xref: /openbmc/linux/arch/mips/include/asm/io.h (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author: Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #define ARCH_HAS_IOREMAP_WC
16 
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21 
22 #include <asm/addrspace.h>
23 #include <asm/bug.h>
24 #include <asm/byteorder.h>
25 #include <asm/cpu.h>
26 #include <asm/cpu-features.h>
27 #include <asm-generic/iomap.h>
28 #include <asm/page.h>
29 #include <asm/pgtable-bits.h>
30 #include <asm/processor.h>
31 #include <asm/string.h>
32 
33 #include <ioremap.h>
34 #include <mangle-port.h>
35 
36 /*
37  * Slowdown I/O port space accesses for antique hardware.
38  */
39 #undef CONF_SLOWDOWN_IO
40 
41 /*
42  * Raw operations are never swapped in software.  OTOH values that raw
43  * operations are working on may or may not have been swapped by the bus
44  * hardware.  An example use would be for flash memory that's used for
45  * execute in place.
46  */
47 # define __raw_ioswabb(a, x)	(x)
48 # define __raw_ioswabw(a, x)	(x)
49 # define __raw_ioswabl(a, x)	(x)
50 # define __raw_ioswabq(a, x)	(x)
51 # define ____raw_ioswabq(a, x)	(x)
52 
53 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
54 
55 #define IO_SPACE_LIMIT 0xffff
56 
57 /*
58  * On MIPS I/O ports are memory mapped, so we access them using normal
59  * load/store instructions. mips_io_port_base is the virtual address to
60  * which all ports are being mapped.  For sake of efficiency some code
61  * assumes that this is an address that can be loaded with a single lui
62  * instruction, so the lower 16 bits must be zero.  Should be true on
63  * on any sane architecture; generic code does not use this assumption.
64  */
65 extern const unsigned long mips_io_port_base;
66 
67 /*
68  * Gcc will generate code to load the value of mips_io_port_base after each
69  * function call which may be fairly wasteful in some cases.  So we don't
70  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
71  * which solves the code generation issue.  Now we need to violate the
72  * aliasing rules a little to make initialization possible and finally we
73  * will need the barrier() to fight side effects of the aliasing chat.
74  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
75  */
76 static inline void set_io_port_base(unsigned long base)
77 {
78 	* (unsigned long *) &mips_io_port_base = base;
79 	barrier();
80 }
81 
82 /*
83  * Thanks to James van Artsdalen for a better timing-fix than
84  * the two short jumps: using outb's to a nonexistent port seems
85  * to guarantee better timings even on fast machines.
86  *
87  * On the other hand, I'd like to be sure of a non-existent port:
88  * I feel a bit unsafe about using 0x80 (should be safe, though)
89  *
90  *		Linus
91  *
92  */
93 
94 #define __SLOW_DOWN_IO \
95 	__asm__ __volatile__( \
96 		"sb\t$0,0x80(%0)" \
97 		: : "r" (mips_io_port_base));
98 
99 #ifdef CONF_SLOWDOWN_IO
100 #ifdef REALLY_SLOW_IO
101 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
102 #else
103 #define SLOW_DOWN_IO __SLOW_DOWN_IO
104 #endif
105 #else
106 #define SLOW_DOWN_IO
107 #endif
108 
109 /*
110  *     virt_to_phys    -       map virtual addresses to physical
111  *     @address: address to remap
112  *
113  *     The returned physical address is the physical (CPU) mapping for
114  *     the memory address given. It is only valid to use this function on
115  *     addresses directly mapped or allocated via kmalloc.
116  *
117  *     This function does not give bus mappings for DMA transfers. In
118  *     almost all conceivable cases a device driver should not be using
119  *     this function
120  */
121 static inline unsigned long virt_to_phys(volatile const void *address)
122 {
123 	return __pa(address);
124 }
125 
126 /*
127  *     phys_to_virt    -       map physical address to virtual
128  *     @address: address to remap
129  *
130  *     The returned virtual address is a current CPU mapping for
131  *     the memory address given. It is only valid to use this function on
132  *     addresses that have a kernel mapping
133  *
134  *     This function does not handle bus mappings for DMA transfers. In
135  *     almost all conceivable cases a device driver should not be using
136  *     this function
137  */
138 static inline void * phys_to_virt(unsigned long address)
139 {
140 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
141 }
142 
143 /*
144  * ISA I/O bus memory addresses are 1:1 with the physical address.
145  */
146 static inline unsigned long isa_virt_to_bus(volatile void *address)
147 {
148 	return virt_to_phys(address);
149 }
150 
151 static inline void *isa_bus_to_virt(unsigned long address)
152 {
153 	return phys_to_virt(address);
154 }
155 
156 #define isa_page_to_bus page_to_phys
157 
158 /*
159  * However PCI ones are not necessarily 1:1 and therefore these interfaces
160  * are forbidden in portable PCI drivers.
161  *
162  * Allow them for x86 for legacy drivers, though.
163  */
164 #define virt_to_bus virt_to_phys
165 #define bus_to_virt phys_to_virt
166 
167 /*
168  * Change "struct page" to physical address.
169  */
170 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
171 
172 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
173 extern void __iounmap(const volatile void __iomem *addr);
174 
175 #ifndef CONFIG_PCI
176 struct pci_dev;
177 static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
178 #endif
179 
180 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
181 	unsigned long flags)
182 {
183 	void __iomem *addr = plat_ioremap(offset, size, flags);
184 
185 	if (addr)
186 		return addr;
187 
188 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
189 
190 	if (cpu_has_64bit_addresses) {
191 		u64 base = UNCAC_BASE;
192 
193 		/*
194 		 * R10000 supports a 2 bit uncached attribute therefore
195 		 * UNCAC_BASE may not equal IO_BASE.
196 		 */
197 		if (flags == _CACHE_UNCACHED)
198 			base = (u64) IO_BASE;
199 		return (void __iomem *) (unsigned long) (base + offset);
200 	} else if (__builtin_constant_p(offset) &&
201 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
202 		phys_addr_t phys_addr, last_addr;
203 
204 		phys_addr = fixup_bigphys_addr(offset, size);
205 
206 		/* Don't allow wraparound or zero size. */
207 		last_addr = phys_addr + size - 1;
208 		if (!size || last_addr < phys_addr)
209 			return NULL;
210 
211 		/*
212 		 * Map uncached objects in the low 512MB of address
213 		 * space using KSEG1.
214 		 */
215 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
216 		    flags == _CACHE_UNCACHED)
217 			return (void __iomem *)
218 				(unsigned long)CKSEG1ADDR(phys_addr);
219 	}
220 
221 	return __ioremap(offset, size, flags);
222 
223 #undef __IS_LOW512
224 }
225 
226 /*
227  * ioremap     -   map bus memory into CPU space
228  * @offset:    bus address of the memory
229  * @size:      size of the resource to map
230  *
231  * ioremap performs a platform specific sequence of operations to
232  * make bus memory CPU accessible via the readb/readw/readl/writeb/
233  * writew/writel functions and the other mmio helpers. The returned
234  * address is not guaranteed to be usable directly as a virtual
235  * address.
236  */
237 #define ioremap(offset, size)						\
238 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
239 
240 /*
241  * ioremap_nocache     -   map bus memory into CPU space
242  * @offset:    bus address of the memory
243  * @size:      size of the resource to map
244  *
245  * ioremap_nocache performs a platform specific sequence of operations to
246  * make bus memory CPU accessible via the readb/readw/readl/writeb/
247  * writew/writel functions and the other mmio helpers. The returned
248  * address is not guaranteed to be usable directly as a virtual
249  * address.
250  *
251  * This version of ioremap ensures that the memory is marked uncachable
252  * on the CPU as well as honouring existing caching rules from things like
253  * the PCI bus. Note that there are other caches and buffers on many
254  * busses. In particular driver authors should read up on PCI writes
255  *
256  * It's useful if some control registers are in such an area and
257  * write combining or read caching is not desirable:
258  */
259 #define ioremap_nocache(offset, size)					\
260 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
261 #define ioremap_uc ioremap_nocache
262 
263 /*
264  * ioremap_cachable -	map bus memory into CPU space
265  * @offset:	    bus address of the memory
266  * @size:	    size of the resource to map
267  *
268  * ioremap_nocache performs a platform specific sequence of operations to
269  * make bus memory CPU accessible via the readb/readw/readl/writeb/
270  * writew/writel functions and the other mmio helpers. The returned
271  * address is not guaranteed to be usable directly as a virtual
272  * address.
273  *
274  * This version of ioremap ensures that the memory is marked cachable by
275  * the CPU.  Also enables full write-combining.	 Useful for some
276  * memory-like regions on I/O busses.
277  */
278 #define ioremap_cachable(offset, size)					\
279 	__ioremap_mode((offset), (size), _page_cachable_default)
280 #define ioremap_cache ioremap_cachable
281 
282 /*
283  * ioremap_wc     -   map bus memory into CPU space
284  * @offset:    bus address of the memory
285  * @size:      size of the resource to map
286  *
287  * ioremap_wc performs a platform specific sequence of operations to
288  * make bus memory CPU accessible via the readb/readw/readl/writeb/
289  * writew/writel functions and the other mmio helpers. The returned
290  * address is not guaranteed to be usable directly as a virtual
291  * address.
292  *
293  * This version of ioremap ensures that the memory is marked uncachable
294  * but accelerated by means of write-combining feature. It is specifically
295  * useful for PCIe prefetchable windows, which may vastly improve a
296  * communications performance. If it was determined on boot stage, what
297  * CPU CCA doesn't support UCA, the method shall fall-back to the
298  * _CACHE_UNCACHED option (see cpu_probe() method).
299  */
300 #define ioremap_wc(offset, size)					\
301 	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
302 
303 static inline void iounmap(const volatile void __iomem *addr)
304 {
305 	if (plat_iounmap(addr))
306 		return;
307 
308 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
309 
310 	if (cpu_has_64bit_addresses ||
311 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
312 		return;
313 
314 	__iounmap(addr);
315 
316 #undef __IS_KSEG1
317 }
318 
319 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_LOONGSON3_ENHANCEMENT)
320 #define war_io_reorder_wmb()		wmb()
321 #else
322 #define war_io_reorder_wmb()		barrier()
323 #endif
324 
325 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
326 									\
327 static inline void pfx##write##bwlq(type val,				\
328 				    volatile void __iomem *mem)		\
329 {									\
330 	volatile type *__mem;						\
331 	type __val;							\
332 									\
333 	war_io_reorder_wmb();					\
334 									\
335 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
336 									\
337 	__val = pfx##ioswab##bwlq(__mem, val);				\
338 									\
339 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
340 		*__mem = __val;						\
341 	else if (cpu_has_64bits) {					\
342 		unsigned long __flags;					\
343 		type __tmp;						\
344 									\
345 		if (irq)						\
346 			local_irq_save(__flags);			\
347 		__asm__ __volatile__(					\
348 			".set	arch=r4000"	"\t\t# __writeq""\n\t"	\
349 			"dsll32 %L0, %L0, 0"			"\n\t"	\
350 			"dsrl32 %L0, %L0, 0"			"\n\t"	\
351 			"dsll32 %M0, %M0, 0"			"\n\t"	\
352 			"or	%L0, %L0, %M0"			"\n\t"	\
353 			"sd	%L0, %2"			"\n\t"	\
354 			".set	mips0"				"\n"	\
355 			: "=r" (__tmp)					\
356 			: "0" (__val), "m" (*__mem));			\
357 		if (irq)						\
358 			local_irq_restore(__flags);			\
359 	} else								\
360 		BUG();							\
361 }									\
362 									\
363 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
364 {									\
365 	volatile type *__mem;						\
366 	type __val;							\
367 									\
368 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
369 									\
370 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
371 		__val = *__mem;						\
372 	else if (cpu_has_64bits) {					\
373 		unsigned long __flags;					\
374 									\
375 		if (irq)						\
376 			local_irq_save(__flags);			\
377 		__asm__ __volatile__(					\
378 			".set	arch=r4000"	"\t\t# __readq" "\n\t"	\
379 			"ld	%L0, %1"			"\n\t"	\
380 			"dsra32 %M0, %L0, 0"			"\n\t"	\
381 			"sll	%L0, %L0, 0"			"\n\t"	\
382 			".set	mips0"				"\n"	\
383 			: "=r" (__val)					\
384 			: "m" (*__mem));				\
385 		if (irq)						\
386 			local_irq_restore(__flags);			\
387 	} else {							\
388 		__val = 0;						\
389 		BUG();							\
390 	}								\
391 									\
392 	/* prevent prefetching of coherent DMA data prematurely */	\
393 	rmb();								\
394 	return pfx##ioswab##bwlq(__mem, __val);				\
395 }
396 
397 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
398 									\
399 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
400 {									\
401 	volatile type *__addr;						\
402 	type __val;							\
403 									\
404 	war_io_reorder_wmb();					\
405 									\
406 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
407 									\
408 	__val = pfx##ioswab##bwlq(__addr, val);				\
409 									\
410 	/* Really, we want this to be atomic */				\
411 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
412 									\
413 	*__addr = __val;						\
414 	slow;								\
415 }									\
416 									\
417 static inline type pfx##in##bwlq##p(unsigned long port)			\
418 {									\
419 	volatile type *__addr;						\
420 	type __val;							\
421 									\
422 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
423 									\
424 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
425 									\
426 	__val = *__addr;						\
427 	slow;								\
428 									\
429 	/* prevent prefetching of coherent DMA data prematurely */	\
430 	rmb();								\
431 	return pfx##ioswab##bwlq(__addr, __val);			\
432 }
433 
434 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
435 									\
436 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
437 
438 #define BUILDIO_MEM(bwlq, type)						\
439 									\
440 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
441 __BUILD_MEMORY_PFX(, bwlq, type)					\
442 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
443 
444 BUILDIO_MEM(b, u8)
445 BUILDIO_MEM(w, u16)
446 BUILDIO_MEM(l, u32)
447 BUILDIO_MEM(q, u64)
448 
449 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
450 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
451 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
452 
453 #define BUILDIO_IOPORT(bwlq, type)					\
454 	__BUILD_IOPORT_PFX(, bwlq, type)				\
455 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
456 
457 BUILDIO_IOPORT(b, u8)
458 BUILDIO_IOPORT(w, u16)
459 BUILDIO_IOPORT(l, u32)
460 #ifdef CONFIG_64BIT
461 BUILDIO_IOPORT(q, u64)
462 #endif
463 
464 #define __BUILDIO(bwlq, type)						\
465 									\
466 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
467 
468 __BUILDIO(q, u64)
469 
470 #define readb_relaxed			readb
471 #define readw_relaxed			readw
472 #define readl_relaxed			readl
473 #define readq_relaxed			readq
474 
475 #define writeb_relaxed			writeb
476 #define writew_relaxed			writew
477 #define writel_relaxed			writel
478 #define writeq_relaxed			writeq
479 
480 #define readb_be(addr)							\
481 	__raw_readb((__force unsigned *)(addr))
482 #define readw_be(addr)							\
483 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
484 #define readl_be(addr)							\
485 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
486 #define readq_be(addr)							\
487 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
488 
489 #define writeb_be(val, addr)						\
490 	__raw_writeb((val), (__force unsigned *)(addr))
491 #define writew_be(val, addr)						\
492 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
493 #define writel_be(val, addr)						\
494 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
495 #define writeq_be(val, addr)						\
496 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
497 
498 /*
499  * Some code tests for these symbols
500  */
501 #define readq				readq
502 #define writeq				writeq
503 
504 #define __BUILD_MEMORY_STRING(bwlq, type)				\
505 									\
506 static inline void writes##bwlq(volatile void __iomem *mem,		\
507 				const void *addr, unsigned int count)	\
508 {									\
509 	const volatile type *__addr = addr;				\
510 									\
511 	while (count--) {						\
512 		__mem_write##bwlq(*__addr, mem);			\
513 		__addr++;						\
514 	}								\
515 }									\
516 									\
517 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
518 			       unsigned int count)			\
519 {									\
520 	volatile type *__addr = addr;					\
521 									\
522 	while (count--) {						\
523 		*__addr = __mem_read##bwlq(mem);			\
524 		__addr++;						\
525 	}								\
526 }
527 
528 #define __BUILD_IOPORT_STRING(bwlq, type)				\
529 									\
530 static inline void outs##bwlq(unsigned long port, const void *addr,	\
531 			      unsigned int count)			\
532 {									\
533 	const volatile type *__addr = addr;				\
534 									\
535 	while (count--) {						\
536 		__mem_out##bwlq(*__addr, port);				\
537 		__addr++;						\
538 	}								\
539 }									\
540 									\
541 static inline void ins##bwlq(unsigned long port, void *addr,		\
542 			     unsigned int count)			\
543 {									\
544 	volatile type *__addr = addr;					\
545 									\
546 	while (count--) {						\
547 		*__addr = __mem_in##bwlq(port);				\
548 		__addr++;						\
549 	}								\
550 }
551 
552 #define BUILDSTRING(bwlq, type)						\
553 									\
554 __BUILD_MEMORY_STRING(bwlq, type)					\
555 __BUILD_IOPORT_STRING(bwlq, type)
556 
557 BUILDSTRING(b, u8)
558 BUILDSTRING(w, u16)
559 BUILDSTRING(l, u32)
560 #ifdef CONFIG_64BIT
561 BUILDSTRING(q, u64)
562 #endif
563 
564 
565 #ifdef CONFIG_CPU_CAVIUM_OCTEON
566 #define mmiowb() wmb()
567 #else
568 /* Depends on MIPS II instruction set */
569 #define mmiowb() asm volatile ("sync" ::: "memory")
570 #endif
571 
572 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
573 {
574 	memset((void __force *) addr, val, count);
575 }
576 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
577 {
578 	memcpy(dst, (void __force *) src, count);
579 }
580 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
581 {
582 	memcpy((void __force *) dst, src, count);
583 }
584 
585 /*
586  * The caches on some architectures aren't dma-coherent and have need to
587  * handle this in software.  There are three types of operations that
588  * can be applied to dma buffers.
589  *
590  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
591  *    writing the content of the caches back to memory, if necessary.
592  *    The function also invalidates the affected part of the caches as
593  *    necessary before DMA transfers from outside to memory.
594  *  - dma_cache_wback(start, size) makes caches and coherent by
595  *    writing the content of the caches back to memory, if necessary.
596  *    The function also invalidates the affected part of the caches as
597  *    necessary before DMA transfers from outside to memory.
598  *  - dma_cache_inv(start, size) invalidates the affected parts of the
599  *    caches.  Dirty lines of the caches may be written back or simply
600  *    be discarded.  This operation is necessary before dma operations
601  *    to the memory.
602  *
603  * This API used to be exported; it now is for arch code internal use only.
604  */
605 #ifdef CONFIG_DMA_NONCOHERENT
606 
607 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
608 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
609 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
610 
611 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
612 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
613 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
614 
615 #else /* Sane hardware */
616 
617 #define dma_cache_wback_inv(start,size) \
618 	do { (void) (start); (void) (size); } while (0)
619 #define dma_cache_wback(start,size)	\
620 	do { (void) (start); (void) (size); } while (0)
621 #define dma_cache_inv(start,size)	\
622 	do { (void) (start); (void) (size); } while (0)
623 
624 #endif /* CONFIG_DMA_NONCOHERENT */
625 
626 /*
627  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
628  * Avoid interrupt mucking, just adjust the address for 4-byte access.
629  * Assume the addresses are 8-byte aligned.
630  */
631 #ifdef __MIPSEB__
632 #define __CSR_32_ADJUST 4
633 #else
634 #define __CSR_32_ADJUST 0
635 #endif
636 
637 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
638 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
639 
640 /*
641  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
642  * access
643  */
644 #define xlate_dev_mem_ptr(p)	__va(p)
645 
646 /*
647  * Convert a virtual cached pointer to an uncached pointer
648  */
649 #define xlate_dev_kmem_ptr(p)	p
650 
651 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
652 
653 #endif /* _ASM_IO_H */
654