xref: /openbmc/linux/arch/mips/include/asm/io.h (revision d0b73b48)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author:	Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
19 
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
26 #include <asm/page.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
30 
31 #include <ioremap.h>
32 #include <mangle-port.h>
33 
34 /*
35  * Slowdown I/O port space accesses for antique hardware.
36  */
37 #undef CONF_SLOWDOWN_IO
38 
39 /*
40  * Raw operations are never swapped in software.  OTOH values that raw
41  * operations are working on may or may not have been swapped by the bus
42  * hardware.  An example use would be for flash memory that's used for
43  * execute in place.
44  */
45 # define __raw_ioswabb(a, x)	(x)
46 # define __raw_ioswabw(a, x)	(x)
47 # define __raw_ioswabl(a, x)	(x)
48 # define __raw_ioswabq(a, x)	(x)
49 # define ____raw_ioswabq(a, x)	(x)
50 
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52 
53 #define IO_SPACE_LIMIT 0xffff
54 
55 /*
56  * On MIPS I/O ports are memory mapped, so we access them using normal
57  * load/store instructions. mips_io_port_base is the virtual address to
58  * which all ports are being mapped.  For sake of efficiency some code
59  * assumes that this is an address that can be loaded with a single lui
60  * instruction, so the lower 16 bits must be zero.  Should be true on
61  * on any sane architecture; generic code does not use this assumption.
62  */
63 extern const unsigned long mips_io_port_base;
64 
65 /*
66  * Gcc will generate code to load the value of mips_io_port_base after each
67  * function call which may be fairly wasteful in some cases.  So we don't
68  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
69  * which solves the code generation issue.  Now we need to violate the
70  * aliasing rules a little to make initialization possible and finally we
71  * will need the barrier() to fight side effects of the aliasing chat.
72  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
73  */
74 static inline void set_io_port_base(unsigned long base)
75 {
76 	* (unsigned long *) &mips_io_port_base = base;
77 	barrier();
78 }
79 
80 /*
81  * Thanks to James van Artsdalen for a better timing-fix than
82  * the two short jumps: using outb's to a nonexistent port seems
83  * to guarantee better timings even on fast machines.
84  *
85  * On the other hand, I'd like to be sure of a non-existent port:
86  * I feel a bit unsafe about using 0x80 (should be safe, though)
87  *
88  *		Linus
89  *
90  */
91 
92 #define __SLOW_DOWN_IO \
93 	__asm__ __volatile__( \
94 		"sb\t$0,0x80(%0)" \
95 		: : "r" (mips_io_port_base));
96 
97 #ifdef CONF_SLOWDOWN_IO
98 #ifdef REALLY_SLOW_IO
99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100 #else
101 #define SLOW_DOWN_IO __SLOW_DOWN_IO
102 #endif
103 #else
104 #define SLOW_DOWN_IO
105 #endif
106 
107 /*
108  *     virt_to_phys    -       map virtual addresses to physical
109  *     @address: address to remap
110  *
111  *     The returned physical address is the physical (CPU) mapping for
112  *     the memory address given. It is only valid to use this function on
113  *     addresses directly mapped or allocated via kmalloc.
114  *
115  *     This function does not give bus mappings for DMA transfers. In
116  *     almost all conceivable cases a device driver should not be using
117  *     this function
118  */
119 static inline unsigned long virt_to_phys(volatile const void *address)
120 {
121 	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
122 }
123 
124 /*
125  *     phys_to_virt    -       map physical address to virtual
126  *     @address: address to remap
127  *
128  *     The returned virtual address is a current CPU mapping for
129  *     the memory address given. It is only valid to use this function on
130  *     addresses that have a kernel mapping
131  *
132  *     This function does not handle bus mappings for DMA transfers. In
133  *     almost all conceivable cases a device driver should not be using
134  *     this function
135  */
136 static inline void * phys_to_virt(unsigned long address)
137 {
138 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139 }
140 
141 /*
142  * ISA I/O bus memory addresses are 1:1 with the physical address.
143  */
144 static inline unsigned long isa_virt_to_bus(volatile void * address)
145 {
146 	return (unsigned long)address - PAGE_OFFSET;
147 }
148 
149 static inline void * isa_bus_to_virt(unsigned long address)
150 {
151 	return (void *)(address + PAGE_OFFSET);
152 }
153 
154 #define isa_page_to_bus page_to_phys
155 
156 /*
157  * However PCI ones are not necessarily 1:1 and therefore these interfaces
158  * are forbidden in portable PCI drivers.
159  *
160  * Allow them for x86 for legacy drivers, though.
161  */
162 #define virt_to_bus virt_to_phys
163 #define bus_to_virt phys_to_virt
164 
165 /*
166  * Change "struct page" to physical address.
167  */
168 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169 
170 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
171 extern void __iounmap(const volatile void __iomem *addr);
172 
173 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
174 	unsigned long flags)
175 {
176 	void __iomem *addr = plat_ioremap(offset, size, flags);
177 
178 	if (addr)
179 		return addr;
180 
181 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
182 
183 	if (cpu_has_64bit_addresses) {
184 		u64 base = UNCAC_BASE;
185 
186 		/*
187 		 * R10000 supports a 2 bit uncached attribute therefore
188 		 * UNCAC_BASE may not equal IO_BASE.
189 		 */
190 		if (flags == _CACHE_UNCACHED)
191 			base = (u64) IO_BASE;
192 		return (void __iomem *) (unsigned long) (base + offset);
193 	} else if (__builtin_constant_p(offset) &&
194 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
195 		phys_t phys_addr, last_addr;
196 
197 		phys_addr = fixup_bigphys_addr(offset, size);
198 
199 		/* Don't allow wraparound or zero size. */
200 		last_addr = phys_addr + size - 1;
201 		if (!size || last_addr < phys_addr)
202 			return NULL;
203 
204 		/*
205 		 * Map uncached objects in the low 512MB of address
206 		 * space using KSEG1.
207 		 */
208 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
209 		    flags == _CACHE_UNCACHED)
210 			return (void __iomem *)
211 				(unsigned long)CKSEG1ADDR(phys_addr);
212 	}
213 
214 	return __ioremap(offset, size, flags);
215 
216 #undef __IS_LOW512
217 }
218 
219 /*
220  * ioremap     -   map bus memory into CPU space
221  * @offset:    bus address of the memory
222  * @size:      size of the resource to map
223  *
224  * ioremap performs a platform specific sequence of operations to
225  * make bus memory CPU accessible via the readb/readw/readl/writeb/
226  * writew/writel functions and the other mmio helpers. The returned
227  * address is not guaranteed to be usable directly as a virtual
228  * address.
229  */
230 #define ioremap(offset, size)						\
231 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
232 
233 /*
234  * ioremap_nocache     -   map bus memory into CPU space
235  * @offset:    bus address of the memory
236  * @size:      size of the resource to map
237  *
238  * ioremap_nocache performs a platform specific sequence of operations to
239  * make bus memory CPU accessible via the readb/readw/readl/writeb/
240  * writew/writel functions and the other mmio helpers. The returned
241  * address is not guaranteed to be usable directly as a virtual
242  * address.
243  *
244  * This version of ioremap ensures that the memory is marked uncachable
245  * on the CPU as well as honouring existing caching rules from things like
246  * the PCI bus. Note that there are other caches and buffers on many
247  * busses. In particular driver authors should read up on PCI writes
248  *
249  * It's useful if some control registers are in such an area and
250  * write combining or read caching is not desirable:
251  */
252 #define ioremap_nocache(offset, size)					\
253 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
254 
255 /*
256  * ioremap_cachable -   map bus memory into CPU space
257  * @offset:         bus address of the memory
258  * @size:           size of the resource to map
259  *
260  * ioremap_nocache performs a platform specific sequence of operations to
261  * make bus memory CPU accessible via the readb/readw/readl/writeb/
262  * writew/writel functions and the other mmio helpers. The returned
263  * address is not guaranteed to be usable directly as a virtual
264  * address.
265  *
266  * This version of ioremap ensures that the memory is marked cachable by
267  * the CPU.  Also enables full write-combining.  Useful for some
268  * memory-like regions on I/O busses.
269  */
270 #define ioremap_cachable(offset, size)					\
271 	__ioremap_mode((offset), (size), _page_cachable_default)
272 
273 /*
274  * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
275  * requests a cachable mapping, ioremap_uncached_accelerated requests a
276  * mapping using the uncached accelerated mode which isn't supported on
277  * all processors.
278  */
279 #define ioremap_cacheable_cow(offset, size)				\
280 	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
281 #define ioremap_uncached_accelerated(offset, size)			\
282 	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
283 
284 static inline void iounmap(const volatile void __iomem *addr)
285 {
286 	if (plat_iounmap(addr))
287 		return;
288 
289 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
290 
291 	if (cpu_has_64bit_addresses ||
292 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
293 		return;
294 
295 	__iounmap(addr);
296 
297 #undef __IS_KSEG1
298 }
299 
300 #ifdef CONFIG_CPU_CAVIUM_OCTEON
301 #define war_octeon_io_reorder_wmb()  		wmb()
302 #else
303 #define war_octeon_io_reorder_wmb()		do { } while (0)
304 #endif
305 
306 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
307 									\
308 static inline void pfx##write##bwlq(type val,				\
309 				    volatile void __iomem *mem)		\
310 {									\
311 	volatile type *__mem;						\
312 	type __val;							\
313 									\
314 	war_octeon_io_reorder_wmb();					\
315 									\
316 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
317 									\
318 	__val = pfx##ioswab##bwlq(__mem, val);				\
319 									\
320 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
321 		*__mem = __val;						\
322 	else if (cpu_has_64bits) {					\
323 		unsigned long __flags;					\
324 		type __tmp;						\
325 									\
326 		if (irq)						\
327 			local_irq_save(__flags);			\
328 		__asm__ __volatile__(					\
329 			".set	mips3"		"\t\t# __writeq""\n\t"	\
330 			"dsll32	%L0, %L0, 0"			"\n\t"	\
331 			"dsrl32	%L0, %L0, 0"			"\n\t"	\
332 			"dsll32	%M0, %M0, 0"			"\n\t"	\
333 			"or	%L0, %L0, %M0"			"\n\t"	\
334 			"sd	%L0, %2"			"\n\t"	\
335 			".set	mips0"				"\n"	\
336 			: "=r" (__tmp)					\
337 			: "0" (__val), "m" (*__mem));			\
338 		if (irq)						\
339 			local_irq_restore(__flags);			\
340 	} else								\
341 		BUG();							\
342 }									\
343 									\
344 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
345 {									\
346 	volatile type *__mem;						\
347 	type __val;							\
348 									\
349 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
350 									\
351 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
352 		__val = *__mem;						\
353 	else if (cpu_has_64bits) {					\
354 		unsigned long __flags;					\
355 									\
356 		if (irq)						\
357 			local_irq_save(__flags);			\
358 		__asm__ __volatile__(					\
359 			".set	mips3"		"\t\t# __readq"	"\n\t"	\
360 			"ld	%L0, %1"			"\n\t"	\
361 			"dsra32	%M0, %L0, 0"			"\n\t"	\
362 			"sll	%L0, %L0, 0"			"\n\t"	\
363 			".set	mips0"				"\n"	\
364 			: "=r" (__val)					\
365 			: "m" (*__mem));				\
366 		if (irq)						\
367 			local_irq_restore(__flags);			\
368 	} else {							\
369 		__val = 0;						\
370 		BUG();							\
371 	}								\
372 									\
373 	return pfx##ioswab##bwlq(__mem, __val);				\
374 }
375 
376 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
377 									\
378 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
379 {									\
380 	volatile type *__addr;						\
381 	type __val;							\
382 									\
383 	war_octeon_io_reorder_wmb();					\
384 									\
385 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
386 									\
387 	__val = pfx##ioswab##bwlq(__addr, val);				\
388 									\
389 	/* Really, we want this to be atomic */				\
390 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
391 									\
392 	*__addr = __val;						\
393 	slow;								\
394 }									\
395 									\
396 static inline type pfx##in##bwlq##p(unsigned long port)			\
397 {									\
398 	volatile type *__addr;						\
399 	type __val;							\
400 									\
401 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
402 									\
403 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
404 									\
405 	__val = *__addr;						\
406 	slow;								\
407 									\
408 	return pfx##ioswab##bwlq(__addr, __val);			\
409 }
410 
411 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
412 									\
413 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
414 
415 #define BUILDIO_MEM(bwlq, type)						\
416 									\
417 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
418 __BUILD_MEMORY_PFX(, bwlq, type)					\
419 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
420 
421 BUILDIO_MEM(b, u8)
422 BUILDIO_MEM(w, u16)
423 BUILDIO_MEM(l, u32)
424 BUILDIO_MEM(q, u64)
425 
426 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
427 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
428 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
429 
430 #define BUILDIO_IOPORT(bwlq, type)					\
431 	__BUILD_IOPORT_PFX(, bwlq, type)				\
432 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
433 
434 BUILDIO_IOPORT(b, u8)
435 BUILDIO_IOPORT(w, u16)
436 BUILDIO_IOPORT(l, u32)
437 #ifdef CONFIG_64BIT
438 BUILDIO_IOPORT(q, u64)
439 #endif
440 
441 #define __BUILDIO(bwlq, type)						\
442 									\
443 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
444 
445 __BUILDIO(q, u64)
446 
447 #define readb_relaxed			readb
448 #define readw_relaxed			readw
449 #define readl_relaxed			readl
450 #define readq_relaxed			readq
451 
452 #define readb_be(addr)							\
453 	__raw_readb((__force unsigned *)(addr))
454 #define readw_be(addr)							\
455 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
456 #define readl_be(addr)							\
457 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
458 #define readq_be(addr)							\
459 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
460 
461 #define writeb_be(val, addr)						\
462 	__raw_writeb((val), (__force unsigned *)(addr))
463 #define writew_be(val, addr)						\
464 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
465 #define writel_be(val, addr)						\
466 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
467 #define writeq_be(val, addr)						\
468 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
469 
470 /*
471  * Some code tests for these symbols
472  */
473 #define readq				readq
474 #define writeq				writeq
475 
476 #define __BUILD_MEMORY_STRING(bwlq, type)				\
477 									\
478 static inline void writes##bwlq(volatile void __iomem *mem,		\
479 				const void *addr, unsigned int count)	\
480 {									\
481 	const volatile type *__addr = addr;				\
482 									\
483 	while (count--) {						\
484 		__mem_write##bwlq(*__addr, mem);			\
485 		__addr++;						\
486 	}								\
487 }									\
488 									\
489 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
490 			       unsigned int count)			\
491 {									\
492 	volatile type *__addr = addr;					\
493 									\
494 	while (count--) {						\
495 		*__addr = __mem_read##bwlq(mem);			\
496 		__addr++;						\
497 	}								\
498 }
499 
500 #define __BUILD_IOPORT_STRING(bwlq, type)				\
501 									\
502 static inline void outs##bwlq(unsigned long port, const void *addr,	\
503 			      unsigned int count)			\
504 {									\
505 	const volatile type *__addr = addr;				\
506 									\
507 	while (count--) {						\
508 		__mem_out##bwlq(*__addr, port);				\
509 		__addr++;						\
510 	}								\
511 }									\
512 									\
513 static inline void ins##bwlq(unsigned long port, void *addr,		\
514 			     unsigned int count)			\
515 {									\
516 	volatile type *__addr = addr;					\
517 									\
518 	while (count--) {						\
519 		*__addr = __mem_in##bwlq(port);				\
520 		__addr++;						\
521 	}								\
522 }
523 
524 #define BUILDSTRING(bwlq, type)						\
525 									\
526 __BUILD_MEMORY_STRING(bwlq, type)					\
527 __BUILD_IOPORT_STRING(bwlq, type)
528 
529 BUILDSTRING(b, u8)
530 BUILDSTRING(w, u16)
531 BUILDSTRING(l, u32)
532 #ifdef CONFIG_64BIT
533 BUILDSTRING(q, u64)
534 #endif
535 
536 
537 #ifdef CONFIG_CPU_CAVIUM_OCTEON
538 #define mmiowb() wmb()
539 #else
540 /* Depends on MIPS II instruction set */
541 #define mmiowb() asm volatile ("sync" ::: "memory")
542 #endif
543 
544 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
545 {
546 	memset((void __force *) addr, val, count);
547 }
548 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
549 {
550 	memcpy(dst, (void __force *) src, count);
551 }
552 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
553 {
554 	memcpy((void __force *) dst, src, count);
555 }
556 
557 /*
558  * The caches on some architectures aren't dma-coherent and have need to
559  * handle this in software.  There are three types of operations that
560  * can be applied to dma buffers.
561  *
562  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
563  *    writing the content of the caches back to memory, if necessary.
564  *    The function also invalidates the affected part of the caches as
565  *    necessary before DMA transfers from outside to memory.
566  *  - dma_cache_wback(start, size) makes caches and coherent by
567  *    writing the content of the caches back to memory, if necessary.
568  *    The function also invalidates the affected part of the caches as
569  *    necessary before DMA transfers from outside to memory.
570  *  - dma_cache_inv(start, size) invalidates the affected parts of the
571  *    caches.  Dirty lines of the caches may be written back or simply
572  *    be discarded.  This operation is necessary before dma operations
573  *    to the memory.
574  *
575  * This API used to be exported; it now is for arch code internal use only.
576  */
577 #ifdef CONFIG_DMA_NONCOHERENT
578 
579 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
580 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
581 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
582 
583 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
584 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
585 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
586 
587 #else /* Sane hardware */
588 
589 #define dma_cache_wback_inv(start,size)	\
590 	do { (void) (start); (void) (size); } while (0)
591 #define dma_cache_wback(start,size)	\
592 	do { (void) (start); (void) (size); } while (0)
593 #define dma_cache_inv(start,size)	\
594 	do { (void) (start); (void) (size); } while (0)
595 
596 #endif /* CONFIG_DMA_NONCOHERENT */
597 
598 /*
599  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
600  * Avoid interrupt mucking, just adjust the address for 4-byte access.
601  * Assume the addresses are 8-byte aligned.
602  */
603 #ifdef __MIPSEB__
604 #define __CSR_32_ADJUST 4
605 #else
606 #define __CSR_32_ADJUST 0
607 #endif
608 
609 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
610 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
611 
612 /*
613  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
614  * access
615  */
616 #define xlate_dev_mem_ptr(p)	__va(p)
617 
618 /*
619  * Convert a virtual cached pointer to an uncached pointer
620  */
621 #define xlate_dev_kmem_ptr(p)	p
622 
623 #endif /* _ASM_IO_H */
624