1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 1995 Waldorf GmbH 7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 10 * Author: Maciej W. Rozycki <macro@mips.com> 11 */ 12 #ifndef _ASM_IO_H 13 #define _ASM_IO_H 14 15 #define ARCH_HAS_IOREMAP_WC 16 17 #include <linux/compiler.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/irqflags.h> 21 22 #include <asm/addrspace.h> 23 #include <asm/barrier.h> 24 #include <asm/bug.h> 25 #include <asm/byteorder.h> 26 #include <asm/cpu.h> 27 #include <asm/cpu-features.h> 28 #include <asm-generic/iomap.h> 29 #include <asm/page.h> 30 #include <asm/pgtable-bits.h> 31 #include <asm/processor.h> 32 #include <asm/string.h> 33 #include <mangle-port.h> 34 35 /* 36 * Raw operations are never swapped in software. OTOH values that raw 37 * operations are working on may or may not have been swapped by the bus 38 * hardware. An example use would be for flash memory that's used for 39 * execute in place. 40 */ 41 # define __raw_ioswabb(a, x) (x) 42 # define __raw_ioswabw(a, x) (x) 43 # define __raw_ioswabl(a, x) (x) 44 # define __raw_ioswabq(a, x) (x) 45 # define ____raw_ioswabq(a, x) (x) 46 47 # define __relaxed_ioswabb ioswabb 48 # define __relaxed_ioswabw ioswabw 49 # define __relaxed_ioswabl ioswabl 50 # define __relaxed_ioswabq ioswabq 51 52 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ 53 54 /* 55 * On MIPS I/O ports are memory mapped, so we access them using normal 56 * load/store instructions. mips_io_port_base is the virtual address to 57 * which all ports are being mapped. For sake of efficiency some code 58 * assumes that this is an address that can be loaded with a single lui 59 * instruction, so the lower 16 bits must be zero. Should be true on 60 * any sane architecture; generic code does not use this assumption. 61 */ 62 extern unsigned long mips_io_port_base; 63 64 static inline void set_io_port_base(unsigned long base) 65 { 66 mips_io_port_base = base; 67 } 68 69 /* 70 * Provide the necessary definitions for generic iomap. We make use of 71 * mips_io_port_base for iomap(), but we don't reserve any low addresses for 72 * use with I/O ports. 73 */ 74 75 #define HAVE_ARCH_PIO_SIZE 76 #define PIO_OFFSET mips_io_port_base 77 #define PIO_MASK IO_SPACE_LIMIT 78 #define PIO_RESERVED 0x0UL 79 80 /* 81 * Enforce in-order execution of data I/O. In the MIPS architecture 82 * these are equivalent to corresponding platform-specific memory 83 * barriers defined in <asm/barrier.h>. API pinched from PowerPC, 84 * with sync additionally defined. 85 */ 86 #define iobarrier_rw() mb() 87 #define iobarrier_r() rmb() 88 #define iobarrier_w() wmb() 89 #define iobarrier_sync() iob() 90 91 /* 92 * virt_to_phys - map virtual addresses to physical 93 * @address: address to remap 94 * 95 * The returned physical address is the physical (CPU) mapping for 96 * the memory address given. It is only valid to use this function on 97 * addresses directly mapped or allocated via kmalloc. 98 * 99 * This function does not give bus mappings for DMA transfers. In 100 * almost all conceivable cases a device driver should not be using 101 * this function 102 */ 103 static inline unsigned long __virt_to_phys_nodebug(volatile const void *address) 104 { 105 return __pa(address); 106 } 107 108 #ifdef CONFIG_DEBUG_VIRTUAL 109 extern phys_addr_t __virt_to_phys(volatile const void *x); 110 #else 111 #define __virt_to_phys(x) __virt_to_phys_nodebug(x) 112 #endif 113 114 #define virt_to_phys virt_to_phys 115 static inline phys_addr_t virt_to_phys(const volatile void *x) 116 { 117 return __virt_to_phys(x); 118 } 119 120 /* 121 * phys_to_virt - map physical address to virtual 122 * @address: address to remap 123 * 124 * The returned virtual address is a current CPU mapping for 125 * the memory address given. It is only valid to use this function on 126 * addresses that have a kernel mapping 127 * 128 * This function does not handle bus mappings for DMA transfers. In 129 * almost all conceivable cases a device driver should not be using 130 * this function 131 */ 132 static inline void * phys_to_virt(unsigned long address) 133 { 134 return __va(address); 135 } 136 137 /* 138 * ISA I/O bus memory addresses are 1:1 with the physical address. 139 */ 140 static inline unsigned long isa_virt_to_bus(volatile void *address) 141 { 142 return virt_to_phys(address); 143 } 144 145 static inline void *isa_bus_to_virt(unsigned long address) 146 { 147 return phys_to_virt(address); 148 } 149 150 /* 151 * Change "struct page" to physical address. 152 */ 153 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) 154 155 void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size, 156 unsigned long prot_val); 157 void iounmap(const volatile void __iomem *addr); 158 159 /* 160 * ioremap - map bus memory into CPU space 161 * @offset: bus address of the memory 162 * @size: size of the resource to map 163 * 164 * ioremap performs a platform specific sequence of operations to 165 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 166 * writew/writel functions and the other mmio helpers. The returned 167 * address is not guaranteed to be usable directly as a virtual 168 * address. 169 */ 170 #define ioremap(offset, size) \ 171 ioremap_prot((offset), (size), _CACHE_UNCACHED) 172 #define ioremap_uc ioremap 173 174 /* 175 * ioremap_cache - map bus memory into CPU space 176 * @offset: bus address of the memory 177 * @size: size of the resource to map 178 * 179 * ioremap_cache performs a platform specific sequence of operations to 180 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 181 * writew/writel functions and the other mmio helpers. The returned 182 * address is not guaranteed to be usable directly as a virtual 183 * address. 184 * 185 * This version of ioremap ensures that the memory is marked cachable by 186 * the CPU. Also enables full write-combining. Useful for some 187 * memory-like regions on I/O busses. 188 */ 189 #define ioremap_cache(offset, size) \ 190 ioremap_prot((offset), (size), _page_cachable_default) 191 192 /* 193 * ioremap_wc - map bus memory into CPU space 194 * @offset: bus address of the memory 195 * @size: size of the resource to map 196 * 197 * ioremap_wc performs a platform specific sequence of operations to 198 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 199 * writew/writel functions and the other mmio helpers. The returned 200 * address is not guaranteed to be usable directly as a virtual 201 * address. 202 * 203 * This version of ioremap ensures that the memory is marked uncachable 204 * but accelerated by means of write-combining feature. It is specifically 205 * useful for PCIe prefetchable windows, which may vastly improve a 206 * communications performance. If it was determined on boot stage, what 207 * CPU CCA doesn't support UCA, the method shall fall-back to the 208 * _CACHE_UNCACHED option (see cpu_probe() method). 209 */ 210 #define ioremap_wc(offset, size) \ 211 ioremap_prot((offset), (size), boot_cpu_data.writecombine) 212 213 #if defined(CONFIG_CPU_CAVIUM_OCTEON) 214 #define war_io_reorder_wmb() wmb() 215 #else 216 #define war_io_reorder_wmb() barrier() 217 #endif 218 219 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \ 220 \ 221 static inline void pfx##write##bwlq(type val, \ 222 volatile void __iomem *mem) \ 223 { \ 224 volatile type *__mem; \ 225 type __val; \ 226 \ 227 if (barrier) \ 228 iobarrier_rw(); \ 229 else \ 230 war_io_reorder_wmb(); \ 231 \ 232 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 233 \ 234 __val = pfx##ioswab##bwlq(__mem, val); \ 235 \ 236 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 237 *__mem = __val; \ 238 else if (cpu_has_64bits) { \ 239 unsigned long __flags; \ 240 type __tmp; \ 241 \ 242 if (irq) \ 243 local_irq_save(__flags); \ 244 __asm__ __volatile__( \ 245 ".set push" "\t\t# __writeq""\n\t" \ 246 ".set arch=r4000" "\n\t" \ 247 "dsll32 %L0, %L0, 0" "\n\t" \ 248 "dsrl32 %L0, %L0, 0" "\n\t" \ 249 "dsll32 %M0, %M0, 0" "\n\t" \ 250 "or %L0, %L0, %M0" "\n\t" \ 251 "sd %L0, %2" "\n\t" \ 252 ".set pop" "\n" \ 253 : "=r" (__tmp) \ 254 : "0" (__val), "m" (*__mem)); \ 255 if (irq) \ 256 local_irq_restore(__flags); \ 257 } else \ 258 BUG(); \ 259 } \ 260 \ 261 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ 262 { \ 263 volatile type *__mem; \ 264 type __val; \ 265 \ 266 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 267 \ 268 if (barrier) \ 269 iobarrier_rw(); \ 270 \ 271 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 272 __val = *__mem; \ 273 else if (cpu_has_64bits) { \ 274 unsigned long __flags; \ 275 \ 276 if (irq) \ 277 local_irq_save(__flags); \ 278 __asm__ __volatile__( \ 279 ".set push" "\t\t# __readq" "\n\t" \ 280 ".set arch=r4000" "\n\t" \ 281 "ld %L0, %1" "\n\t" \ 282 "dsra32 %M0, %L0, 0" "\n\t" \ 283 "sll %L0, %L0, 0" "\n\t" \ 284 ".set pop" "\n" \ 285 : "=r" (__val) \ 286 : "m" (*__mem)); \ 287 if (irq) \ 288 local_irq_restore(__flags); \ 289 } else { \ 290 __val = 0; \ 291 BUG(); \ 292 } \ 293 \ 294 /* prevent prefetching of coherent DMA data prematurely */ \ 295 if (!relax) \ 296 rmb(); \ 297 return pfx##ioswab##bwlq(__mem, __val); \ 298 } 299 300 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \ 301 \ 302 static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 303 { \ 304 volatile type *__addr; \ 305 type __val; \ 306 \ 307 if (barrier) \ 308 iobarrier_rw(); \ 309 else \ 310 war_io_reorder_wmb(); \ 311 \ 312 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 313 \ 314 __val = pfx##ioswab##bwlq(__addr, val); \ 315 \ 316 /* Really, we want this to be atomic */ \ 317 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 318 \ 319 *__addr = __val; \ 320 } \ 321 \ 322 static inline type pfx##in##bwlq##p(unsigned long port) \ 323 { \ 324 volatile type *__addr; \ 325 type __val; \ 326 \ 327 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 328 \ 329 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 330 \ 331 if (barrier) \ 332 iobarrier_rw(); \ 333 \ 334 __val = *__addr; \ 335 \ 336 /* prevent prefetching of coherent DMA data prematurely */ \ 337 if (!relax) \ 338 rmb(); \ 339 return pfx##ioswab##bwlq(__addr, __val); \ 340 } 341 342 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \ 343 \ 344 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1) 345 346 #define BUILDIO_MEM(bwlq, type) \ 347 \ 348 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \ 349 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \ 350 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \ 351 __BUILD_MEMORY_PFX(, bwlq, type, 0) 352 353 BUILDIO_MEM(b, u8) 354 BUILDIO_MEM(w, u16) 355 BUILDIO_MEM(l, u32) 356 #ifdef CONFIG_64BIT 357 BUILDIO_MEM(q, u64) 358 #else 359 __BUILD_MEMORY_PFX(__raw_, q, u64, 0) 360 __BUILD_MEMORY_PFX(__mem_, q, u64, 0) 361 #endif 362 363 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 364 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \ 365 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p) 366 367 #define BUILDIO_IOPORT(bwlq, type) \ 368 __BUILD_IOPORT_PFX(, bwlq, type) \ 369 __BUILD_IOPORT_PFX(__mem_, bwlq, type) 370 371 BUILDIO_IOPORT(b, u8) 372 BUILDIO_IOPORT(w, u16) 373 BUILDIO_IOPORT(l, u32) 374 #ifdef CONFIG_64BIT 375 BUILDIO_IOPORT(q, u64) 376 #endif 377 378 #define __BUILDIO(bwlq, type) \ 379 \ 380 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0) 381 382 __BUILDIO(q, u64) 383 384 #define readb_relaxed __relaxed_readb 385 #define readw_relaxed __relaxed_readw 386 #define readl_relaxed __relaxed_readl 387 #ifdef CONFIG_64BIT 388 #define readq_relaxed __relaxed_readq 389 #endif 390 391 #define writeb_relaxed __relaxed_writeb 392 #define writew_relaxed __relaxed_writew 393 #define writel_relaxed __relaxed_writel 394 #ifdef CONFIG_64BIT 395 #define writeq_relaxed __relaxed_writeq 396 #endif 397 398 #define readb_be(addr) \ 399 __raw_readb((__force unsigned *)(addr)) 400 #define readw_be(addr) \ 401 be16_to_cpu(__raw_readw((__force unsigned *)(addr))) 402 #define readl_be(addr) \ 403 be32_to_cpu(__raw_readl((__force unsigned *)(addr))) 404 #define readq_be(addr) \ 405 be64_to_cpu(__raw_readq((__force unsigned *)(addr))) 406 407 #define writeb_be(val, addr) \ 408 __raw_writeb((val), (__force unsigned *)(addr)) 409 #define writew_be(val, addr) \ 410 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) 411 #define writel_be(val, addr) \ 412 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) 413 #define writeq_be(val, addr) \ 414 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) 415 416 /* 417 * Some code tests for these symbols 418 */ 419 #ifdef CONFIG_64BIT 420 #define readq readq 421 #define writeq writeq 422 #endif 423 424 #define __BUILD_MEMORY_STRING(bwlq, type) \ 425 \ 426 static inline void writes##bwlq(volatile void __iomem *mem, \ 427 const void *addr, unsigned int count) \ 428 { \ 429 const volatile type *__addr = addr; \ 430 \ 431 while (count--) { \ 432 __mem_write##bwlq(*__addr, mem); \ 433 __addr++; \ 434 } \ 435 } \ 436 \ 437 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ 438 unsigned int count) \ 439 { \ 440 volatile type *__addr = addr; \ 441 \ 442 while (count--) { \ 443 *__addr = __mem_read##bwlq(mem); \ 444 __addr++; \ 445 } \ 446 } 447 448 #define __BUILD_IOPORT_STRING(bwlq, type) \ 449 \ 450 static inline void outs##bwlq(unsigned long port, const void *addr, \ 451 unsigned int count) \ 452 { \ 453 const volatile type *__addr = addr; \ 454 \ 455 while (count--) { \ 456 __mem_out##bwlq(*__addr, port); \ 457 __addr++; \ 458 } \ 459 } \ 460 \ 461 static inline void ins##bwlq(unsigned long port, void *addr, \ 462 unsigned int count) \ 463 { \ 464 volatile type *__addr = addr; \ 465 \ 466 while (count--) { \ 467 *__addr = __mem_in##bwlq(port); \ 468 __addr++; \ 469 } \ 470 } 471 472 #define BUILDSTRING(bwlq, type) \ 473 \ 474 __BUILD_MEMORY_STRING(bwlq, type) \ 475 __BUILD_IOPORT_STRING(bwlq, type) 476 477 BUILDSTRING(b, u8) 478 BUILDSTRING(w, u16) 479 BUILDSTRING(l, u32) 480 #ifdef CONFIG_64BIT 481 BUILDSTRING(q, u64) 482 #endif 483 484 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) 485 { 486 memset((void __force *) addr, val, count); 487 } 488 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) 489 { 490 memcpy(dst, (void __force *) src, count); 491 } 492 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) 493 { 494 memcpy((void __force *) dst, src, count); 495 } 496 497 /* 498 * The caches on some architectures aren't dma-coherent and have need to 499 * handle this in software. There are three types of operations that 500 * can be applied to dma buffers. 501 * 502 * - dma_cache_wback_inv(start, size) makes caches and coherent by 503 * writing the content of the caches back to memory, if necessary. 504 * The function also invalidates the affected part of the caches as 505 * necessary before DMA transfers from outside to memory. 506 * - dma_cache_wback(start, size) makes caches and coherent by 507 * writing the content of the caches back to memory, if necessary. 508 * The function also invalidates the affected part of the caches as 509 * necessary before DMA transfers from outside to memory. 510 * - dma_cache_inv(start, size) invalidates the affected parts of the 511 * caches. Dirty lines of the caches may be written back or simply 512 * be discarded. This operation is necessary before dma operations 513 * to the memory. 514 * 515 * This API used to be exported; it now is for arch code internal use only. 516 */ 517 #ifdef CONFIG_DMA_NONCOHERENT 518 519 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); 520 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); 521 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); 522 523 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) 524 #define dma_cache_wback(start, size) _dma_cache_wback(start, size) 525 #define dma_cache_inv(start, size) _dma_cache_inv(start, size) 526 527 #else /* Sane hardware */ 528 529 #define dma_cache_wback_inv(start,size) \ 530 do { (void) (start); (void) (size); } while (0) 531 #define dma_cache_wback(start,size) \ 532 do { (void) (start); (void) (size); } while (0) 533 #define dma_cache_inv(start,size) \ 534 do { (void) (start); (void) (size); } while (0) 535 536 #endif /* CONFIG_DMA_NONCOHERENT */ 537 538 /* 539 * Read a 32-bit register that requires a 64-bit read cycle on the bus. 540 * Avoid interrupt mucking, just adjust the address for 4-byte access. 541 * Assume the addresses are 8-byte aligned. 542 */ 543 #ifdef __MIPSEB__ 544 #define __CSR_32_ADJUST 4 545 #else 546 #define __CSR_32_ADJUST 0 547 #endif 548 549 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) 550 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) 551 552 /* 553 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 554 * access 555 */ 556 #define xlate_dev_mem_ptr(p) __va(p) 557 #define unxlate_dev_mem_ptr(p, v) do { } while (0) 558 559 void __ioread64_copy(void *to, const void __iomem *from, size_t count); 560 561 #endif /* _ASM_IO_H */ 562