1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 1995 Waldorf GmbH 7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 10 * Author: Maciej W. Rozycki <macro@mips.com> 11 */ 12 #ifndef _ASM_IO_H 13 #define _ASM_IO_H 14 15 #define ARCH_HAS_IOREMAP_WC 16 17 #include <linux/compiler.h> 18 #include <linux/kernel.h> 19 #include <linux/types.h> 20 #include <linux/irqflags.h> 21 22 #include <asm/addrspace.h> 23 #include <asm/barrier.h> 24 #include <asm/bug.h> 25 #include <asm/byteorder.h> 26 #include <asm/cpu.h> 27 #include <asm/cpu-features.h> 28 #include <asm-generic/iomap.h> 29 #include <asm/page.h> 30 #include <asm/pgtable-bits.h> 31 #include <asm/processor.h> 32 #include <asm/string.h> 33 34 #include <ioremap.h> 35 #include <mangle-port.h> 36 37 /* 38 * Raw operations are never swapped in software. OTOH values that raw 39 * operations are working on may or may not have been swapped by the bus 40 * hardware. An example use would be for flash memory that's used for 41 * execute in place. 42 */ 43 # define __raw_ioswabb(a, x) (x) 44 # define __raw_ioswabw(a, x) (x) 45 # define __raw_ioswabl(a, x) (x) 46 # define __raw_ioswabq(a, x) (x) 47 # define ____raw_ioswabq(a, x) (x) 48 49 # define __relaxed_ioswabb ioswabb 50 # define __relaxed_ioswabw ioswabw 51 # define __relaxed_ioswabl ioswabl 52 # define __relaxed_ioswabq ioswabq 53 54 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ 55 56 #define IO_SPACE_LIMIT 0xffff 57 58 /* 59 * On MIPS I/O ports are memory mapped, so we access them using normal 60 * load/store instructions. mips_io_port_base is the virtual address to 61 * which all ports are being mapped. For sake of efficiency some code 62 * assumes that this is an address that can be loaded with a single lui 63 * instruction, so the lower 16 bits must be zero. Should be true on 64 * on any sane architecture; generic code does not use this assumption. 65 */ 66 extern unsigned long mips_io_port_base; 67 68 static inline void set_io_port_base(unsigned long base) 69 { 70 mips_io_port_base = base; 71 } 72 73 /* 74 * Provide the necessary definitions for generic iomap. We make use of 75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for 76 * use with I/O ports. 77 */ 78 79 #define HAVE_ARCH_PIO_SIZE 80 #define PIO_OFFSET mips_io_port_base 81 #define PIO_MASK IO_SPACE_LIMIT 82 #define PIO_RESERVED 0x0UL 83 84 /* 85 * Enforce in-order execution of data I/O. In the MIPS architecture 86 * these are equivalent to corresponding platform-specific memory 87 * barriers defined in <asm/barrier.h>. API pinched from PowerPC, 88 * with sync additionally defined. 89 */ 90 #define iobarrier_rw() mb() 91 #define iobarrier_r() rmb() 92 #define iobarrier_w() wmb() 93 #define iobarrier_sync() iob() 94 95 /* 96 * virt_to_phys - map virtual addresses to physical 97 * @address: address to remap 98 * 99 * The returned physical address is the physical (CPU) mapping for 100 * the memory address given. It is only valid to use this function on 101 * addresses directly mapped or allocated via kmalloc. 102 * 103 * This function does not give bus mappings for DMA transfers. In 104 * almost all conceivable cases a device driver should not be using 105 * this function 106 */ 107 static inline unsigned long virt_to_phys(volatile const void *address) 108 { 109 return __pa(address); 110 } 111 112 /* 113 * phys_to_virt - map physical address to virtual 114 * @address: address to remap 115 * 116 * The returned virtual address is a current CPU mapping for 117 * the memory address given. It is only valid to use this function on 118 * addresses that have a kernel mapping 119 * 120 * This function does not handle bus mappings for DMA transfers. In 121 * almost all conceivable cases a device driver should not be using 122 * this function 123 */ 124 static inline void * phys_to_virt(unsigned long address) 125 { 126 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); 127 } 128 129 /* 130 * ISA I/O bus memory addresses are 1:1 with the physical address. 131 */ 132 static inline unsigned long isa_virt_to_bus(volatile void *address) 133 { 134 return virt_to_phys(address); 135 } 136 137 static inline void *isa_bus_to_virt(unsigned long address) 138 { 139 return phys_to_virt(address); 140 } 141 142 /* 143 * However PCI ones are not necessarily 1:1 and therefore these interfaces 144 * are forbidden in portable PCI drivers. 145 * 146 * Allow them for x86 for legacy drivers, though. 147 */ 148 #define virt_to_bus virt_to_phys 149 #define bus_to_virt phys_to_virt 150 151 /* 152 * Change "struct page" to physical address. 153 */ 154 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) 155 156 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags); 157 extern void __iounmap(const volatile void __iomem *addr); 158 159 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size, 160 unsigned long flags) 161 { 162 void __iomem *addr = plat_ioremap(offset, size, flags); 163 164 if (addr) 165 return addr; 166 167 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL)) 168 169 if (cpu_has_64bit_addresses) { 170 u64 base = UNCAC_BASE; 171 172 /* 173 * R10000 supports a 2 bit uncached attribute therefore 174 * UNCAC_BASE may not equal IO_BASE. 175 */ 176 if (flags == _CACHE_UNCACHED) 177 base = (u64) IO_BASE; 178 return (void __iomem *) (unsigned long) (base + offset); 179 } else if (__builtin_constant_p(offset) && 180 __builtin_constant_p(size) && __builtin_constant_p(flags)) { 181 phys_addr_t phys_addr, last_addr; 182 183 phys_addr = fixup_bigphys_addr(offset, size); 184 185 /* Don't allow wraparound or zero size. */ 186 last_addr = phys_addr + size - 1; 187 if (!size || last_addr < phys_addr) 188 return NULL; 189 190 /* 191 * Map uncached objects in the low 512MB of address 192 * space using KSEG1. 193 */ 194 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && 195 flags == _CACHE_UNCACHED) 196 return (void __iomem *) 197 (unsigned long)CKSEG1ADDR(phys_addr); 198 } 199 200 return __ioremap(offset, size, flags); 201 202 #undef __IS_LOW512 203 } 204 205 /* 206 * ioremap_prot - map bus memory into CPU space 207 * @offset: bus address of the memory 208 * @size: size of the resource to map 209 210 * ioremap_prot gives the caller control over cache coherency attributes (CCA) 211 */ 212 static inline void __iomem *ioremap_prot(phys_addr_t offset, 213 unsigned long size, unsigned long prot_val) { 214 return __ioremap_mode(offset, size, prot_val & _CACHE_MASK); 215 } 216 217 /* 218 * ioremap - map bus memory into CPU space 219 * @offset: bus address of the memory 220 * @size: size of the resource to map 221 * 222 * ioremap performs a platform specific sequence of operations to 223 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 224 * writew/writel functions and the other mmio helpers. The returned 225 * address is not guaranteed to be usable directly as a virtual 226 * address. 227 */ 228 #define ioremap(offset, size) \ 229 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 230 231 /* 232 * ioremap_nocache - map bus memory into CPU space 233 * @offset: bus address of the memory 234 * @size: size of the resource to map 235 * 236 * ioremap_nocache performs a platform specific sequence of operations to 237 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 238 * writew/writel functions and the other mmio helpers. The returned 239 * address is not guaranteed to be usable directly as a virtual 240 * address. 241 * 242 * This version of ioremap ensures that the memory is marked uncachable 243 * on the CPU as well as honouring existing caching rules from things like 244 * the PCI bus. Note that there are other caches and buffers on many 245 * busses. In particular driver authors should read up on PCI writes 246 * 247 * It's useful if some control registers are in such an area and 248 * write combining or read caching is not desirable: 249 */ 250 #define ioremap_nocache(offset, size) \ 251 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 252 #define ioremap_uc ioremap_nocache 253 254 /* 255 * ioremap_cache - map bus memory into CPU space 256 * @offset: bus address of the memory 257 * @size: size of the resource to map 258 * 259 * ioremap_cache performs a platform specific sequence of operations to 260 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 261 * writew/writel functions and the other mmio helpers. The returned 262 * address is not guaranteed to be usable directly as a virtual 263 * address. 264 * 265 * This version of ioremap ensures that the memory is marked cachable by 266 * the CPU. Also enables full write-combining. Useful for some 267 * memory-like regions on I/O busses. 268 */ 269 #define ioremap_cache(offset, size) \ 270 __ioremap_mode((offset), (size), _page_cachable_default) 271 272 /* 273 * ioremap_wc - map bus memory into CPU space 274 * @offset: bus address of the memory 275 * @size: size of the resource to map 276 * 277 * ioremap_wc performs a platform specific sequence of operations to 278 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 279 * writew/writel functions and the other mmio helpers. The returned 280 * address is not guaranteed to be usable directly as a virtual 281 * address. 282 * 283 * This version of ioremap ensures that the memory is marked uncachable 284 * but accelerated by means of write-combining feature. It is specifically 285 * useful for PCIe prefetchable windows, which may vastly improve a 286 * communications performance. If it was determined on boot stage, what 287 * CPU CCA doesn't support UCA, the method shall fall-back to the 288 * _CACHE_UNCACHED option (see cpu_probe() method). 289 */ 290 #define ioremap_wc(offset, size) \ 291 __ioremap_mode((offset), (size), boot_cpu_data.writecombine) 292 293 static inline void iounmap(const volatile void __iomem *addr) 294 { 295 if (plat_iounmap(addr)) 296 return; 297 298 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) 299 300 if (cpu_has_64bit_addresses || 301 (__builtin_constant_p(addr) && __IS_KSEG1(addr))) 302 return; 303 304 __iounmap(addr); 305 306 #undef __IS_KSEG1 307 } 308 309 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64) 310 #define war_io_reorder_wmb() wmb() 311 #else 312 #define war_io_reorder_wmb() barrier() 313 #endif 314 315 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \ 316 \ 317 static inline void pfx##write##bwlq(type val, \ 318 volatile void __iomem *mem) \ 319 { \ 320 volatile type *__mem; \ 321 type __val; \ 322 \ 323 if (barrier) \ 324 iobarrier_rw(); \ 325 else \ 326 war_io_reorder_wmb(); \ 327 \ 328 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 329 \ 330 __val = pfx##ioswab##bwlq(__mem, val); \ 331 \ 332 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 333 *__mem = __val; \ 334 else if (cpu_has_64bits) { \ 335 unsigned long __flags; \ 336 type __tmp; \ 337 \ 338 if (irq) \ 339 local_irq_save(__flags); \ 340 __asm__ __volatile__( \ 341 ".set push" "\t\t# __writeq""\n\t" \ 342 ".set arch=r4000" "\n\t" \ 343 "dsll32 %L0, %L0, 0" "\n\t" \ 344 "dsrl32 %L0, %L0, 0" "\n\t" \ 345 "dsll32 %M0, %M0, 0" "\n\t" \ 346 "or %L0, %L0, %M0" "\n\t" \ 347 "sd %L0, %2" "\n\t" \ 348 ".set pop" "\n" \ 349 : "=r" (__tmp) \ 350 : "0" (__val), "m" (*__mem)); \ 351 if (irq) \ 352 local_irq_restore(__flags); \ 353 } else \ 354 BUG(); \ 355 } \ 356 \ 357 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ 358 { \ 359 volatile type *__mem; \ 360 type __val; \ 361 \ 362 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 363 \ 364 if (barrier) \ 365 iobarrier_rw(); \ 366 \ 367 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 368 __val = *__mem; \ 369 else if (cpu_has_64bits) { \ 370 unsigned long __flags; \ 371 \ 372 if (irq) \ 373 local_irq_save(__flags); \ 374 __asm__ __volatile__( \ 375 ".set push" "\t\t# __readq" "\n\t" \ 376 ".set arch=r4000" "\n\t" \ 377 "ld %L0, %1" "\n\t" \ 378 "dsra32 %M0, %L0, 0" "\n\t" \ 379 "sll %L0, %L0, 0" "\n\t" \ 380 ".set pop" "\n" \ 381 : "=r" (__val) \ 382 : "m" (*__mem)); \ 383 if (irq) \ 384 local_irq_restore(__flags); \ 385 } else { \ 386 __val = 0; \ 387 BUG(); \ 388 } \ 389 \ 390 /* prevent prefetching of coherent DMA data prematurely */ \ 391 if (!relax) \ 392 rmb(); \ 393 return pfx##ioswab##bwlq(__mem, __val); \ 394 } 395 396 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \ 397 \ 398 static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 399 { \ 400 volatile type *__addr; \ 401 type __val; \ 402 \ 403 if (barrier) \ 404 iobarrier_rw(); \ 405 else \ 406 war_io_reorder_wmb(); \ 407 \ 408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 409 \ 410 __val = pfx##ioswab##bwlq(__addr, val); \ 411 \ 412 /* Really, we want this to be atomic */ \ 413 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 414 \ 415 *__addr = __val; \ 416 } \ 417 \ 418 static inline type pfx##in##bwlq##p(unsigned long port) \ 419 { \ 420 volatile type *__addr; \ 421 type __val; \ 422 \ 423 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 424 \ 425 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 426 \ 427 if (barrier) \ 428 iobarrier_rw(); \ 429 \ 430 __val = *__addr; \ 431 \ 432 /* prevent prefetching of coherent DMA data prematurely */ \ 433 if (!relax) \ 434 rmb(); \ 435 return pfx##ioswab##bwlq(__addr, __val); \ 436 } 437 438 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \ 439 \ 440 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1) 441 442 #define BUILDIO_MEM(bwlq, type) \ 443 \ 444 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \ 445 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \ 446 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \ 447 __BUILD_MEMORY_PFX(, bwlq, type, 0) 448 449 BUILDIO_MEM(b, u8) 450 BUILDIO_MEM(w, u16) 451 BUILDIO_MEM(l, u32) 452 #ifdef CONFIG_64BIT 453 BUILDIO_MEM(q, u64) 454 #else 455 __BUILD_MEMORY_PFX(__raw_, q, u64, 0) 456 __BUILD_MEMORY_PFX(__mem_, q, u64, 0) 457 #endif 458 459 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 460 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \ 461 __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p) 462 463 #define BUILDIO_IOPORT(bwlq, type) \ 464 __BUILD_IOPORT_PFX(, bwlq, type) \ 465 __BUILD_IOPORT_PFX(__mem_, bwlq, type) 466 467 BUILDIO_IOPORT(b, u8) 468 BUILDIO_IOPORT(w, u16) 469 BUILDIO_IOPORT(l, u32) 470 #ifdef CONFIG_64BIT 471 BUILDIO_IOPORT(q, u64) 472 #endif 473 474 #define __BUILDIO(bwlq, type) \ 475 \ 476 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0) 477 478 __BUILDIO(q, u64) 479 480 #define readb_relaxed __relaxed_readb 481 #define readw_relaxed __relaxed_readw 482 #define readl_relaxed __relaxed_readl 483 #ifdef CONFIG_64BIT 484 #define readq_relaxed __relaxed_readq 485 #endif 486 487 #define writeb_relaxed __relaxed_writeb 488 #define writew_relaxed __relaxed_writew 489 #define writel_relaxed __relaxed_writel 490 #ifdef CONFIG_64BIT 491 #define writeq_relaxed __relaxed_writeq 492 #endif 493 494 #define readb_be(addr) \ 495 __raw_readb((__force unsigned *)(addr)) 496 #define readw_be(addr) \ 497 be16_to_cpu(__raw_readw((__force unsigned *)(addr))) 498 #define readl_be(addr) \ 499 be32_to_cpu(__raw_readl((__force unsigned *)(addr))) 500 #define readq_be(addr) \ 501 be64_to_cpu(__raw_readq((__force unsigned *)(addr))) 502 503 #define writeb_be(val, addr) \ 504 __raw_writeb((val), (__force unsigned *)(addr)) 505 #define writew_be(val, addr) \ 506 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) 507 #define writel_be(val, addr) \ 508 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) 509 #define writeq_be(val, addr) \ 510 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) 511 512 /* 513 * Some code tests for these symbols 514 */ 515 #ifdef CONFIG_64BIT 516 #define readq readq 517 #define writeq writeq 518 #endif 519 520 #define __BUILD_MEMORY_STRING(bwlq, type) \ 521 \ 522 static inline void writes##bwlq(volatile void __iomem *mem, \ 523 const void *addr, unsigned int count) \ 524 { \ 525 const volatile type *__addr = addr; \ 526 \ 527 while (count--) { \ 528 __mem_write##bwlq(*__addr, mem); \ 529 __addr++; \ 530 } \ 531 } \ 532 \ 533 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ 534 unsigned int count) \ 535 { \ 536 volatile type *__addr = addr; \ 537 \ 538 while (count--) { \ 539 *__addr = __mem_read##bwlq(mem); \ 540 __addr++; \ 541 } \ 542 } 543 544 #define __BUILD_IOPORT_STRING(bwlq, type) \ 545 \ 546 static inline void outs##bwlq(unsigned long port, const void *addr, \ 547 unsigned int count) \ 548 { \ 549 const volatile type *__addr = addr; \ 550 \ 551 while (count--) { \ 552 __mem_out##bwlq(*__addr, port); \ 553 __addr++; \ 554 } \ 555 } \ 556 \ 557 static inline void ins##bwlq(unsigned long port, void *addr, \ 558 unsigned int count) \ 559 { \ 560 volatile type *__addr = addr; \ 561 \ 562 while (count--) { \ 563 *__addr = __mem_in##bwlq(port); \ 564 __addr++; \ 565 } \ 566 } 567 568 #define BUILDSTRING(bwlq, type) \ 569 \ 570 __BUILD_MEMORY_STRING(bwlq, type) \ 571 __BUILD_IOPORT_STRING(bwlq, type) 572 573 BUILDSTRING(b, u8) 574 BUILDSTRING(w, u16) 575 BUILDSTRING(l, u32) 576 #ifdef CONFIG_64BIT 577 BUILDSTRING(q, u64) 578 #endif 579 580 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) 581 { 582 memset((void __force *) addr, val, count); 583 } 584 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) 585 { 586 memcpy(dst, (void __force *) src, count); 587 } 588 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) 589 { 590 memcpy((void __force *) dst, src, count); 591 } 592 593 /* 594 * The caches on some architectures aren't dma-coherent and have need to 595 * handle this in software. There are three types of operations that 596 * can be applied to dma buffers. 597 * 598 * - dma_cache_wback_inv(start, size) makes caches and coherent by 599 * writing the content of the caches back to memory, if necessary. 600 * The function also invalidates the affected part of the caches as 601 * necessary before DMA transfers from outside to memory. 602 * - dma_cache_wback(start, size) makes caches and coherent by 603 * writing the content of the caches back to memory, if necessary. 604 * The function also invalidates the affected part of the caches as 605 * necessary before DMA transfers from outside to memory. 606 * - dma_cache_inv(start, size) invalidates the affected parts of the 607 * caches. Dirty lines of the caches may be written back or simply 608 * be discarded. This operation is necessary before dma operations 609 * to the memory. 610 * 611 * This API used to be exported; it now is for arch code internal use only. 612 */ 613 #ifdef CONFIG_DMA_NONCOHERENT 614 615 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); 616 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); 617 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); 618 619 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) 620 #define dma_cache_wback(start, size) _dma_cache_wback(start, size) 621 #define dma_cache_inv(start, size) _dma_cache_inv(start, size) 622 623 #else /* Sane hardware */ 624 625 #define dma_cache_wback_inv(start,size) \ 626 do { (void) (start); (void) (size); } while (0) 627 #define dma_cache_wback(start,size) \ 628 do { (void) (start); (void) (size); } while (0) 629 #define dma_cache_inv(start,size) \ 630 do { (void) (start); (void) (size); } while (0) 631 632 #endif /* CONFIG_DMA_NONCOHERENT */ 633 634 /* 635 * Read a 32-bit register that requires a 64-bit read cycle on the bus. 636 * Avoid interrupt mucking, just adjust the address for 4-byte access. 637 * Assume the addresses are 8-byte aligned. 638 */ 639 #ifdef __MIPSEB__ 640 #define __CSR_32_ADJUST 4 641 #else 642 #define __CSR_32_ADJUST 0 643 #endif 644 645 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) 646 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) 647 648 /* 649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 650 * access 651 */ 652 #define xlate_dev_mem_ptr(p) __va(p) 653 654 /* 655 * Convert a virtual cached pointer to an uncached pointer 656 */ 657 #define xlate_dev_kmem_ptr(p) p 658 659 void __ioread64_copy(void *to, const void __iomem *from, size_t count); 660 661 #endif /* _ASM_IO_H */ 662