xref: /openbmc/linux/arch/mips/include/asm/octeon/cvmx.h (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: support@caviumnetworks.com
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2017 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30 
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 
34 enum cvmx_mips_space {
35 	CVMX_MIPS_SPACE_XKSEG = 3LL,
36 	CVMX_MIPS_SPACE_XKPHYS = 2LL,
37 	CVMX_MIPS_SPACE_XSSEG = 1LL,
38 	CVMX_MIPS_SPACE_XUSEG = 0LL
39 };
40 
41 /* These macros for use when using 32 bit pointers. */
42 #define CVMX_MIPS32_SPACE_KSEG0 1l
43 #define CVMX_ADD_SEG32(segment, add) \
44 	(((int32_t)segment << 31) | (int32_t)(add))
45 
46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
47 
48 /* These macros simplify the process of creating common IO addresses */
49 #define CVMX_ADD_SEG(segment, add) \
50 	((((uint64_t)segment) << 62) | (add))
51 #ifndef CVMX_ADD_IO_SEG
52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
53 #endif
54 
55 #include <asm/octeon/cvmx-asm.h>
56 #include <asm/octeon/cvmx-packet.h>
57 #include <asm/octeon/cvmx-sysinfo.h>
58 
59 #include <asm/octeon/cvmx-ciu-defs.h>
60 #include <asm/octeon/cvmx-ciu3-defs.h>
61 #include <asm/octeon/cvmx-gpio-defs.h>
62 #include <asm/octeon/cvmx-iob-defs.h>
63 #include <asm/octeon/cvmx-ipd-defs.h>
64 #include <asm/octeon/cvmx-l2c-defs.h>
65 #include <asm/octeon/cvmx-l2t-defs.h>
66 #include <asm/octeon/cvmx-led-defs.h>
67 #include <asm/octeon/cvmx-mio-defs.h>
68 #include <asm/octeon/cvmx-pow-defs.h>
69 
70 #include <asm/octeon/cvmx-bootinfo.h>
71 #include <asm/octeon/cvmx-bootmem.h>
72 #include <asm/octeon/cvmx-l2c.h>
73 
74 #ifndef CVMX_ENABLE_DEBUG_PRINTS
75 #define CVMX_ENABLE_DEBUG_PRINTS 1
76 #endif
77 
78 #if CVMX_ENABLE_DEBUG_PRINTS
79 #define cvmx_dprintf	    printk
80 #else
81 #define cvmx_dprintf(...)   {}
82 #endif
83 
84 #define CVMX_MAX_CORES		(16)
85 #define CVMX_CACHE_LINE_SIZE	(128)	/* In bytes */
86 #define CVMX_CACHE_LINE_MASK	(CVMX_CACHE_LINE_SIZE - 1)	/* In bytes */
87 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
88 #define CAST64(v) ((long long)(long)(v))
89 #define CASTPTR(type, v) ((type *)(long)(v))
90 
91 /*
92  * Returns processor ID, different Linux and simple exec versions
93  * provided in the cvmx-app-init*.c files.
94  */
95 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
96 static inline uint32_t cvmx_get_proc_id(void)
97 {
98 	uint32_t id;
99 	asm("mfc0 %0, $15,0" : "=r"(id));
100 	return id;
101 }
102 
103 /* turn the variable name into a string */
104 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
105 #define CVMX_TMP_STR2(x) #x
106 
107 /**
108  * Builds a bit mask given the required size in bits.
109  *
110  * @bits:   Number of bits in the mask
111  * Returns The mask
112  */ static inline uint64_t cvmx_build_mask(uint64_t bits)
113 {
114 	return ~((~0x0ull) << bits);
115 }
116 
117 /**
118  * Builds a memory address for I/O based on the Major and Sub DID.
119  *
120  * @major_did: 5 bit major did
121  * @sub_did:   3 bit sub did
122  * Returns I/O base address
123  */
124 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
125 					     uint64_t sub_did)
126 {
127 	return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
128 }
129 
130 /**
131  * Perform mask and shift to place the supplied value into
132  * the supplied bit rage.
133  *
134  * Example: cvmx_build_bits(39,24,value)
135  * <pre>
136  * 6	   5	   4	   3	   3	   2	   1
137  * 3	   5	   7	   9	   1	   3	   5	   7	  0
138  * +-------+-------+-------+-------+-------+-------+-------+------+
139  * 000000000000000000000000___________value000000000000000000000000
140  * </pre>
141  *
142  * @high_bit: Highest bit value can occupy (inclusive) 0-63
143  * @low_bit:  Lowest bit value can occupy inclusive 0-high_bit
144  * @value:    Value to use
145  * Returns Value masked and shifted
146  */
147 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
148 				       uint64_t low_bit, uint64_t value)
149 {
150 	return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
151 }
152 
153 /**
154  * Convert a memory pointer (void*) into a hardware compatible
155  * memory address (uint64_t). Octeon hardware widgets don't
156  * understand logical addresses.
157  *
158  * @ptr:    C style memory pointer
159  * Returns Hardware physical address
160  */
161 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
162 {
163 	if (sizeof(void *) == 8) {
164 		/*
165 		 * We're running in 64 bit mode. Normally this means
166 		 * that we can use 40 bits of address space (the
167 		 * hardware limit). Unfortunately there is one case
168 		 * were we need to limit this to 30 bits, sign
169 		 * extended 32 bit. Although these are 64 bits wide,
170 		 * only 30 bits can be used.
171 		 */
172 		if ((CAST64(ptr) >> 62) == 3)
173 			return CAST64(ptr) & cvmx_build_mask(30);
174 		else
175 			return CAST64(ptr) & cvmx_build_mask(40);
176 	} else {
177 		return (long)(ptr) & 0x1fffffff;
178 	}
179 }
180 
181 /**
182  * Convert a hardware physical address (uint64_t) into a
183  * memory pointer (void *).
184  *
185  * @physical_address:
186  *		 Hardware physical address to memory
187  * Returns Pointer to memory
188  */
189 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
190 {
191 	if (sizeof(void *) == 8) {
192 		/* Just set the top bit, avoiding any TLB ugliness */
193 		return CASTPTR(void,
194 			       CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS,
195 					    physical_address));
196 	} else {
197 		return CASTPTR(void,
198 			       CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
199 					      physical_address));
200 	}
201 }
202 
203 /* The following #if controls the definition of the macro
204     CVMX_BUILD_WRITE64. This macro is used to build a store operation to
205     a full 64bit address. With a 64bit ABI, this can be done with a simple
206     pointer access. 32bit ABIs require more complicated assembly */
207 
208 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
209     a simple volatile pointer */
210 #define CVMX_BUILD_WRITE64(TYPE, ST)					\
211 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val)	\
212 {									\
213     *CASTPTR(volatile TYPE##_t, addr) = val;				\
214 }
215 
216 
217 /* The following #if controls the definition of the macro
218     CVMX_BUILD_READ64. This macro is used to build a load operation from
219     a full 64bit address. With a 64bit ABI, this can be done with a simple
220     pointer access. 32bit ABIs require more complicated assembly */
221 
222 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
223     a simple volatile pointer */
224 #define CVMX_BUILD_READ64(TYPE, LT)					\
225 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr)		\
226 {									\
227 	return *CASTPTR(volatile TYPE##_t, addr);			\
228 }
229 
230 
231 /* The following defines 8 functions for writing to a 64bit address. Each
232     takes two arguments, the address and the value to write.
233     cvmx_write64_int64	    cvmx_write64_uint64
234     cvmx_write64_int32	    cvmx_write64_uint32
235     cvmx_write64_int16	    cvmx_write64_uint16
236     cvmx_write64_int8	    cvmx_write64_uint8 */
237 CVMX_BUILD_WRITE64(int64, "sd");
238 CVMX_BUILD_WRITE64(int32, "sw");
239 CVMX_BUILD_WRITE64(int16, "sh");
240 CVMX_BUILD_WRITE64(int8, "sb");
241 CVMX_BUILD_WRITE64(uint64, "sd");
242 CVMX_BUILD_WRITE64(uint32, "sw");
243 CVMX_BUILD_WRITE64(uint16, "sh");
244 CVMX_BUILD_WRITE64(uint8, "sb");
245 #define cvmx_write64 cvmx_write64_uint64
246 
247 /* The following defines 8 functions for reading from a 64bit address. Each
248     takes the address as the only argument
249     cvmx_read64_int64	    cvmx_read64_uint64
250     cvmx_read64_int32	    cvmx_read64_uint32
251     cvmx_read64_int16	    cvmx_read64_uint16
252     cvmx_read64_int8	    cvmx_read64_uint8 */
253 CVMX_BUILD_READ64(int64, "ld");
254 CVMX_BUILD_READ64(int32, "lw");
255 CVMX_BUILD_READ64(int16, "lh");
256 CVMX_BUILD_READ64(int8, "lb");
257 CVMX_BUILD_READ64(uint64, "ld");
258 CVMX_BUILD_READ64(uint32, "lw");
259 CVMX_BUILD_READ64(uint16, "lhu");
260 CVMX_BUILD_READ64(uint8, "lbu");
261 #define cvmx_read64 cvmx_read64_uint64
262 
263 
264 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
265 {
266 	cvmx_write64(csr_addr, val);
267 
268 	/*
269 	 * Perform an immediate read after every write to an RSL
270 	 * register to force the write to complete. It doesn't matter
271 	 * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
272 	 * because it is fast and harmless.
273 	 */
274 	if (((csr_addr >> 40) & 0x7ffff) == (0x118))
275 		cvmx_read64(CVMX_MIO_BOOT_BIST_STAT);
276 }
277 
278 static inline void cvmx_writeq_csr(void __iomem *csr_addr, uint64_t val)
279 {
280 	cvmx_write_csr((__force uint64_t)csr_addr, val);
281 }
282 
283 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
284 {
285 	cvmx_write64(io_addr, val);
286 
287 }
288 
289 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
290 {
291 	uint64_t val = cvmx_read64(csr_addr);
292 	return val;
293 }
294 
295 static inline uint64_t cvmx_readq_csr(void __iomem *csr_addr)
296 {
297 	return cvmx_read_csr((__force uint64_t) csr_addr);
298 }
299 
300 static inline void cvmx_send_single(uint64_t data)
301 {
302 	const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
303 	cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
304 }
305 
306 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
307 {
308 	union {
309 		uint64_t u64;
310 		struct {
311 			uint64_t scraddr:8;
312 			uint64_t len:8;
313 			uint64_t addr:48;
314 		} s;
315 	} addr;
316 	addr.u64 = csr_addr;
317 	addr.s.scraddr = scraddr >> 3;
318 	addr.s.len = 1;
319 	cvmx_send_single(addr.u64);
320 }
321 
322 /* Return true if Octeon is CN38XX pass 1 */
323 static inline int cvmx_octeon_is_pass1(void)
324 {
325 #if OCTEON_IS_COMMON_BINARY()
326 	return 0;	/* Pass 1 isn't supported for common binaries */
327 #else
328 /* Now that we know we're built for a specific model, only check CN38XX */
329 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
330 	return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
331 #else
332 	return 0;	/* Built for non CN38XX chip, we're not CN38XX pass1 */
333 #endif
334 #endif
335 }
336 
337 static inline unsigned int cvmx_get_core_num(void)
338 {
339 	unsigned int core_num;
340 	CVMX_RDHWRNV(core_num, 0);
341 	return core_num;
342 }
343 
344 /* Maximum # of bits to define core in node */
345 #define CVMX_NODE_NO_SHIFT	7
346 #define CVMX_NODE_MASK		0x3
347 static inline unsigned int cvmx_get_node_num(void)
348 {
349 	unsigned int core_num = cvmx_get_core_num();
350 
351 	return (core_num >> CVMX_NODE_NO_SHIFT) & CVMX_NODE_MASK;
352 }
353 
354 static inline unsigned int cvmx_get_local_core_num(void)
355 {
356 	return cvmx_get_core_num() & ((1 << CVMX_NODE_NO_SHIFT) - 1);
357 }
358 
359 /**
360  * Returns the number of bits set in the provided value.
361  * Simple wrapper for POP instruction.
362  *
363  * @val:    32 bit value to count set bits in
364  *
365  * Returns Number of bits set
366  */
367 static inline uint32_t cvmx_pop(uint32_t val)
368 {
369 	uint32_t pop;
370 	CVMX_POP(pop, val);
371 	return pop;
372 }
373 
374 /**
375  * Returns the number of bits set in the provided value.
376  * Simple wrapper for DPOP instruction.
377  *
378  * @val:    64 bit value to count set bits in
379  *
380  * Returns Number of bits set
381  */
382 static inline int cvmx_dpop(uint64_t val)
383 {
384 	int pop;
385 	CVMX_DPOP(pop, val);
386 	return pop;
387 }
388 
389 /**
390  * Provide current cycle counter as a return value
391  *
392  * Returns current cycle counter
393  */
394 
395 static inline uint64_t cvmx_get_cycle(void)
396 {
397 	uint64_t cycle;
398 	CVMX_RDHWR(cycle, 31);
399 	return cycle;
400 }
401 
402 /**
403  * Wait for the specified number of cycle
404  *
405  */
406 static inline void cvmx_wait(uint64_t cycles)
407 {
408 	uint64_t done = cvmx_get_cycle() + cycles;
409 
410 	while (cvmx_get_cycle() < done)
411 		; /* Spin */
412 }
413 
414 /**
415  * Reads a chip global cycle counter.  This counts CPU cycles since
416  * chip reset.	The counter is 64 bit.
417  * This register does not exist on CN38XX pass 1 silicion
418  *
419  * Returns Global chip cycle count since chip reset.
420  */
421 static inline uint64_t cvmx_get_cycle_global(void)
422 {
423 	if (cvmx_octeon_is_pass1())
424 		return 0;
425 	else
426 		return cvmx_read64(CVMX_IPD_CLK_COUNT);
427 }
428 
429 /**
430  * This macro spins on a field waiting for it to reach a value. It
431  * is common in code to need to wait for a specific field in a CSR
432  * to match a specific value. Conceptually this macro expands to:
433  *
434  * 1) read csr at "address" with a csr typedef of "type"
435  * 2) Check if ("type".s."field" "op" "value")
436  * 3) If #2 isn't true loop to #1 unless too much time has passed.
437  */
438 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
439     (									\
440 {									\
441 	int result;							\
442 	do {								\
443 		uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
444 			cvmx_sysinfo_get()->cpu_clock_hz / 1000000;	\
445 		type c;							\
446 		while (1) {						\
447 			c.u64 = cvmx_read_csr(address);			\
448 			if ((c.s.field) op(value)) {			\
449 				result = 0;				\
450 				break;					\
451 			} else if (cvmx_get_cycle() > done) {		\
452 				result = -1;				\
453 				break;					\
454 			} else						\
455 				cvmx_wait(100);				\
456 		}							\
457 	} while (0);							\
458 	result;								\
459 })
460 
461 /***************************************************************************/
462 
463 /* Return the number of cores available in the chip */
464 static inline uint32_t cvmx_octeon_num_cores(void)
465 {
466 	u64 ciu_fuse_reg;
467 	u64 ciu_fuse;
468 
469 	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX))
470 		ciu_fuse_reg = CVMX_CIU3_FUSE;
471 	else
472 		ciu_fuse_reg = CVMX_CIU_FUSE;
473 	ciu_fuse = cvmx_read_csr(ciu_fuse_reg);
474 	return cvmx_dpop(ciu_fuse);
475 }
476 
477 #endif /*  __CVMX_H__  */
478