xref: /openbmc/linux/arch/mips/include/asm/dma.h (revision b627b4ed)
1 /*
2  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3  * Written by Hennus Bergman, 1992.
4  * High DMA channel support & info by Hannu Savolainen
5  * and John Boyd, Nov. 1992.
6  *
7  * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
8  * and can only be used for expansion cards. Onboard DMA controllers, such
9  * as the R4030 on Jazz boards behave totally different!
10  */
11 
12 #ifndef _ASM_DMA_H
13 #define _ASM_DMA_H
14 
15 #include <asm/io.h>			/* need byte IO */
16 #include <linux/spinlock.h>		/* And spinlocks */
17 #include <linux/delay.h>
18 #include <asm/system.h>
19 
20 
21 #ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
22 #define dma_outb	outb_p
23 #else
24 #define dma_outb	outb
25 #endif
26 
27 #define dma_inb		inb
28 
29 /*
30  * NOTES about DMA transfers:
31  *
32  *  controller 1: channels 0-3, byte operations, ports 00-1F
33  *  controller 2: channels 4-7, word operations, ports C0-DF
34  *
35  *  - ALL registers are 8 bits only, regardless of transfer size
36  *  - channel 4 is not used - cascades 1 into 2.
37  *  - channels 0-3 are byte - addresses/counts are for physical bytes
38  *  - channels 5-7 are word - addresses/counts are for physical words
39  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
40  *  - transfer count loaded to registers is 1 less than actual count
41  *  - controller 2 offsets are all even (2x offsets for controller 1)
42  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
43  *  - page registers for 0-3 use bit 0, represent 64K pages
44  *
45  * DMA transfers are limited to the lower 16MB of _physical_ memory.
46  * Note that addresses loaded into registers must be _physical_ addresses,
47  * not logical addresses (which may differ if paging is active).
48  *
49  *  Address mapping for channels 0-3:
50  *
51  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
52  *    |  ...  |   |  ... |   |  ... |
53  *    |  ...  |   |  ... |   |  ... |
54  *    |  ...  |   |  ... |   |  ... |
55  *   P7  ...  P0  A7 ... A0  A7 ... A0
56  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
57  *
58  *  Address mapping for channels 5-7:
59  *
60  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
61  *    |  ...  |   \   \   ... \  \  \  ... \  \
62  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
63  *    |  ...  |     \   \   ... \  \  \  ... \
64  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
65  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
66  *
67  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
68  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
69  * the hardware level, so odd-byte transfers aren't possible).
70  *
71  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
72  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
73  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
74  *
75  */
76 
77 #ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
78 #define MAX_DMA_CHANNELS	8
79 #endif
80 
81 /*
82  * The maximum address in KSEG0 that we can perform a DMA transfer to on this
83  * platform.  This describes only the PC style part of the DMA logic like on
84  * Deskstations or Acer PICA but not the much more versatile DMA logic used
85  * for the local devices on Acer PICA or Magnums.
86  */
87 #if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
88 /* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
89 #define MAX_DMA_ADDRESS		PAGE_OFFSET
90 #else
91 #define MAX_DMA_ADDRESS		(PAGE_OFFSET + 0x01000000)
92 #endif
93 #define MAX_DMA_PFN		PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
94 #define MAX_DMA32_PFN		(1UL << (32 - PAGE_SHIFT))
95 
96 /* 8237 DMA controllers */
97 #define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
98 #define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
99 
100 /* DMA controller registers */
101 #define DMA1_CMD_REG		0x08	/* command register (w) */
102 #define DMA1_STAT_REG		0x08	/* status register (r) */
103 #define DMA1_REQ_REG            0x09    /* request register (w) */
104 #define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
105 #define DMA1_MODE_REG		0x0B	/* mode register (w) */
106 #define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
107 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
108 #define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
109 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
110 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
111 
112 #define DMA2_CMD_REG		0xD0	/* command register (w) */
113 #define DMA2_STAT_REG		0xD0	/* status register (r) */
114 #define DMA2_REQ_REG            0xD2    /* request register (w) */
115 #define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
116 #define DMA2_MODE_REG		0xD6	/* mode register (w) */
117 #define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
118 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
119 #define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
120 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
121 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
122 
123 #define DMA_ADDR_0              0x00    /* DMA address registers */
124 #define DMA_ADDR_1              0x02
125 #define DMA_ADDR_2              0x04
126 #define DMA_ADDR_3              0x06
127 #define DMA_ADDR_4              0xC0
128 #define DMA_ADDR_5              0xC4
129 #define DMA_ADDR_6              0xC8
130 #define DMA_ADDR_7              0xCC
131 
132 #define DMA_CNT_0               0x01    /* DMA count registers */
133 #define DMA_CNT_1               0x03
134 #define DMA_CNT_2               0x05
135 #define DMA_CNT_3               0x07
136 #define DMA_CNT_4               0xC2
137 #define DMA_CNT_5               0xC6
138 #define DMA_CNT_6               0xCA
139 #define DMA_CNT_7               0xCE
140 
141 #define DMA_PAGE_0              0x87    /* DMA page registers */
142 #define DMA_PAGE_1              0x83
143 #define DMA_PAGE_2              0x81
144 #define DMA_PAGE_3              0x82
145 #define DMA_PAGE_5              0x8B
146 #define DMA_PAGE_6              0x89
147 #define DMA_PAGE_7              0x8A
148 
149 #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
150 #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
151 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
152 
153 #define DMA_AUTOINIT	0x10
154 
155 extern spinlock_t  dma_spin_lock;
156 
157 static __inline__ unsigned long claim_dma_lock(void)
158 {
159 	unsigned long flags;
160 	spin_lock_irqsave(&dma_spin_lock, flags);
161 	return flags;
162 }
163 
164 static __inline__ void release_dma_lock(unsigned long flags)
165 {
166 	spin_unlock_irqrestore(&dma_spin_lock, flags);
167 }
168 
169 /* enable/disable a specific DMA channel */
170 static __inline__ void enable_dma(unsigned int dmanr)
171 {
172 	if (dmanr<=3)
173 		dma_outb(dmanr,  DMA1_MASK_REG);
174 	else
175 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
176 }
177 
178 static __inline__ void disable_dma(unsigned int dmanr)
179 {
180 	if (dmanr<=3)
181 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
182 	else
183 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
184 }
185 
186 /* Clear the 'DMA Pointer Flip Flop'.
187  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
188  * Use this once to initialize the FF to a known state.
189  * After that, keep track of it. :-)
190  * --- In order to do that, the DMA routines below should ---
191  * --- only be used while holding the DMA lock ! ---
192  */
193 static __inline__ void clear_dma_ff(unsigned int dmanr)
194 {
195 	if (dmanr<=3)
196 		dma_outb(0,  DMA1_CLEAR_FF_REG);
197 	else
198 		dma_outb(0,  DMA2_CLEAR_FF_REG);
199 }
200 
201 /* set mode (above) for a specific DMA channel */
202 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
203 {
204 	if (dmanr<=3)
205 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
206 	else
207 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
208 }
209 
210 /* Set only the page register bits of the transfer address.
211  * This is used for successive transfers when we know the contents of
212  * the lower 16 bits of the DMA current address register, but a 64k boundary
213  * may have been crossed.
214  */
215 static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
216 {
217 	switch(dmanr) {
218 		case 0:
219 			dma_outb(pagenr, DMA_PAGE_0);
220 			break;
221 		case 1:
222 			dma_outb(pagenr, DMA_PAGE_1);
223 			break;
224 		case 2:
225 			dma_outb(pagenr, DMA_PAGE_2);
226 			break;
227 		case 3:
228 			dma_outb(pagenr, DMA_PAGE_3);
229 			break;
230 		case 5:
231 			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
232 			break;
233 		case 6:
234 			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
235 			break;
236 		case 7:
237 			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
238 			break;
239 	}
240 }
241 
242 
243 /* Set transfer address & page bits for specific DMA channel.
244  * Assumes dma flipflop is clear.
245  */
246 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
247 {
248 	set_dma_page(dmanr, a>>16);
249 	if (dmanr <= 3)  {
250 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
251             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
252 	}  else  {
253 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
254 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
255 	}
256 }
257 
258 
259 /* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
260  * a specific DMA channel.
261  * You must ensure the parameters are valid.
262  * NOTE: from a manual: "the number of transfers is one more
263  * than the initial word count"! This is taken into account.
264  * Assumes dma flip-flop is clear.
265  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
266  */
267 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
268 {
269         count--;
270 	if (dmanr <= 3)  {
271 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
272 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
273         } else {
274 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
275 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
276         }
277 }
278 
279 
280 /* Get DMA residue count. After a DMA transfer, this
281  * should return zero. Reading this while a DMA transfer is
282  * still in progress will return unpredictable results.
283  * If called before the channel has been used, it may return 1.
284  * Otherwise, it returns the number of _bytes_ left to transfer.
285  *
286  * Assumes DMA flip-flop is clear.
287  */
288 static __inline__ int get_dma_residue(unsigned int dmanr)
289 {
290 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
291 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
292 
293 	/* using short to get 16-bit wrap around */
294 	unsigned short count;
295 
296 	count = 1 + dma_inb(io_port);
297 	count += dma_inb(io_port) << 8;
298 
299 	return (dmanr<=3)? count : (count<<1);
300 }
301 
302 
303 /* These are in kernel/dma.c: */
304 extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
305 extern void free_dma(unsigned int dmanr);	/* release it again */
306 
307 /* From PCI */
308 
309 #ifdef CONFIG_PCI
310 extern int isa_dma_bridge_buggy;
311 #else
312 #define isa_dma_bridge_buggy	(0)
313 #endif
314 
315 #endif /* _ASM_DMA_H */
316