xref: /openbmc/linux/arch/mips/include/asm/io.h (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author: Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #define ARCH_HAS_IOREMAP_WC
16 
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21 
22 #include <asm/addrspace.h>
23 #include <asm/barrier.h>
24 #include <asm/bug.h>
25 #include <asm/byteorder.h>
26 #include <asm/cpu.h>
27 #include <asm/cpu-features.h>
28 #include <asm-generic/iomap.h>
29 #include <asm/page.h>
30 #include <asm/pgtable-bits.h>
31 #include <asm/processor.h>
32 #include <asm/string.h>
33 
34 #include <ioremap.h>
35 #include <mangle-port.h>
36 
37 /*
38  * Raw operations are never swapped in software.  OTOH values that raw
39  * operations are working on may or may not have been swapped by the bus
40  * hardware.  An example use would be for flash memory that's used for
41  * execute in place.
42  */
43 # define __raw_ioswabb(a, x)	(x)
44 # define __raw_ioswabw(a, x)	(x)
45 # define __raw_ioswabl(a, x)	(x)
46 # define __raw_ioswabq(a, x)	(x)
47 # define ____raw_ioswabq(a, x)	(x)
48 
49 # define __relaxed_ioswabb ioswabb
50 # define __relaxed_ioswabw ioswabw
51 # define __relaxed_ioswabl ioswabl
52 # define __relaxed_ioswabq ioswabq
53 
54 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
55 
56 #define IO_SPACE_LIMIT 0xffff
57 
58 /*
59  * On MIPS I/O ports are memory mapped, so we access them using normal
60  * load/store instructions. mips_io_port_base is the virtual address to
61  * which all ports are being mapped.  For sake of efficiency some code
62  * assumes that this is an address that can be loaded with a single lui
63  * instruction, so the lower 16 bits must be zero.  Should be true on
64  * on any sane architecture; generic code does not use this assumption.
65  */
66 extern const unsigned long mips_io_port_base;
67 
68 /*
69  * Gcc will generate code to load the value of mips_io_port_base after each
70  * function call which may be fairly wasteful in some cases.  So we don't
71  * play quite by the book.  We tell gcc mips_io_port_base is a long variable
72  * which solves the code generation issue.  Now we need to violate the
73  * aliasing rules a little to make initialization possible and finally we
74  * will need the barrier() to fight side effects of the aliasing chat.
75  * This trickery will eventually collapse under gcc's optimizer.  Oh well.
76  */
77 static inline void set_io_port_base(unsigned long base)
78 {
79 	* (unsigned long *) &mips_io_port_base = base;
80 	barrier();
81 }
82 
83 /*
84  * Provide the necessary definitions for generic iomap. We make use of
85  * mips_io_port_base for iomap(), but we don't reserve any low addresses for
86  * use with I/O ports.
87  */
88 
89 #define HAVE_ARCH_PIO_SIZE
90 #define PIO_OFFSET	mips_io_port_base
91 #define PIO_MASK	IO_SPACE_LIMIT
92 #define PIO_RESERVED	0x0UL
93 
94 /*
95  * Enforce in-order execution of data I/O.  In the MIPS architecture
96  * these are equivalent to corresponding platform-specific memory
97  * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
98  * with sync additionally defined.
99  */
100 #define iobarrier_rw() mb()
101 #define iobarrier_r() rmb()
102 #define iobarrier_w() wmb()
103 #define iobarrier_sync() iob()
104 
105 /* Some callers use this older API instead.  */
106 #define mmiowb() iobarrier_w()
107 
108 /*
109  *     virt_to_phys    -       map virtual addresses to physical
110  *     @address: address to remap
111  *
112  *     The returned physical address is the physical (CPU) mapping for
113  *     the memory address given. It is only valid to use this function on
114  *     addresses directly mapped or allocated via kmalloc.
115  *
116  *     This function does not give bus mappings for DMA transfers. In
117  *     almost all conceivable cases a device driver should not be using
118  *     this function
119  */
120 static inline unsigned long virt_to_phys(volatile const void *address)
121 {
122 	return __pa(address);
123 }
124 
125 /*
126  *     phys_to_virt    -       map physical address to virtual
127  *     @address: address to remap
128  *
129  *     The returned virtual address is a current CPU mapping for
130  *     the memory address given. It is only valid to use this function on
131  *     addresses that have a kernel mapping
132  *
133  *     This function does not handle bus mappings for DMA transfers. In
134  *     almost all conceivable cases a device driver should not be using
135  *     this function
136  */
137 static inline void * phys_to_virt(unsigned long address)
138 {
139 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
140 }
141 
142 /*
143  * ISA I/O bus memory addresses are 1:1 with the physical address.
144  */
145 static inline unsigned long isa_virt_to_bus(volatile void *address)
146 {
147 	return virt_to_phys(address);
148 }
149 
150 static inline void *isa_bus_to_virt(unsigned long address)
151 {
152 	return phys_to_virt(address);
153 }
154 
155 #define isa_page_to_bus page_to_phys
156 
157 /*
158  * However PCI ones are not necessarily 1:1 and therefore these interfaces
159  * are forbidden in portable PCI drivers.
160  *
161  * Allow them for x86 for legacy drivers, though.
162  */
163 #define virt_to_bus virt_to_phys
164 #define bus_to_virt phys_to_virt
165 
166 /*
167  * Change "struct page" to physical address.
168  */
169 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
170 
171 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
172 extern void __iounmap(const volatile void __iomem *addr);
173 
174 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
175 	unsigned long flags)
176 {
177 	void __iomem *addr = plat_ioremap(offset, size, flags);
178 
179 	if (addr)
180 		return addr;
181 
182 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
183 
184 	if (cpu_has_64bit_addresses) {
185 		u64 base = UNCAC_BASE;
186 
187 		/*
188 		 * R10000 supports a 2 bit uncached attribute therefore
189 		 * UNCAC_BASE may not equal IO_BASE.
190 		 */
191 		if (flags == _CACHE_UNCACHED)
192 			base = (u64) IO_BASE;
193 		return (void __iomem *) (unsigned long) (base + offset);
194 	} else if (__builtin_constant_p(offset) &&
195 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
196 		phys_addr_t phys_addr, last_addr;
197 
198 		phys_addr = fixup_bigphys_addr(offset, size);
199 
200 		/* Don't allow wraparound or zero size. */
201 		last_addr = phys_addr + size - 1;
202 		if (!size || last_addr < phys_addr)
203 			return NULL;
204 
205 		/*
206 		 * Map uncached objects in the low 512MB of address
207 		 * space using KSEG1.
208 		 */
209 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
210 		    flags == _CACHE_UNCACHED)
211 			return (void __iomem *)
212 				(unsigned long)CKSEG1ADDR(phys_addr);
213 	}
214 
215 	return __ioremap(offset, size, flags);
216 
217 #undef __IS_LOW512
218 }
219 
220 /*
221  * ioremap     -   map bus memory into CPU space
222  * @offset:    bus address of the memory
223  * @size:      size of the resource to map
224  *
225  * ioremap performs a platform specific sequence of operations to
226  * make bus memory CPU accessible via the readb/readw/readl/writeb/
227  * writew/writel functions and the other mmio helpers. The returned
228  * address is not guaranteed to be usable directly as a virtual
229  * address.
230  */
231 #define ioremap(offset, size)						\
232 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
233 
234 /*
235  * ioremap_nocache     -   map bus memory into CPU space
236  * @offset:    bus address of the memory
237  * @size:      size of the resource to map
238  *
239  * ioremap_nocache performs a platform specific sequence of operations to
240  * make bus memory CPU accessible via the readb/readw/readl/writeb/
241  * writew/writel functions and the other mmio helpers. The returned
242  * address is not guaranteed to be usable directly as a virtual
243  * address.
244  *
245  * This version of ioremap ensures that the memory is marked uncachable
246  * on the CPU as well as honouring existing caching rules from things like
247  * the PCI bus. Note that there are other caches and buffers on many
248  * busses. In particular driver authors should read up on PCI writes
249  *
250  * It's useful if some control registers are in such an area and
251  * write combining or read caching is not desirable:
252  */
253 #define ioremap_nocache(offset, size)					\
254 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
255 #define ioremap_uc ioremap_nocache
256 
257 /*
258  * ioremap_cachable -	map bus memory into CPU space
259  * @offset:	    bus address of the memory
260  * @size:	    size of the resource to map
261  *
262  * ioremap_nocache performs a platform specific sequence of operations to
263  * make bus memory CPU accessible via the readb/readw/readl/writeb/
264  * writew/writel functions and the other mmio helpers. The returned
265  * address is not guaranteed to be usable directly as a virtual
266  * address.
267  *
268  * This version of ioremap ensures that the memory is marked cachable by
269  * the CPU.  Also enables full write-combining.	 Useful for some
270  * memory-like regions on I/O busses.
271  */
272 #define ioremap_cachable(offset, size)					\
273 	__ioremap_mode((offset), (size), _page_cachable_default)
274 #define ioremap_cache ioremap_cachable
275 
276 /*
277  * ioremap_wc     -   map bus memory into CPU space
278  * @offset:    bus address of the memory
279  * @size:      size of the resource to map
280  *
281  * ioremap_wc performs a platform specific sequence of operations to
282  * make bus memory CPU accessible via the readb/readw/readl/writeb/
283  * writew/writel functions and the other mmio helpers. The returned
284  * address is not guaranteed to be usable directly as a virtual
285  * address.
286  *
287  * This version of ioremap ensures that the memory is marked uncachable
288  * but accelerated by means of write-combining feature. It is specifically
289  * useful for PCIe prefetchable windows, which may vastly improve a
290  * communications performance. If it was determined on boot stage, what
291  * CPU CCA doesn't support UCA, the method shall fall-back to the
292  * _CACHE_UNCACHED option (see cpu_probe() method).
293  */
294 #define ioremap_wc(offset, size)					\
295 	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
296 
297 static inline void iounmap(const volatile void __iomem *addr)
298 {
299 	if (plat_iounmap(addr))
300 		return;
301 
302 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
303 
304 	if (cpu_has_64bit_addresses ||
305 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
306 		return;
307 
308 	__iounmap(addr);
309 
310 #undef __IS_KSEG1
311 }
312 
313 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
314 #define war_io_reorder_wmb()		wmb()
315 #else
316 #define war_io_reorder_wmb()		barrier()
317 #endif
318 
319 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
320 									\
321 static inline void pfx##write##bwlq(type val,				\
322 				    volatile void __iomem *mem)		\
323 {									\
324 	volatile type *__mem;						\
325 	type __val;							\
326 									\
327 	if (barrier)							\
328 		iobarrier_rw();						\
329 	else								\
330 		war_io_reorder_wmb();					\
331 									\
332 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
333 									\
334 	__val = pfx##ioswab##bwlq(__mem, val);				\
335 									\
336 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
337 		*__mem = __val;						\
338 	else if (cpu_has_64bits) {					\
339 		unsigned long __flags;					\
340 		type __tmp;						\
341 									\
342 		if (irq)						\
343 			local_irq_save(__flags);			\
344 		__asm__ __volatile__(					\
345 			".set	arch=r4000"	"\t\t# __writeq""\n\t"	\
346 			"dsll32 %L0, %L0, 0"			"\n\t"	\
347 			"dsrl32 %L0, %L0, 0"			"\n\t"	\
348 			"dsll32 %M0, %M0, 0"			"\n\t"	\
349 			"or	%L0, %L0, %M0"			"\n\t"	\
350 			"sd	%L0, %2"			"\n\t"	\
351 			".set	mips0"				"\n"	\
352 			: "=r" (__tmp)					\
353 			: "0" (__val), "m" (*__mem));			\
354 		if (irq)						\
355 			local_irq_restore(__flags);			\
356 	} else								\
357 		BUG();							\
358 }									\
359 									\
360 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
361 {									\
362 	volatile type *__mem;						\
363 	type __val;							\
364 									\
365 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
366 									\
367 	if (barrier)							\
368 		iobarrier_rw();						\
369 									\
370 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
371 		__val = *__mem;						\
372 	else if (cpu_has_64bits) {					\
373 		unsigned long __flags;					\
374 									\
375 		if (irq)						\
376 			local_irq_save(__flags);			\
377 		__asm__ __volatile__(					\
378 			".set	arch=r4000"	"\t\t# __readq" "\n\t"	\
379 			"ld	%L0, %1"			"\n\t"	\
380 			"dsra32 %M0, %L0, 0"			"\n\t"	\
381 			"sll	%L0, %L0, 0"			"\n\t"	\
382 			".set	mips0"				"\n"	\
383 			: "=r" (__val)					\
384 			: "m" (*__mem));				\
385 		if (irq)						\
386 			local_irq_restore(__flags);			\
387 	} else {							\
388 		__val = 0;						\
389 		BUG();							\
390 	}								\
391 									\
392 	/* prevent prefetching of coherent DMA data prematurely */	\
393 	if (!relax)							\
394 		rmb();							\
395 	return pfx##ioswab##bwlq(__mem, __val);				\
396 }
397 
398 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
399 									\
400 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
401 {									\
402 	volatile type *__addr;						\
403 	type __val;							\
404 									\
405 	if (barrier)							\
406 		iobarrier_rw();						\
407 	else								\
408 		war_io_reorder_wmb();					\
409 									\
410 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
411 									\
412 	__val = pfx##ioswab##bwlq(__addr, val);				\
413 									\
414 	/* Really, we want this to be atomic */				\
415 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
416 									\
417 	*__addr = __val;						\
418 }									\
419 									\
420 static inline type pfx##in##bwlq##p(unsigned long port)			\
421 {									\
422 	volatile type *__addr;						\
423 	type __val;							\
424 									\
425 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
426 									\
427 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
428 									\
429 	if (barrier)							\
430 		iobarrier_rw();						\
431 									\
432 	__val = *__addr;						\
433 									\
434 	/* prevent prefetching of coherent DMA data prematurely */	\
435 	if (!relax)							\
436 		rmb();							\
437 	return pfx##ioswab##bwlq(__addr, __val);			\
438 }
439 
440 #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
441 									\
442 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
443 
444 #define BUILDIO_MEM(bwlq, type)						\
445 									\
446 __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
447 __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
448 __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
449 __BUILD_MEMORY_PFX(, bwlq, type, 0)
450 
451 BUILDIO_MEM(b, u8)
452 BUILDIO_MEM(w, u16)
453 BUILDIO_MEM(l, u32)
454 BUILDIO_MEM(q, u64)
455 
456 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
457 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
458 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
459 
460 #define BUILDIO_IOPORT(bwlq, type)					\
461 	__BUILD_IOPORT_PFX(, bwlq, type)				\
462 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
463 
464 BUILDIO_IOPORT(b, u8)
465 BUILDIO_IOPORT(w, u16)
466 BUILDIO_IOPORT(l, u32)
467 #ifdef CONFIG_64BIT
468 BUILDIO_IOPORT(q, u64)
469 #endif
470 
471 #define __BUILDIO(bwlq, type)						\
472 									\
473 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
474 
475 __BUILDIO(q, u64)
476 
477 #define readb_relaxed			__relaxed_readb
478 #define readw_relaxed			__relaxed_readw
479 #define readl_relaxed			__relaxed_readl
480 #define readq_relaxed			__relaxed_readq
481 
482 #define writeb_relaxed			__relaxed_writeb
483 #define writew_relaxed			__relaxed_writew
484 #define writel_relaxed			__relaxed_writel
485 #define writeq_relaxed			__relaxed_writeq
486 
487 #define readb_be(addr)							\
488 	__raw_readb((__force unsigned *)(addr))
489 #define readw_be(addr)							\
490 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
491 #define readl_be(addr)							\
492 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
493 #define readq_be(addr)							\
494 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
495 
496 #define writeb_be(val, addr)						\
497 	__raw_writeb((val), (__force unsigned *)(addr))
498 #define writew_be(val, addr)						\
499 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
500 #define writel_be(val, addr)						\
501 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
502 #define writeq_be(val, addr)						\
503 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
504 
505 /*
506  * Some code tests for these symbols
507  */
508 #define readq				readq
509 #define writeq				writeq
510 
511 #define __BUILD_MEMORY_STRING(bwlq, type)				\
512 									\
513 static inline void writes##bwlq(volatile void __iomem *mem,		\
514 				const void *addr, unsigned int count)	\
515 {									\
516 	const volatile type *__addr = addr;				\
517 									\
518 	while (count--) {						\
519 		__mem_write##bwlq(*__addr, mem);			\
520 		__addr++;						\
521 	}								\
522 }									\
523 									\
524 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
525 			       unsigned int count)			\
526 {									\
527 	volatile type *__addr = addr;					\
528 									\
529 	while (count--) {						\
530 		*__addr = __mem_read##bwlq(mem);			\
531 		__addr++;						\
532 	}								\
533 }
534 
535 #define __BUILD_IOPORT_STRING(bwlq, type)				\
536 									\
537 static inline void outs##bwlq(unsigned long port, const void *addr,	\
538 			      unsigned int count)			\
539 {									\
540 	const volatile type *__addr = addr;				\
541 									\
542 	while (count--) {						\
543 		__mem_out##bwlq(*__addr, port);				\
544 		__addr++;						\
545 	}								\
546 }									\
547 									\
548 static inline void ins##bwlq(unsigned long port, void *addr,		\
549 			     unsigned int count)			\
550 {									\
551 	volatile type *__addr = addr;					\
552 									\
553 	while (count--) {						\
554 		*__addr = __mem_in##bwlq(port);				\
555 		__addr++;						\
556 	}								\
557 }
558 
559 #define BUILDSTRING(bwlq, type)						\
560 									\
561 __BUILD_MEMORY_STRING(bwlq, type)					\
562 __BUILD_IOPORT_STRING(bwlq, type)
563 
564 BUILDSTRING(b, u8)
565 BUILDSTRING(w, u16)
566 BUILDSTRING(l, u32)
567 #ifdef CONFIG_64BIT
568 BUILDSTRING(q, u64)
569 #endif
570 
571 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
572 {
573 	memset((void __force *) addr, val, count);
574 }
575 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
576 {
577 	memcpy(dst, (void __force *) src, count);
578 }
579 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
580 {
581 	memcpy((void __force *) dst, src, count);
582 }
583 
584 /*
585  * The caches on some architectures aren't dma-coherent and have need to
586  * handle this in software.  There are three types of operations that
587  * can be applied to dma buffers.
588  *
589  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
590  *    writing the content of the caches back to memory, if necessary.
591  *    The function also invalidates the affected part of the caches as
592  *    necessary before DMA transfers from outside to memory.
593  *  - dma_cache_wback(start, size) makes caches and coherent by
594  *    writing the content of the caches back to memory, if necessary.
595  *    The function also invalidates the affected part of the caches as
596  *    necessary before DMA transfers from outside to memory.
597  *  - dma_cache_inv(start, size) invalidates the affected parts of the
598  *    caches.  Dirty lines of the caches may be written back or simply
599  *    be discarded.  This operation is necessary before dma operations
600  *    to the memory.
601  *
602  * This API used to be exported; it now is for arch code internal use only.
603  */
604 #ifdef CONFIG_DMA_NONCOHERENT
605 
606 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
607 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
608 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
609 
610 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
611 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
612 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
613 
614 #else /* Sane hardware */
615 
616 #define dma_cache_wback_inv(start,size) \
617 	do { (void) (start); (void) (size); } while (0)
618 #define dma_cache_wback(start,size)	\
619 	do { (void) (start); (void) (size); } while (0)
620 #define dma_cache_inv(start,size)	\
621 	do { (void) (start); (void) (size); } while (0)
622 
623 #endif /* CONFIG_DMA_NONCOHERENT */
624 
625 /*
626  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
627  * Avoid interrupt mucking, just adjust the address for 4-byte access.
628  * Assume the addresses are 8-byte aligned.
629  */
630 #ifdef __MIPSEB__
631 #define __CSR_32_ADJUST 4
632 #else
633 #define __CSR_32_ADJUST 0
634 #endif
635 
636 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
637 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
638 
639 /*
640  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
641  * access
642  */
643 #define xlate_dev_mem_ptr(p)	__va(p)
644 
645 /*
646  * Convert a virtual cached pointer to an uncached pointer
647  */
648 #define xlate_dev_kmem_ptr(p)	p
649 
650 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
651 
652 #endif /* _ASM_IO_H */
653