xref: /openbmc/linux/arch/mips/include/asm/io.h (revision 95e9fd10)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author:	Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 
19 #include <asm/addrspace.h>
20 #include <asm/bug.h>
21 #include <asm/byteorder.h>
22 #include <asm/cpu.h>
23 #include <asm/cpu-features.h>
24 #include <asm-generic/iomap.h>
25 #include <asm/page.h>
26 #include <asm/pgtable-bits.h>
27 #include <asm/processor.h>
28 #include <asm/string.h>
29 
30 #include <ioremap.h>
31 #include <mangle-port.h>
32 
33 /*
34  * Slowdown I/O port space accesses for antique hardware.
35  */
36 #undef CONF_SLOWDOWN_IO
37 
38 /*
39  * Raw operations are never swapped in software.  OTOH values that raw
40  * operations are working on may or may not have been swapped by the bus
41  * hardware.  An example use would be for flash memory that's used for
42  * execute in place.
43  */
44 # define __raw_ioswabb(a, x)	(x)
45 # define __raw_ioswabw(a, x)	(x)
46 # define __raw_ioswabl(a, x)	(x)
47 # define __raw_ioswabq(a, x)	(x)
48 # define ____raw_ioswabq(a, x)	(x)
49 
50 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
51 
52 #define IO_SPACE_LIMIT 0xffff
53 
54 /*
55  * On MIPS I/O ports are memory mapped, so we access them using normal
56  * load/store instructions. mips_io_port_base is the virtual address to
57  * which all ports are being mapped.  For sake of efficiency some code
58  * assumes that this is an address that can be loaded with a single lui
59  * instruction, so the lower 16 bits must be zero.  Should be true on
60  * on any sane architecture; generic code does not use this assumption.
61  */
62 extern const unsigned long mips_io_port_base;
63 
64 /*
65  * Gcc will generate code to load the value of mips_io_port_base after each
66  * function call which may be fairly wasteful in some cases.  So we don't
67  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
68  * which solves the code generation issue.  Now we need to violate the
69  * aliasing rules a little to make initialization possible and finally we
70  * will need the barrier() to fight side effects of the aliasing chat.
71  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
72  */
73 static inline void set_io_port_base(unsigned long base)
74 {
75 	* (unsigned long *) &mips_io_port_base = base;
76 	barrier();
77 }
78 
79 /*
80  * Thanks to James van Artsdalen for a better timing-fix than
81  * the two short jumps: using outb's to a nonexistent port seems
82  * to guarantee better timings even on fast machines.
83  *
84  * On the other hand, I'd like to be sure of a non-existent port:
85  * I feel a bit unsafe about using 0x80 (should be safe, though)
86  *
87  *		Linus
88  *
89  */
90 
91 #define __SLOW_DOWN_IO \
92 	__asm__ __volatile__( \
93 		"sb\t$0,0x80(%0)" \
94 		: : "r" (mips_io_port_base));
95 
96 #ifdef CONF_SLOWDOWN_IO
97 #ifdef REALLY_SLOW_IO
98 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
99 #else
100 #define SLOW_DOWN_IO __SLOW_DOWN_IO
101 #endif
102 #else
103 #define SLOW_DOWN_IO
104 #endif
105 
106 /*
107  *     virt_to_phys    -       map virtual addresses to physical
108  *     @address: address to remap
109  *
110  *     The returned physical address is the physical (CPU) mapping for
111  *     the memory address given. It is only valid to use this function on
112  *     addresses directly mapped or allocated via kmalloc.
113  *
114  *     This function does not give bus mappings for DMA transfers. In
115  *     almost all conceivable cases a device driver should not be using
116  *     this function
117  */
118 static inline unsigned long virt_to_phys(volatile const void *address)
119 {
120 	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
121 }
122 
123 /*
124  *     phys_to_virt    -       map physical address to virtual
125  *     @address: address to remap
126  *
127  *     The returned virtual address is a current CPU mapping for
128  *     the memory address given. It is only valid to use this function on
129  *     addresses that have a kernel mapping
130  *
131  *     This function does not handle bus mappings for DMA transfers. In
132  *     almost all conceivable cases a device driver should not be using
133  *     this function
134  */
135 static inline void * phys_to_virt(unsigned long address)
136 {
137 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
138 }
139 
140 /*
141  * ISA I/O bus memory addresses are 1:1 with the physical address.
142  */
143 static inline unsigned long isa_virt_to_bus(volatile void * address)
144 {
145 	return (unsigned long)address - PAGE_OFFSET;
146 }
147 
148 static inline void * isa_bus_to_virt(unsigned long address)
149 {
150 	return (void *)(address + PAGE_OFFSET);
151 }
152 
153 #define isa_page_to_bus page_to_phys
154 
155 /*
156  * However PCI ones are not necessarily 1:1 and therefore these interfaces
157  * are forbidden in portable PCI drivers.
158  *
159  * Allow them for x86 for legacy drivers, though.
160  */
161 #define virt_to_bus virt_to_phys
162 #define bus_to_virt phys_to_virt
163 
164 /*
165  * Change "struct page" to physical address.
166  */
167 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
168 
169 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
170 extern void __iounmap(const volatile void __iomem *addr);
171 
172 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
173 	unsigned long flags)
174 {
175 	void __iomem *addr = plat_ioremap(offset, size, flags);
176 
177 	if (addr)
178 		return addr;
179 
180 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
181 
182 	if (cpu_has_64bit_addresses) {
183 		u64 base = UNCAC_BASE;
184 
185 		/*
186 		 * R10000 supports a 2 bit uncached attribute therefore
187 		 * UNCAC_BASE may not equal IO_BASE.
188 		 */
189 		if (flags == _CACHE_UNCACHED)
190 			base = (u64) IO_BASE;
191 		return (void __iomem *) (unsigned long) (base + offset);
192 	} else if (__builtin_constant_p(offset) &&
193 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
194 		phys_t phys_addr, last_addr;
195 
196 		phys_addr = fixup_bigphys_addr(offset, size);
197 
198 		/* Don't allow wraparound or zero size. */
199 		last_addr = phys_addr + size - 1;
200 		if (!size || last_addr < phys_addr)
201 			return NULL;
202 
203 		/*
204 		 * Map uncached objects in the low 512MB of address
205 		 * space using KSEG1.
206 		 */
207 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
208 		    flags == _CACHE_UNCACHED)
209 			return (void __iomem *)
210 				(unsigned long)CKSEG1ADDR(phys_addr);
211 	}
212 
213 	return __ioremap(offset, size, flags);
214 
215 #undef __IS_LOW512
216 }
217 
218 /*
219  * ioremap     -   map bus memory into CPU space
220  * @offset:    bus address of the memory
221  * @size:      size of the resource to map
222  *
223  * ioremap performs a platform specific sequence of operations to
224  * make bus memory CPU accessible via the readb/readw/readl/writeb/
225  * writew/writel functions and the other mmio helpers. The returned
226  * address is not guaranteed to be usable directly as a virtual
227  * address.
228  */
229 #define ioremap(offset, size)						\
230 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
231 
232 /*
233  * ioremap_nocache     -   map bus memory into CPU space
234  * @offset:    bus address of the memory
235  * @size:      size of the resource to map
236  *
237  * ioremap_nocache performs a platform specific sequence of operations to
238  * make bus memory CPU accessible via the readb/readw/readl/writeb/
239  * writew/writel functions and the other mmio helpers. The returned
240  * address is not guaranteed to be usable directly as a virtual
241  * address.
242  *
243  * This version of ioremap ensures that the memory is marked uncachable
244  * on the CPU as well as honouring existing caching rules from things like
245  * the PCI bus. Note that there are other caches and buffers on many
246  * busses. In particular driver authors should read up on PCI writes
247  *
248  * It's useful if some control registers are in such an area and
249  * write combining or read caching is not desirable:
250  */
251 #define ioremap_nocache(offset, size)					\
252 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
253 
254 /*
255  * ioremap_cachable -   map bus memory into CPU space
256  * @offset:         bus address of the memory
257  * @size:           size of the resource to map
258  *
259  * ioremap_nocache performs a platform specific sequence of operations to
260  * make bus memory CPU accessible via the readb/readw/readl/writeb/
261  * writew/writel functions and the other mmio helpers. The returned
262  * address is not guaranteed to be usable directly as a virtual
263  * address.
264  *
265  * This version of ioremap ensures that the memory is marked cachable by
266  * the CPU.  Also enables full write-combining.  Useful for some
267  * memory-like regions on I/O busses.
268  */
269 #define ioremap_cachable(offset, size)					\
270 	__ioremap_mode((offset), (size), _page_cachable_default)
271 
272 /*
273  * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
274  * requests a cachable mapping, ioremap_uncached_accelerated requests a
275  * mapping using the uncached accelerated mode which isn't supported on
276  * all processors.
277  */
278 #define ioremap_cacheable_cow(offset, size)				\
279 	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
280 #define ioremap_uncached_accelerated(offset, size)			\
281 	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
282 
283 static inline void iounmap(const volatile void __iomem *addr)
284 {
285 	if (plat_iounmap(addr))
286 		return;
287 
288 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
289 
290 	if (cpu_has_64bit_addresses ||
291 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
292 		return;
293 
294 	__iounmap(addr);
295 
296 #undef __IS_KSEG1
297 }
298 
299 #ifdef CONFIG_CPU_CAVIUM_OCTEON
300 #define war_octeon_io_reorder_wmb()  		wmb()
301 #else
302 #define war_octeon_io_reorder_wmb()		do { } while (0)
303 #endif
304 
305 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
306 									\
307 static inline void pfx##write##bwlq(type val,				\
308 				    volatile void __iomem *mem)		\
309 {									\
310 	volatile type *__mem;						\
311 	type __val;							\
312 									\
313 	war_octeon_io_reorder_wmb();					\
314 									\
315 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
316 									\
317 	__val = pfx##ioswab##bwlq(__mem, val);				\
318 									\
319 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
320 		*__mem = __val;						\
321 	else if (cpu_has_64bits) {					\
322 		unsigned long __flags;					\
323 		type __tmp;						\
324 									\
325 		if (irq)						\
326 			local_irq_save(__flags);			\
327 		__asm__ __volatile__(					\
328 			".set	mips3"		"\t\t# __writeq""\n\t"	\
329 			"dsll32	%L0, %L0, 0"			"\n\t"	\
330 			"dsrl32	%L0, %L0, 0"			"\n\t"	\
331 			"dsll32	%M0, %M0, 0"			"\n\t"	\
332 			"or	%L0, %L0, %M0"			"\n\t"	\
333 			"sd	%L0, %2"			"\n\t"	\
334 			".set	mips0"				"\n"	\
335 			: "=r" (__tmp)					\
336 			: "0" (__val), "m" (*__mem));			\
337 		if (irq)						\
338 			local_irq_restore(__flags);			\
339 	} else								\
340 		BUG();							\
341 }									\
342 									\
343 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
344 {									\
345 	volatile type *__mem;						\
346 	type __val;							\
347 									\
348 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
349 									\
350 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
351 		__val = *__mem;						\
352 	else if (cpu_has_64bits) {					\
353 		unsigned long __flags;					\
354 									\
355 		if (irq)						\
356 			local_irq_save(__flags);			\
357 		__asm__ __volatile__(					\
358 			".set	mips3"		"\t\t# __readq"	"\n\t"	\
359 			"ld	%L0, %1"			"\n\t"	\
360 			"dsra32	%M0, %L0, 0"			"\n\t"	\
361 			"sll	%L0, %L0, 0"			"\n\t"	\
362 			".set	mips0"				"\n"	\
363 			: "=r" (__val)					\
364 			: "m" (*__mem));				\
365 		if (irq)						\
366 			local_irq_restore(__flags);			\
367 	} else {							\
368 		__val = 0;						\
369 		BUG();							\
370 	}								\
371 									\
372 	return pfx##ioswab##bwlq(__mem, __val);				\
373 }
374 
375 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
376 									\
377 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
378 {									\
379 	volatile type *__addr;						\
380 	type __val;							\
381 									\
382 	war_octeon_io_reorder_wmb();					\
383 									\
384 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
385 									\
386 	__val = pfx##ioswab##bwlq(__addr, val);				\
387 									\
388 	/* Really, we want this to be atomic */				\
389 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
390 									\
391 	*__addr = __val;						\
392 	slow;								\
393 }									\
394 									\
395 static inline type pfx##in##bwlq##p(unsigned long port)			\
396 {									\
397 	volatile type *__addr;						\
398 	type __val;							\
399 									\
400 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
401 									\
402 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
403 									\
404 	__val = *__addr;						\
405 	slow;								\
406 									\
407 	return pfx##ioswab##bwlq(__addr, __val);			\
408 }
409 
410 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
411 									\
412 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
413 
414 #define BUILDIO_MEM(bwlq, type)						\
415 									\
416 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
417 __BUILD_MEMORY_PFX(, bwlq, type)					\
418 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
419 
420 BUILDIO_MEM(b, u8)
421 BUILDIO_MEM(w, u16)
422 BUILDIO_MEM(l, u32)
423 BUILDIO_MEM(q, u64)
424 
425 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
426 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
427 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
428 
429 #define BUILDIO_IOPORT(bwlq, type)					\
430 	__BUILD_IOPORT_PFX(, bwlq, type)				\
431 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
432 
433 BUILDIO_IOPORT(b, u8)
434 BUILDIO_IOPORT(w, u16)
435 BUILDIO_IOPORT(l, u32)
436 #ifdef CONFIG_64BIT
437 BUILDIO_IOPORT(q, u64)
438 #endif
439 
440 #define __BUILDIO(bwlq, type)						\
441 									\
442 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
443 
444 __BUILDIO(q, u64)
445 
446 #define readb_relaxed			readb
447 #define readw_relaxed			readw
448 #define readl_relaxed			readl
449 #define readq_relaxed			readq
450 
451 #define readb_be(addr)							\
452 	__raw_readb((__force unsigned *)(addr))
453 #define readw_be(addr)							\
454 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
455 #define readl_be(addr)							\
456 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
457 #define readq_be(addr)							\
458 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
459 
460 #define writeb_be(val, addr)						\
461 	__raw_writeb((val), (__force unsigned *)(addr))
462 #define writew_be(val, addr)						\
463 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
464 #define writel_be(val, addr)						\
465 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
466 #define writeq_be(val, addr)						\
467 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
468 
469 /*
470  * Some code tests for these symbols
471  */
472 #define readq				readq
473 #define writeq				writeq
474 
475 #define __BUILD_MEMORY_STRING(bwlq, type)				\
476 									\
477 static inline void writes##bwlq(volatile void __iomem *mem,		\
478 				const void *addr, unsigned int count)	\
479 {									\
480 	const volatile type *__addr = addr;				\
481 									\
482 	while (count--) {						\
483 		__mem_write##bwlq(*__addr, mem);			\
484 		__addr++;						\
485 	}								\
486 }									\
487 									\
488 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
489 			       unsigned int count)			\
490 {									\
491 	volatile type *__addr = addr;					\
492 									\
493 	while (count--) {						\
494 		*__addr = __mem_read##bwlq(mem);			\
495 		__addr++;						\
496 	}								\
497 }
498 
499 #define __BUILD_IOPORT_STRING(bwlq, type)				\
500 									\
501 static inline void outs##bwlq(unsigned long port, const void *addr,	\
502 			      unsigned int count)			\
503 {									\
504 	const volatile type *__addr = addr;				\
505 									\
506 	while (count--) {						\
507 		__mem_out##bwlq(*__addr, port);				\
508 		__addr++;						\
509 	}								\
510 }									\
511 									\
512 static inline void ins##bwlq(unsigned long port, void *addr,		\
513 			     unsigned int count)			\
514 {									\
515 	volatile type *__addr = addr;					\
516 									\
517 	while (count--) {						\
518 		*__addr = __mem_in##bwlq(port);				\
519 		__addr++;						\
520 	}								\
521 }
522 
523 #define BUILDSTRING(bwlq, type)						\
524 									\
525 __BUILD_MEMORY_STRING(bwlq, type)					\
526 __BUILD_IOPORT_STRING(bwlq, type)
527 
528 BUILDSTRING(b, u8)
529 BUILDSTRING(w, u16)
530 BUILDSTRING(l, u32)
531 #ifdef CONFIG_64BIT
532 BUILDSTRING(q, u64)
533 #endif
534 
535 
536 #ifdef CONFIG_CPU_CAVIUM_OCTEON
537 #define mmiowb() wmb()
538 #else
539 /* Depends on MIPS II instruction set */
540 #define mmiowb() asm volatile ("sync" ::: "memory")
541 #endif
542 
543 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
544 {
545 	memset((void __force *) addr, val, count);
546 }
547 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
548 {
549 	memcpy(dst, (void __force *) src, count);
550 }
551 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
552 {
553 	memcpy((void __force *) dst, src, count);
554 }
555 
556 /*
557  * The caches on some architectures aren't dma-coherent and have need to
558  * handle this in software.  There are three types of operations that
559  * can be applied to dma buffers.
560  *
561  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
562  *    writing the content of the caches back to memory, if necessary.
563  *    The function also invalidates the affected part of the caches as
564  *    necessary before DMA transfers from outside to memory.
565  *  - dma_cache_wback(start, size) makes caches and coherent by
566  *    writing the content of the caches back to memory, if necessary.
567  *    The function also invalidates the affected part of the caches as
568  *    necessary before DMA transfers from outside to memory.
569  *  - dma_cache_inv(start, size) invalidates the affected parts of the
570  *    caches.  Dirty lines of the caches may be written back or simply
571  *    be discarded.  This operation is necessary before dma operations
572  *    to the memory.
573  *
574  * This API used to be exported; it now is for arch code internal use only.
575  */
576 #ifdef CONFIG_DMA_NONCOHERENT
577 
578 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
579 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
580 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
581 
582 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
583 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
584 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
585 
586 #else /* Sane hardware */
587 
588 #define dma_cache_wback_inv(start,size)	\
589 	do { (void) (start); (void) (size); } while (0)
590 #define dma_cache_wback(start,size)	\
591 	do { (void) (start); (void) (size); } while (0)
592 #define dma_cache_inv(start,size)	\
593 	do { (void) (start); (void) (size); } while (0)
594 
595 #endif /* CONFIG_DMA_NONCOHERENT */
596 
597 /*
598  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
599  * Avoid interrupt mucking, just adjust the address for 4-byte access.
600  * Assume the addresses are 8-byte aligned.
601  */
602 #ifdef __MIPSEB__
603 #define __CSR_32_ADJUST 4
604 #else
605 #define __CSR_32_ADJUST 0
606 #endif
607 
608 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
609 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
610 
611 /*
612  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
613  * access
614  */
615 #define xlate_dev_mem_ptr(p)	__va(p)
616 
617 /*
618  * Convert a virtual cached pointer to an uncached pointer
619  */
620 #define xlate_dev_kmem_ptr(p)	p
621 
622 #endif /* _ASM_IO_H */
623