143 * @low_bit: Lowest bit value can occupy inclusive 0-high_bit 144 * @value: Value to use 145 * Returns Value masked and shifted 146 */ 147 static inline uint64_t cvmx_build_bits(uint64_t high_bit, 148 uint64_t low_bit, uint64_t value) 149 { 150 return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit; 151 } 152 153 /** 154 * Convert a memory pointer (void*) into a hardware compatible 155 * memory address (uint64_t). Octeon hardware widgets don't 156 * understand logical addresses. 157 * 158 * @ptr: C style memory pointer 159 * Returns Hardware physical address 160 */ 161 static inline uint64_t cvmx_ptr_to_phys(void *ptr) 162 { 163 if (sizeof(void *) == 8) { 164 /* 165 * We're running in 64 bit mode. Normally this means 166 * that we can use 40 bits of address space (the 167 * hardware limit). Unfortunately there is one case 168 * were we need to limit this to 30 bits, sign 169 * extended 32 bit. Although these are 64 bits wide, 170 * only 30 bits can be used. 171 */ 172 if ((CAST64(ptr) >> 62) == 3) 173 return CAST64(ptr) & cvmx_build_mask(30); 174 else 175 return CAST64(ptr) & cvmx_build_mask(40); 176 } else { 177 return (long)(ptr) & 0x1fffffff; 178 } 179 } 180 181 /** 182 * Convert a hardware physical address (uint64_t) into a 183 * memory pointer (void *). 184 * 185 * @physical_address: 186 * Hardware physical address to memory 187 * Returns Pointer to memory 188 */ 189 static inline void *cvmx_phys_to_ptr(uint64_t physical_address) 190 { 191 if (sizeof(void *) == 8) { 192 /* Just set the top bit, avoiding any TLB ugliness */ 193 return CASTPTR(void, 194 CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, 195 physical_address)); 196 } else { 197 return CASTPTR(void, 198 CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, 199 physical_address)); 200 } 201 } 202 203 /* The following #if controls the definition of the macro 204 CVMX_BUILD_WRITE64. This macro is used to build a store operation to 205 a full 64bit address. With a 64bit ABI, this can be done with a simple 206 pointer access. 32bit ABIs require more complicated assembly */ 207 208 /* We have a full 64bit ABI. Writing to a 64bit address can be done with 209 a simple volatile pointer */ 210 #define CVMX_BUILD_WRITE64(TYPE, ST) \ 211 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \ 212 { \ 213 *CASTPTR(volatile TYPE##_t, addr) = val; \ 214 } 215 216 217 /* The following #if controls the definition of the macro 218 CVMX_BUILD_READ64. This macro is used to build a load operation from 219 a full 64bit address. With a 64bit ABI, this can be done with a simple 220 pointer access. 32bit ABIs require more complicated assembly */ 221 222 /* We have a full 64bit ABI. Writing to a 64bit address can be done with 223 a simple volatile pointer */ 224 #define CVMX_BUILD_READ64(TYPE, LT) \ 225 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \ 226 { \ 227 return *CASTPTR(volatile TYPE##_t, addr); \ 228 } 229 230 231 /* The following defines 8 functions for writing to a 64bit address. Each 232 takes two arguments, the address and the value to write. 233 cvmx_write64_int64 cvmx_write64_uint64 234 cvmx_write64_int32 cvmx_write64_uint32 235 cvmx_write64_int16 cvmx_write64_uint16 236 cvmx_write64_int8 cvmx_write64_uint8 */ 237 CVMX_BUILD_WRITE64(int64, "sd"); 238 CVMX_BUILD_WRITE64(int32, "sw"); 239 CVMX_BUILD_WRITE64(int16, "sh"); 240 CVMX_BUILD_WRITE64(int8, "sb"); 241 CVMX_BUILD_WRITE64(uint64, "sd"); 242 CVMX_BUILD_WRITE64(uint32, "sw"); 243 CVMX_BUILD_WRITE64(uint16, "sh"); 244 CVMX_BUILD_WRITE64(uint8, "sb"); 245 #define cvmx_write64 cvmx_write64_uint64 246 247 /* The following defines 8 functions for reading from a 64bit address. Each 248 takes the address as the only argument 249 cvmx_read64_int64 cvmx_read64_uint64 250 cvmx_read64_int32 cvmx_read64_uint32 251 cvmx_read64_int16 cvmx_read64_uint16 252 cvmx_read64_int8 cvmx_read64_uint8 */ 253 CVMX_BUILD_READ64(int64, "ld"); 254 CVMX_BUILD_READ64(int32, "lw"); 255 CVMX_BUILD_READ64(int16, "lh"); 256 CVMX_BUILD_READ64(int8, "lb"); 257 CVMX_BUILD_READ64(uint64, "ld"); 258 CVMX_BUILD_READ64(uint32, "lw"); 259 CVMX_BUILD_READ64(uint16, "lhu"); 260 CVMX_BUILD_READ64(uint8, "lbu"); 261 #define cvmx_read64 cvmx_read64_uint64 262 263 264 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val) 265 { 266 cvmx_write64(csr_addr, val); 267 268 /* 269 * Perform an immediate read after every write to an RSL 270 * register to force the write to complete. It doesn't matter 271 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT 272 * because it is fast and harmless. 273 */ 274 if (((csr_addr >> 40) & 0x7ffff) == (0x118)) 275 cvmx_read64(CVMX_MIO_BOOT_BIST_STAT); 276 } 277 278 static inline void cvmx_writeq_csr(void __iomem *csr_addr, uint64_t val) 279 { 280 cvmx_write_csr((__force uint64_t)csr_addr, val); 281 } 282 283 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val) 284 { 285 cvmx_write64(io_addr, val); 286 287 } 288 289 static inline uint64_t cvmx_read_csr(uint64_t csr_addr) 290 { 291 uint64_t val = cvmx_read64(csr_addr); 292 return val; 293 } 294 295 static inline uint64_t cvmx_readq_csr(void __iomem *csr_addr) 296 { 297 return cvmx_read_csr((__force uint64_t) csr_addr); 298 } 299 300 static inline void cvmx_send_single(uint64_t data) 301 { 302 const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull; 303 cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data); 304 } 305 306 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr) 307 { 308 union { 309 uint64_t u64; 310 struct { 311 uint64_t scraddr:8; 312 uint64_t len:8; 313 uint64_t addr:48; 314 } s; 315 } addr; 316 addr.u64 = csr_addr; 317 addr.s.scraddr = scraddr >> 3; 318 addr.s.len = 1; 319 cvmx_send_single(addr.u64); 320 } 321 322 /* Return true if Octeon is CN38XX pass 1 */ 323 static inline int cvmx_octeon_is_pass1(void) 324 { 325 #if OCTEON_IS_COMMON_BINARY() 326 return 0; /* Pass 1 isn't supported for common binaries */ 327 #else 328 /* Now that we know we're built for a specific model, only check CN38XX */ 329 #if OCTEON_IS_MODEL(OCTEON_CN38XX) 330 return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1; 331 #else 332 return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */ 333 #endif 334 #endif 335 } 336 337 static inline unsigned int cvmx_get_core_num(void) 338 { 339 unsigned int core_num; 340 CVMX_RDHWRNV(core_num, 0); 341 return core_num; 342 } 343 344 /* Maximum # of bits to define core in node */ 345 #define CVMX_NODE_NO_SHIFT 7 346 #define CVMX_NODE_MASK 0x3 347 static inline unsigned int cvmx_get_node_num(void) 348 { 349 unsigned int core_num = cvmx_get_core_num(); 350 351 return (core_num >> CVMX_NODE_NO_SHIFT) & CVMX_NODE_MASK; 352 } 353 354 static inline unsigned int cvmx_get_local_core_num(void) 355 { 356 return cvmx_get_core_num() & ((1 << CVMX_NODE_NO_SHIFT) - 1); 357 } 358 359 /** 360 * Returns the number of bits set in the provided value. 361 * Simple wrapper for POP instruction. 362 * 363 * @val: 32 bit value to count set bits in 364 * 365 * Returns Number of bits set 366 */ 367 static inline uint32_t cvmx_pop(uint32_t val) 368 { 369 uint32_t pop; 370 CVMX_POP(pop, val); 371 return pop; 372 } 373 374 /** 375 * Returns the number of bits set in the provided value. 376 * Simple wrapper for DPOP instruction. 377 * 378 * @val: 64 bit value to count set bits in 379 * 380 * Returns Number of bits set 381 */ 382 static inline int cvmx_dpop(uint64_t val) 383 { 384 int pop; 385 CVMX_DPOP(pop, val); 386 return pop; 387 } 388 389 /** 390 * Provide current cycle counter as a return value 391 * 392 * Returns current cycle counter 393 */ 394 395 static inline uint64_t cvmx_get_cycle(void) 396 { 397 uint64_t cycle; 398 CVMX_RDHWR(cycle, 31); 399 return cycle; 400 } 401 402 /** 403 * Wait for the specified number of cycle 404 * 405 */ 406 static inline void cvmx_wait(uint64_t cycles) 407 { 408 uint64_t done = cvmx_get_cycle() + cycles; 409 410 while (cvmx_get_cycle() < done) 411 ; /* Spin */ 412 } 413 414 /** 415 * Reads a chip global cycle counter. This counts CPU cycles since 416 * chip reset. The counter is 64 bit. 417 * This register does not exist on CN38XX pass 1 silicion 418 * 419 * Returns Global chip cycle count since chip reset. 420 */ 421 static inline uint64_t cvmx_get_cycle_global(void) 422 { 423 if (cvmx_octeon_is_pass1()) 424 return 0; 425 else 426 return cvmx_read64(CVMX_IPD_CLK_COUNT); 427 } 428 429 /** 430 * This macro spins on a field waiting for it to reach a value. It 431 * is common in code to need to wait for a specific field in a CSR 432 * to match a specific value. Conceptually this macro expands to: 433 * 434 * 1) read csr at "address" with a csr typedef of "type" 435 * 2) Check if ("type".s."field" "op" "value") 436 * 3) If #2 isn't true loop to #1 unless too much time has passed. 437 */ 438 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\ 439 ( \ 440 { \ 441 int result; \ 442 do { \ 443 uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \ 444 cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \ 445 type c; \ 446 while (1) { \ 447 c.u64 = cvmx_read_csr(address); \ 448 if ((c.s.field) op(value)) { \ 449 result = 0; \ 450 break; \ 451 } else if (cvmx_get_cycle() > done) { \ 452 result = -1; \ 453 break; \ 454 } else \ 455 cvmx_wait(100); \ 456 } \ 457 } while (0); \ 458 result; \ 459 }) 460 461 /***************************************************************************/ 462 463 /* Return the number of cores available in the chip */ 464 static inline uint32_t cvmx_octeon_num_cores(void) 465 { 466 u64 ciu_fuse_reg; 467 u64 ciu_fuse; 468 469 if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) 470 ciu_fuse_reg = CVMX_CIU3_FUSE; 471 else 472 ciu_fuse_reg = CVMX_CIU_FUSE; 473 ciu_fuse = cvmx_read_csr(ciu_fuse_reg); 474 return cvmx_dpop(ciu_fuse); 475 } 476 477 #endif /* __CVMX_H__ */ 478