xref: /openbmc/linux/arch/mips/include/asm/io.h (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author:	Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 
19 #include <asm/addrspace.h>
20 #include <asm/byteorder.h>
21 #include <asm/cpu.h>
22 #include <asm/cpu-features.h>
23 #include <asm-generic/iomap.h>
24 #include <asm/page.h>
25 #include <asm/pgtable-bits.h>
26 #include <asm/processor.h>
27 #include <asm/string.h>
28 
29 #include <ioremap.h>
30 #include <mangle-port.h>
31 
32 /*
33  * Slowdown I/O port space accesses for antique hardware.
34  */
35 #undef CONF_SLOWDOWN_IO
36 
37 /*
38  * Raw operations are never swapped in software.  OTOH values that raw
39  * operations are working on may or may not have been swapped by the bus
40  * hardware.  An example use would be for flash memory that's used for
41  * execute in place.
42  */
43 # define __raw_ioswabb(a, x)	(x)
44 # define __raw_ioswabw(a, x)	(x)
45 # define __raw_ioswabl(a, x)	(x)
46 # define __raw_ioswabq(a, x)	(x)
47 # define ____raw_ioswabq(a, x)	(x)
48 
49 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
50 
51 #define IO_SPACE_LIMIT 0xffff
52 
53 /*
54  * On MIPS I/O ports are memory mapped, so we access them using normal
55  * load/store instructions. mips_io_port_base is the virtual address to
56  * which all ports are being mapped.  For sake of efficiency some code
57  * assumes that this is an address that can be loaded with a single lui
58  * instruction, so the lower 16 bits must be zero.  Should be true on
59  * on any sane architecture; generic code does not use this assumption.
60  */
61 extern const unsigned long mips_io_port_base;
62 
63 /*
64  * Gcc will generate code to load the value of mips_io_port_base after each
65  * function call which may be fairly wasteful in some cases.  So we don't
66  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
67  * which solves the code generation issue.  Now we need to violate the
68  * aliasing rules a little to make initialization possible and finally we
69  * will need the barrier() to fight side effects of the aliasing chat.
70  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
71  */
72 static inline void set_io_port_base(unsigned long base)
73 {
74 	* (unsigned long *) &mips_io_port_base = base;
75 	barrier();
76 }
77 
78 /*
79  * Thanks to James van Artsdalen for a better timing-fix than
80  * the two short jumps: using outb's to a nonexistent port seems
81  * to guarantee better timings even on fast machines.
82  *
83  * On the other hand, I'd like to be sure of a non-existent port:
84  * I feel a bit unsafe about using 0x80 (should be safe, though)
85  *
86  *		Linus
87  *
88  */
89 
90 #define __SLOW_DOWN_IO \
91 	__asm__ __volatile__( \
92 		"sb\t$0,0x80(%0)" \
93 		: : "r" (mips_io_port_base));
94 
95 #ifdef CONF_SLOWDOWN_IO
96 #ifdef REALLY_SLOW_IO
97 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
98 #else
99 #define SLOW_DOWN_IO __SLOW_DOWN_IO
100 #endif
101 #else
102 #define SLOW_DOWN_IO
103 #endif
104 
105 /*
106  *     virt_to_phys    -       map virtual addresses to physical
107  *     @address: address to remap
108  *
109  *     The returned physical address is the physical (CPU) mapping for
110  *     the memory address given. It is only valid to use this function on
111  *     addresses directly mapped or allocated via kmalloc.
112  *
113  *     This function does not give bus mappings for DMA transfers. In
114  *     almost all conceivable cases a device driver should not be using
115  *     this function
116  */
117 static inline unsigned long virt_to_phys(volatile const void *address)
118 {
119 	return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
120 }
121 
122 /*
123  *     phys_to_virt    -       map physical address to virtual
124  *     @address: address to remap
125  *
126  *     The returned virtual address is a current CPU mapping for
127  *     the memory address given. It is only valid to use this function on
128  *     addresses that have a kernel mapping
129  *
130  *     This function does not handle bus mappings for DMA transfers. In
131  *     almost all conceivable cases a device driver should not be using
132  *     this function
133  */
134 static inline void * phys_to_virt(unsigned long address)
135 {
136 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
137 }
138 
139 /*
140  * ISA I/O bus memory addresses are 1:1 with the physical address.
141  */
142 static inline unsigned long isa_virt_to_bus(volatile void * address)
143 {
144 	return (unsigned long)address - PAGE_OFFSET;
145 }
146 
147 static inline void * isa_bus_to_virt(unsigned long address)
148 {
149 	return (void *)(address + PAGE_OFFSET);
150 }
151 
152 #define isa_page_to_bus page_to_phys
153 
154 /*
155  * However PCI ones are not necessarily 1:1 and therefore these interfaces
156  * are forbidden in portable PCI drivers.
157  *
158  * Allow them for x86 for legacy drivers, though.
159  */
160 #define virt_to_bus virt_to_phys
161 #define bus_to_virt phys_to_virt
162 
163 /*
164  * Change "struct page" to physical address.
165  */
166 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
167 
168 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
169 extern void __iounmap(const volatile void __iomem *addr);
170 
171 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
172 	unsigned long flags)
173 {
174 	void __iomem *addr = plat_ioremap(offset, size, flags);
175 
176 	if (addr)
177 		return addr;
178 
179 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
180 
181 	if (cpu_has_64bit_addresses) {
182 		u64 base = UNCAC_BASE;
183 
184 		/*
185 		 * R10000 supports a 2 bit uncached attribute therefore
186 		 * UNCAC_BASE may not equal IO_BASE.
187 		 */
188 		if (flags == _CACHE_UNCACHED)
189 			base = (u64) IO_BASE;
190 		return (void __iomem *) (unsigned long) (base + offset);
191 	} else if (__builtin_constant_p(offset) &&
192 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
193 		phys_t phys_addr, last_addr;
194 
195 		phys_addr = fixup_bigphys_addr(offset, size);
196 
197 		/* Don't allow wraparound or zero size. */
198 		last_addr = phys_addr + size - 1;
199 		if (!size || last_addr < phys_addr)
200 			return NULL;
201 
202 		/*
203 		 * Map uncached objects in the low 512MB of address
204 		 * space using KSEG1.
205 		 */
206 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
207 		    flags == _CACHE_UNCACHED)
208 			return (void __iomem *)
209 				(unsigned long)CKSEG1ADDR(phys_addr);
210 	}
211 
212 	return __ioremap(offset, size, flags);
213 
214 #undef __IS_LOW512
215 }
216 
217 /*
218  * ioremap     -   map bus memory into CPU space
219  * @offset:    bus address of the memory
220  * @size:      size of the resource to map
221  *
222  * ioremap performs a platform specific sequence of operations to
223  * make bus memory CPU accessible via the readb/readw/readl/writeb/
224  * writew/writel functions and the other mmio helpers. The returned
225  * address is not guaranteed to be usable directly as a virtual
226  * address.
227  */
228 #define ioremap(offset, size)						\
229 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230 
231 /*
232  * ioremap_nocache     -   map bus memory into CPU space
233  * @offset:    bus address of the memory
234  * @size:      size of the resource to map
235  *
236  * ioremap_nocache performs a platform specific sequence of operations to
237  * make bus memory CPU accessible via the readb/readw/readl/writeb/
238  * writew/writel functions and the other mmio helpers. The returned
239  * address is not guaranteed to be usable directly as a virtual
240  * address.
241  *
242  * This version of ioremap ensures that the memory is marked uncachable
243  * on the CPU as well as honouring existing caching rules from things like
244  * the PCI bus. Note that there are other caches and buffers on many
245  * busses. In paticular driver authors should read up on PCI writes
246  *
247  * It's useful if some control registers are in such an area and
248  * write combining or read caching is not desirable:
249  */
250 #define ioremap_nocache(offset, size)					\
251 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
252 
253 /*
254  * ioremap_cachable -   map bus memory into CPU space
255  * @offset:         bus address of the memory
256  * @size:           size of the resource to map
257  *
258  * ioremap_nocache performs a platform specific sequence of operations to
259  * make bus memory CPU accessible via the readb/readw/readl/writeb/
260  * writew/writel functions and the other mmio helpers. The returned
261  * address is not guaranteed to be usable directly as a virtual
262  * address.
263  *
264  * This version of ioremap ensures that the memory is marked cachable by
265  * the CPU.  Also enables full write-combining.  Useful for some
266  * memory-like regions on I/O busses.
267  */
268 #define ioremap_cachable(offset, size)					\
269 	__ioremap_mode((offset), (size), _page_cachable_default)
270 
271 /*
272  * These two are MIPS specific ioremap variant.  ioremap_cacheable_cow
273  * requests a cachable mapping, ioremap_uncached_accelerated requests a
274  * mapping using the uncached accelerated mode which isn't supported on
275  * all processors.
276  */
277 #define ioremap_cacheable_cow(offset, size)				\
278 	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
279 #define ioremap_uncached_accelerated(offset, size)			\
280 	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
281 
282 static inline void iounmap(const volatile void __iomem *addr)
283 {
284 	if (plat_iounmap(addr))
285 		return;
286 
287 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
288 
289 	if (cpu_has_64bit_addresses ||
290 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
291 		return;
292 
293 	__iounmap(addr);
294 
295 #undef __IS_KSEG1
296 }
297 
298 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
299 									\
300 static inline void pfx##write##bwlq(type val,				\
301 				    volatile void __iomem *mem)		\
302 {									\
303 	volatile type *__mem;						\
304 	type __val;							\
305 									\
306 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
307 									\
308 	__val = pfx##ioswab##bwlq(__mem, val);				\
309 									\
310 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
311 		*__mem = __val;						\
312 	else if (cpu_has_64bits) {					\
313 		unsigned long __flags;					\
314 		type __tmp;						\
315 									\
316 		if (irq)						\
317 			local_irq_save(__flags);			\
318 		__asm__ __volatile__(					\
319 			".set	mips3"		"\t\t# __writeq""\n\t"	\
320 			"dsll32	%L0, %L0, 0"			"\n\t"	\
321 			"dsrl32	%L0, %L0, 0"			"\n\t"	\
322 			"dsll32	%M0, %M0, 0"			"\n\t"	\
323 			"or	%L0, %L0, %M0"			"\n\t"	\
324 			"sd	%L0, %2"			"\n\t"	\
325 			".set	mips0"				"\n"	\
326 			: "=r" (__tmp)					\
327 			: "0" (__val), "m" (*__mem));			\
328 		if (irq)						\
329 			local_irq_restore(__flags);			\
330 	} else								\
331 		BUG();							\
332 }									\
333 									\
334 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
335 {									\
336 	volatile type *__mem;						\
337 	type __val;							\
338 									\
339 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
340 									\
341 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long))	\
342 		__val = *__mem;						\
343 	else if (cpu_has_64bits) {					\
344 		unsigned long __flags;					\
345 									\
346 		if (irq)						\
347 			local_irq_save(__flags);			\
348 		__asm__ __volatile__(					\
349 			".set	mips3"		"\t\t# __readq"	"\n\t"	\
350 			"ld	%L0, %1"			"\n\t"	\
351 			"dsra32	%M0, %L0, 0"			"\n\t"	\
352 			"sll	%L0, %L0, 0"			"\n\t"	\
353 			".set	mips0"				"\n"	\
354 			: "=r" (__val)					\
355 			: "m" (*__mem));				\
356 		if (irq)						\
357 			local_irq_restore(__flags);			\
358 	} else {							\
359 		__val = 0;						\
360 		BUG();							\
361 	}								\
362 									\
363 	return pfx##ioswab##bwlq(__mem, __val);				\
364 }
365 
366 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
367 									\
368 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
369 {									\
370 	volatile type *__addr;						\
371 	type __val;							\
372 									\
373 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
374 									\
375 	__val = pfx##ioswab##bwlq(__addr, val);				\
376 									\
377 	/* Really, we want this to be atomic */				\
378 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
379 									\
380 	*__addr = __val;						\
381 	slow;								\
382 }									\
383 									\
384 static inline type pfx##in##bwlq##p(unsigned long port)			\
385 {									\
386 	volatile type *__addr;						\
387 	type __val;							\
388 									\
389 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
390 									\
391 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
392 									\
393 	__val = *__addr;						\
394 	slow;								\
395 									\
396 	return pfx##ioswab##bwlq(__addr, __val);			\
397 }
398 
399 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
400 									\
401 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
402 
403 #define BUILDIO_MEM(bwlq, type)						\
404 									\
405 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
406 __BUILD_MEMORY_PFX(, bwlq, type)					\
407 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
408 
409 BUILDIO_MEM(b, u8)
410 BUILDIO_MEM(w, u16)
411 BUILDIO_MEM(l, u32)
412 BUILDIO_MEM(q, u64)
413 
414 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
415 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
416 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
417 
418 #define BUILDIO_IOPORT(bwlq, type)					\
419 	__BUILD_IOPORT_PFX(, bwlq, type)				\
420 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
421 
422 BUILDIO_IOPORT(b, u8)
423 BUILDIO_IOPORT(w, u16)
424 BUILDIO_IOPORT(l, u32)
425 #ifdef CONFIG_64BIT
426 BUILDIO_IOPORT(q, u64)
427 #endif
428 
429 #define __BUILDIO(bwlq, type)						\
430 									\
431 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
432 
433 __BUILDIO(q, u64)
434 
435 #define readb_relaxed			readb
436 #define readw_relaxed			readw
437 #define readl_relaxed			readl
438 #define readq_relaxed			readq
439 
440 /*
441  * Some code tests for these symbols
442  */
443 #define readq				readq
444 #define writeq				writeq
445 
446 #define __BUILD_MEMORY_STRING(bwlq, type)				\
447 									\
448 static inline void writes##bwlq(volatile void __iomem *mem,		\
449 				const void *addr, unsigned int count)	\
450 {									\
451 	const volatile type *__addr = addr;				\
452 									\
453 	while (count--) {						\
454 		__mem_write##bwlq(*__addr, mem);			\
455 		__addr++;						\
456 	}								\
457 }									\
458 									\
459 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
460 			       unsigned int count)			\
461 {									\
462 	volatile type *__addr = addr;					\
463 									\
464 	while (count--) {						\
465 		*__addr = __mem_read##bwlq(mem);			\
466 		__addr++;						\
467 	}								\
468 }
469 
470 #define __BUILD_IOPORT_STRING(bwlq, type)				\
471 									\
472 static inline void outs##bwlq(unsigned long port, const void *addr,	\
473 			      unsigned int count)			\
474 {									\
475 	const volatile type *__addr = addr;				\
476 									\
477 	while (count--) {						\
478 		__mem_out##bwlq(*__addr, port);				\
479 		__addr++;						\
480 	}								\
481 }									\
482 									\
483 static inline void ins##bwlq(unsigned long port, void *addr,		\
484 			     unsigned int count)			\
485 {									\
486 	volatile type *__addr = addr;					\
487 									\
488 	while (count--) {						\
489 		*__addr = __mem_in##bwlq(port);				\
490 		__addr++;						\
491 	}								\
492 }
493 
494 #define BUILDSTRING(bwlq, type)						\
495 									\
496 __BUILD_MEMORY_STRING(bwlq, type)					\
497 __BUILD_IOPORT_STRING(bwlq, type)
498 
499 BUILDSTRING(b, u8)
500 BUILDSTRING(w, u16)
501 BUILDSTRING(l, u32)
502 #ifdef CONFIG_64BIT
503 BUILDSTRING(q, u64)
504 #endif
505 
506 
507 /* Depends on MIPS II instruction set */
508 #define mmiowb() asm volatile ("sync" ::: "memory")
509 
510 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
511 {
512 	memset((void __force *) addr, val, count);
513 }
514 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
515 {
516 	memcpy(dst, (void __force *) src, count);
517 }
518 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
519 {
520 	memcpy((void __force *) dst, src, count);
521 }
522 
523 /*
524  * The caches on some architectures aren't dma-coherent and have need to
525  * handle this in software.  There are three types of operations that
526  * can be applied to dma buffers.
527  *
528  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
529  *    writing the content of the caches back to memory, if necessary.
530  *    The function also invalidates the affected part of the caches as
531  *    necessary before DMA transfers from outside to memory.
532  *  - dma_cache_wback(start, size) makes caches and coherent by
533  *    writing the content of the caches back to memory, if necessary.
534  *    The function also invalidates the affected part of the caches as
535  *    necessary before DMA transfers from outside to memory.
536  *  - dma_cache_inv(start, size) invalidates the affected parts of the
537  *    caches.  Dirty lines of the caches may be written back or simply
538  *    be discarded.  This operation is necessary before dma operations
539  *    to the memory.
540  *
541  * This API used to be exported; it now is for arch code internal use only.
542  */
543 #ifdef CONFIG_DMA_NONCOHERENT
544 
545 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
546 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
547 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
548 
549 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
550 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
551 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
552 
553 #else /* Sane hardware */
554 
555 #define dma_cache_wback_inv(start,size)	\
556 	do { (void) (start); (void) (size); } while (0)
557 #define dma_cache_wback(start,size)	\
558 	do { (void) (start); (void) (size); } while (0)
559 #define dma_cache_inv(start,size)	\
560 	do { (void) (start); (void) (size); } while (0)
561 
562 #endif /* CONFIG_DMA_NONCOHERENT */
563 
564 /*
565  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
566  * Avoid interrupt mucking, just adjust the address for 4-byte access.
567  * Assume the addresses are 8-byte aligned.
568  */
569 #ifdef __MIPSEB__
570 #define __CSR_32_ADJUST 4
571 #else
572 #define __CSR_32_ADJUST 0
573 #endif
574 
575 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
576 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
577 
578 /*
579  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
580  * access
581  */
582 #define xlate_dev_mem_ptr(p)	__va(p)
583 
584 /*
585  * Convert a virtual cached pointer to an uncached pointer
586  */
587 #define xlate_dev_kmem_ptr(p)	p
588 
589 #endif /* _ASM_IO_H */
590