1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994, 1995 Waldorf GmbH 7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 10 * Author: Maciej W. Rozycki <macro@mips.com> 11 */ 12 #ifndef _ASM_IO_H 13 #define _ASM_IO_H 14 15 #include <linux/compiler.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/irqflags.h> 19 20 #include <asm/addrspace.h> 21 #include <asm/bug.h> 22 #include <asm/byteorder.h> 23 #include <asm/cpu.h> 24 #include <asm/cpu-features.h> 25 #include <asm-generic/iomap.h> 26 #include <asm/page.h> 27 #include <asm/pgtable-bits.h> 28 #include <asm/processor.h> 29 #include <asm/string.h> 30 31 #include <ioremap.h> 32 #include <mangle-port.h> 33 34 /* 35 * Slowdown I/O port space accesses for antique hardware. 36 */ 37 #undef CONF_SLOWDOWN_IO 38 39 /* 40 * Raw operations are never swapped in software. OTOH values that raw 41 * operations are working on may or may not have been swapped by the bus 42 * hardware. An example use would be for flash memory that's used for 43 * execute in place. 44 */ 45 # define __raw_ioswabb(a, x) (x) 46 # define __raw_ioswabw(a, x) (x) 47 # define __raw_ioswabl(a, x) (x) 48 # define __raw_ioswabq(a, x) (x) 49 # define ____raw_ioswabq(a, x) (x) 50 51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ 52 53 #define IO_SPACE_LIMIT 0xffff 54 55 /* 56 * On MIPS I/O ports are memory mapped, so we access them using normal 57 * load/store instructions. mips_io_port_base is the virtual address to 58 * which all ports are being mapped. For sake of efficiency some code 59 * assumes that this is an address that can be loaded with a single lui 60 * instruction, so the lower 16 bits must be zero. Should be true on 61 * on any sane architecture; generic code does not use this assumption. 62 */ 63 extern const unsigned long mips_io_port_base; 64 65 /* 66 * Gcc will generate code to load the value of mips_io_port_base after each 67 * function call which may be fairly wasteful in some cases. So we don't 68 * play quite by the book. We tell gcc mips_io_port_base is a long variable 69 * which solves the code generation issue. Now we need to violate the 70 * aliasing rules a little to make initialization possible and finally we 71 * will need the barrier() to fight side effects of the aliasing chat. 72 * This trickery will eventually collapse under gcc's optimizer. Oh well. 73 */ 74 static inline void set_io_port_base(unsigned long base) 75 { 76 * (unsigned long *) &mips_io_port_base = base; 77 barrier(); 78 } 79 80 /* 81 * Thanks to James van Artsdalen for a better timing-fix than 82 * the two short jumps: using outb's to a nonexistent port seems 83 * to guarantee better timings even on fast machines. 84 * 85 * On the other hand, I'd like to be sure of a non-existent port: 86 * I feel a bit unsafe about using 0x80 (should be safe, though) 87 * 88 * Linus 89 * 90 */ 91 92 #define __SLOW_DOWN_IO \ 93 __asm__ __volatile__( \ 94 "sb\t$0,0x80(%0)" \ 95 : : "r" (mips_io_port_base)); 96 97 #ifdef CONF_SLOWDOWN_IO 98 #ifdef REALLY_SLOW_IO 99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } 100 #else 101 #define SLOW_DOWN_IO __SLOW_DOWN_IO 102 #endif 103 #else 104 #define SLOW_DOWN_IO 105 #endif 106 107 /* 108 * virt_to_phys - map virtual addresses to physical 109 * @address: address to remap 110 * 111 * The returned physical address is the physical (CPU) mapping for 112 * the memory address given. It is only valid to use this function on 113 * addresses directly mapped or allocated via kmalloc. 114 * 115 * This function does not give bus mappings for DMA transfers. In 116 * almost all conceivable cases a device driver should not be using 117 * this function 118 */ 119 static inline unsigned long virt_to_phys(volatile const void *address) 120 { 121 return __pa(address); 122 } 123 124 /* 125 * phys_to_virt - map physical address to virtual 126 * @address: address to remap 127 * 128 * The returned virtual address is a current CPU mapping for 129 * the memory address given. It is only valid to use this function on 130 * addresses that have a kernel mapping 131 * 132 * This function does not handle bus mappings for DMA transfers. In 133 * almost all conceivable cases a device driver should not be using 134 * this function 135 */ 136 static inline void * phys_to_virt(unsigned long address) 137 { 138 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); 139 } 140 141 /* 142 * ISA I/O bus memory addresses are 1:1 with the physical address. 143 */ 144 static inline unsigned long isa_virt_to_bus(volatile void * address) 145 { 146 return (unsigned long)address - PAGE_OFFSET; 147 } 148 149 static inline void * isa_bus_to_virt(unsigned long address) 150 { 151 return (void *)(address + PAGE_OFFSET); 152 } 153 154 #define isa_page_to_bus page_to_phys 155 156 /* 157 * However PCI ones are not necessarily 1:1 and therefore these interfaces 158 * are forbidden in portable PCI drivers. 159 * 160 * Allow them for x86 for legacy drivers, though. 161 */ 162 #define virt_to_bus virt_to_phys 163 #define bus_to_virt phys_to_virt 164 165 /* 166 * Change "struct page" to physical address. 167 */ 168 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) 169 170 extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags); 171 extern void __iounmap(const volatile void __iomem *addr); 172 173 static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size, 174 unsigned long flags) 175 { 176 void __iomem *addr = plat_ioremap(offset, size, flags); 177 178 if (addr) 179 return addr; 180 181 #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL)) 182 183 if (cpu_has_64bit_addresses) { 184 u64 base = UNCAC_BASE; 185 186 /* 187 * R10000 supports a 2 bit uncached attribute therefore 188 * UNCAC_BASE may not equal IO_BASE. 189 */ 190 if (flags == _CACHE_UNCACHED) 191 base = (u64) IO_BASE; 192 return (void __iomem *) (unsigned long) (base + offset); 193 } else if (__builtin_constant_p(offset) && 194 __builtin_constant_p(size) && __builtin_constant_p(flags)) { 195 phys_t phys_addr, last_addr; 196 197 phys_addr = fixup_bigphys_addr(offset, size); 198 199 /* Don't allow wraparound or zero size. */ 200 last_addr = phys_addr + size - 1; 201 if (!size || last_addr < phys_addr) 202 return NULL; 203 204 /* 205 * Map uncached objects in the low 512MB of address 206 * space using KSEG1. 207 */ 208 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && 209 flags == _CACHE_UNCACHED) 210 return (void __iomem *) 211 (unsigned long)CKSEG1ADDR(phys_addr); 212 } 213 214 return __ioremap(offset, size, flags); 215 216 #undef __IS_LOW512 217 } 218 219 /* 220 * ioremap - map bus memory into CPU space 221 * @offset: bus address of the memory 222 * @size: size of the resource to map 223 * 224 * ioremap performs a platform specific sequence of operations to 225 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 226 * writew/writel functions and the other mmio helpers. The returned 227 * address is not guaranteed to be usable directly as a virtual 228 * address. 229 */ 230 #define ioremap(offset, size) \ 231 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 232 233 /* 234 * ioremap_nocache - map bus memory into CPU space 235 * @offset: bus address of the memory 236 * @size: size of the resource to map 237 * 238 * ioremap_nocache performs a platform specific sequence of operations to 239 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 240 * writew/writel functions and the other mmio helpers. The returned 241 * address is not guaranteed to be usable directly as a virtual 242 * address. 243 * 244 * This version of ioremap ensures that the memory is marked uncachable 245 * on the CPU as well as honouring existing caching rules from things like 246 * the PCI bus. Note that there are other caches and buffers on many 247 * busses. In particular driver authors should read up on PCI writes 248 * 249 * It's useful if some control registers are in such an area and 250 * write combining or read caching is not desirable: 251 */ 252 #define ioremap_nocache(offset, size) \ 253 __ioremap_mode((offset), (size), _CACHE_UNCACHED) 254 255 /* 256 * ioremap_cachable - map bus memory into CPU space 257 * @offset: bus address of the memory 258 * @size: size of the resource to map 259 * 260 * ioremap_nocache performs a platform specific sequence of operations to 261 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 262 * writew/writel functions and the other mmio helpers. The returned 263 * address is not guaranteed to be usable directly as a virtual 264 * address. 265 * 266 * This version of ioremap ensures that the memory is marked cachable by 267 * the CPU. Also enables full write-combining. Useful for some 268 * memory-like regions on I/O busses. 269 */ 270 #define ioremap_cachable(offset, size) \ 271 __ioremap_mode((offset), (size), _page_cachable_default) 272 273 /* 274 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow 275 * requests a cachable mapping, ioremap_uncached_accelerated requests a 276 * mapping using the uncached accelerated mode which isn't supported on 277 * all processors. 278 */ 279 #define ioremap_cacheable_cow(offset, size) \ 280 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) 281 #define ioremap_uncached_accelerated(offset, size) \ 282 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) 283 284 static inline void iounmap(const volatile void __iomem *addr) 285 { 286 if (plat_iounmap(addr)) 287 return; 288 289 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) 290 291 if (cpu_has_64bit_addresses || 292 (__builtin_constant_p(addr) && __IS_KSEG1(addr))) 293 return; 294 295 __iounmap(addr); 296 297 #undef __IS_KSEG1 298 } 299 300 #ifdef CONFIG_CPU_CAVIUM_OCTEON 301 #define war_octeon_io_reorder_wmb() wmb() 302 #else 303 #define war_octeon_io_reorder_wmb() do { } while (0) 304 #endif 305 306 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ 307 \ 308 static inline void pfx##write##bwlq(type val, \ 309 volatile void __iomem *mem) \ 310 { \ 311 volatile type *__mem; \ 312 type __val; \ 313 \ 314 war_octeon_io_reorder_wmb(); \ 315 \ 316 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 317 \ 318 __val = pfx##ioswab##bwlq(__mem, val); \ 319 \ 320 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 321 *__mem = __val; \ 322 else if (cpu_has_64bits) { \ 323 unsigned long __flags; \ 324 type __tmp; \ 325 \ 326 if (irq) \ 327 local_irq_save(__flags); \ 328 __asm__ __volatile__( \ 329 ".set mips3" "\t\t# __writeq""\n\t" \ 330 "dsll32 %L0, %L0, 0" "\n\t" \ 331 "dsrl32 %L0, %L0, 0" "\n\t" \ 332 "dsll32 %M0, %M0, 0" "\n\t" \ 333 "or %L0, %L0, %M0" "\n\t" \ 334 "sd %L0, %2" "\n\t" \ 335 ".set mips0" "\n" \ 336 : "=r" (__tmp) \ 337 : "0" (__val), "m" (*__mem)); \ 338 if (irq) \ 339 local_irq_restore(__flags); \ 340 } else \ 341 BUG(); \ 342 } \ 343 \ 344 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ 345 { \ 346 volatile type *__mem; \ 347 type __val; \ 348 \ 349 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ 350 \ 351 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ 352 __val = *__mem; \ 353 else if (cpu_has_64bits) { \ 354 unsigned long __flags; \ 355 \ 356 if (irq) \ 357 local_irq_save(__flags); \ 358 __asm__ __volatile__( \ 359 ".set mips3" "\t\t# __readq" "\n\t" \ 360 "ld %L0, %1" "\n\t" \ 361 "dsra32 %M0, %L0, 0" "\n\t" \ 362 "sll %L0, %L0, 0" "\n\t" \ 363 ".set mips0" "\n" \ 364 : "=r" (__val) \ 365 : "m" (*__mem)); \ 366 if (irq) \ 367 local_irq_restore(__flags); \ 368 } else { \ 369 __val = 0; \ 370 BUG(); \ 371 } \ 372 \ 373 return pfx##ioswab##bwlq(__mem, __val); \ 374 } 375 376 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ 377 \ 378 static inline void pfx##out##bwlq##p(type val, unsigned long port) \ 379 { \ 380 volatile type *__addr; \ 381 type __val; \ 382 \ 383 war_octeon_io_reorder_wmb(); \ 384 \ 385 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 386 \ 387 __val = pfx##ioswab##bwlq(__addr, val); \ 388 \ 389 /* Really, we want this to be atomic */ \ 390 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 391 \ 392 *__addr = __val; \ 393 slow; \ 394 } \ 395 \ 396 static inline type pfx##in##bwlq##p(unsigned long port) \ 397 { \ 398 volatile type *__addr; \ 399 type __val; \ 400 \ 401 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ 402 \ 403 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ 404 \ 405 __val = *__addr; \ 406 slow; \ 407 \ 408 return pfx##ioswab##bwlq(__addr, __val); \ 409 } 410 411 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \ 412 \ 413 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) 414 415 #define BUILDIO_MEM(bwlq, type) \ 416 \ 417 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \ 418 __BUILD_MEMORY_PFX(, bwlq, type) \ 419 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \ 420 421 BUILDIO_MEM(b, u8) 422 BUILDIO_MEM(w, u16) 423 BUILDIO_MEM(l, u32) 424 BUILDIO_MEM(q, u64) 425 426 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ 427 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ 428 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) 429 430 #define BUILDIO_IOPORT(bwlq, type) \ 431 __BUILD_IOPORT_PFX(, bwlq, type) \ 432 __BUILD_IOPORT_PFX(__mem_, bwlq, type) 433 434 BUILDIO_IOPORT(b, u8) 435 BUILDIO_IOPORT(w, u16) 436 BUILDIO_IOPORT(l, u32) 437 #ifdef CONFIG_64BIT 438 BUILDIO_IOPORT(q, u64) 439 #endif 440 441 #define __BUILDIO(bwlq, type) \ 442 \ 443 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0) 444 445 __BUILDIO(q, u64) 446 447 #define readb_relaxed readb 448 #define readw_relaxed readw 449 #define readl_relaxed readl 450 #define readq_relaxed readq 451 452 #define readb_be(addr) \ 453 __raw_readb((__force unsigned *)(addr)) 454 #define readw_be(addr) \ 455 be16_to_cpu(__raw_readw((__force unsigned *)(addr))) 456 #define readl_be(addr) \ 457 be32_to_cpu(__raw_readl((__force unsigned *)(addr))) 458 #define readq_be(addr) \ 459 be64_to_cpu(__raw_readq((__force unsigned *)(addr))) 460 461 #define writeb_be(val, addr) \ 462 __raw_writeb((val), (__force unsigned *)(addr)) 463 #define writew_be(val, addr) \ 464 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) 465 #define writel_be(val, addr) \ 466 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) 467 #define writeq_be(val, addr) \ 468 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) 469 470 /* 471 * Some code tests for these symbols 472 */ 473 #define readq readq 474 #define writeq writeq 475 476 #define __BUILD_MEMORY_STRING(bwlq, type) \ 477 \ 478 static inline void writes##bwlq(volatile void __iomem *mem, \ 479 const void *addr, unsigned int count) \ 480 { \ 481 const volatile type *__addr = addr; \ 482 \ 483 while (count--) { \ 484 __mem_write##bwlq(*__addr, mem); \ 485 __addr++; \ 486 } \ 487 } \ 488 \ 489 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ 490 unsigned int count) \ 491 { \ 492 volatile type *__addr = addr; \ 493 \ 494 while (count--) { \ 495 *__addr = __mem_read##bwlq(mem); \ 496 __addr++; \ 497 } \ 498 } 499 500 #define __BUILD_IOPORT_STRING(bwlq, type) \ 501 \ 502 static inline void outs##bwlq(unsigned long port, const void *addr, \ 503 unsigned int count) \ 504 { \ 505 const volatile type *__addr = addr; \ 506 \ 507 while (count--) { \ 508 __mem_out##bwlq(*__addr, port); \ 509 __addr++; \ 510 } \ 511 } \ 512 \ 513 static inline void ins##bwlq(unsigned long port, void *addr, \ 514 unsigned int count) \ 515 { \ 516 volatile type *__addr = addr; \ 517 \ 518 while (count--) { \ 519 *__addr = __mem_in##bwlq(port); \ 520 __addr++; \ 521 } \ 522 } 523 524 #define BUILDSTRING(bwlq, type) \ 525 \ 526 __BUILD_MEMORY_STRING(bwlq, type) \ 527 __BUILD_IOPORT_STRING(bwlq, type) 528 529 BUILDSTRING(b, u8) 530 BUILDSTRING(w, u16) 531 BUILDSTRING(l, u32) 532 #ifdef CONFIG_64BIT 533 BUILDSTRING(q, u64) 534 #endif 535 536 537 #ifdef CONFIG_CPU_CAVIUM_OCTEON 538 #define mmiowb() wmb() 539 #else 540 /* Depends on MIPS II instruction set */ 541 #define mmiowb() asm volatile ("sync" ::: "memory") 542 #endif 543 544 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) 545 { 546 memset((void __force *) addr, val, count); 547 } 548 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) 549 { 550 memcpy(dst, (void __force *) src, count); 551 } 552 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) 553 { 554 memcpy((void __force *) dst, src, count); 555 } 556 557 /* 558 * The caches on some architectures aren't dma-coherent and have need to 559 * handle this in software. There are three types of operations that 560 * can be applied to dma buffers. 561 * 562 * - dma_cache_wback_inv(start, size) makes caches and coherent by 563 * writing the content of the caches back to memory, if necessary. 564 * The function also invalidates the affected part of the caches as 565 * necessary before DMA transfers from outside to memory. 566 * - dma_cache_wback(start, size) makes caches and coherent by 567 * writing the content of the caches back to memory, if necessary. 568 * The function also invalidates the affected part of the caches as 569 * necessary before DMA transfers from outside to memory. 570 * - dma_cache_inv(start, size) invalidates the affected parts of the 571 * caches. Dirty lines of the caches may be written back or simply 572 * be discarded. This operation is necessary before dma operations 573 * to the memory. 574 * 575 * This API used to be exported; it now is for arch code internal use only. 576 */ 577 #ifdef CONFIG_DMA_NONCOHERENT 578 579 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); 580 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); 581 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); 582 583 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) 584 #define dma_cache_wback(start, size) _dma_cache_wback(start, size) 585 #define dma_cache_inv(start, size) _dma_cache_inv(start, size) 586 587 #else /* Sane hardware */ 588 589 #define dma_cache_wback_inv(start,size) \ 590 do { (void) (start); (void) (size); } while (0) 591 #define dma_cache_wback(start,size) \ 592 do { (void) (start); (void) (size); } while (0) 593 #define dma_cache_inv(start,size) \ 594 do { (void) (start); (void) (size); } while (0) 595 596 #endif /* CONFIG_DMA_NONCOHERENT */ 597 598 /* 599 * Read a 32-bit register that requires a 64-bit read cycle on the bus. 600 * Avoid interrupt mucking, just adjust the address for 4-byte access. 601 * Assume the addresses are 8-byte aligned. 602 */ 603 #ifdef __MIPSEB__ 604 #define __CSR_32_ADJUST 4 605 #else 606 #define __CSR_32_ADJUST 0 607 #endif 608 609 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) 610 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) 611 612 /* 613 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 614 * access 615 */ 616 #define xlate_dev_mem_ptr(p) __va(p) 617 618 /* 619 * Convert a virtual cached pointer to an uncached pointer 620 */ 621 #define xlate_dev_kmem_ptr(p) p 622 623 #endif /* _ASM_IO_H */ 624