1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 1994 - 1997, 99, 2000, 06, 07 Ralf Baechle (ralf@linux-mips.org) 7 * Copyright (c) 1999, 2000 Silicon Graphics, Inc. 8 */ 9 #ifndef _ASM_BITOPS_H 10 #define _ASM_BITOPS_H 11 12 #ifndef _LINUX_BITOPS_H 13 #error only <linux/bitops.h> can be included directly 14 #endif 15 16 #include <linux/compiler.h> 17 #include <linux/irqflags.h> 18 #include <linux/types.h> 19 #include <asm/barrier.h> 20 #include <asm/bug.h> 21 #include <asm/byteorder.h> /* sigh ... */ 22 #include <asm/cpu-features.h> 23 #include <asm/sgidefs.h> 24 #include <asm/war.h> 25 26 #if _MIPS_SZLONG == 32 27 #define SZLONG_LOG 5 28 #define SZLONG_MASK 31UL 29 #define __LL "ll " 30 #define __SC "sc " 31 #define __INS "ins " 32 #define __EXT "ext " 33 #elif _MIPS_SZLONG == 64 34 #define SZLONG_LOG 6 35 #define SZLONG_MASK 63UL 36 #define __LL "lld " 37 #define __SC "scd " 38 #define __INS "dins " 39 #define __EXT "dext " 40 #endif 41 42 /* 43 * clear_bit() doesn't provide any barrier for the compiler. 44 */ 45 #define smp_mb__before_clear_bit() smp_mb__before_llsc() 46 #define smp_mb__after_clear_bit() smp_llsc_mb() 47 48 /* 49 * set_bit - Atomically set a bit in memory 50 * @nr: the bit to set 51 * @addr: the address to start counting from 52 * 53 * This function is atomic and may not be reordered. See __set_bit() 54 * if you do not require the atomic guarantees. 55 * Note that @nr may be almost arbitrarily large; this function is not 56 * restricted to acting on a single-word quantity. 57 */ 58 static inline void set_bit(unsigned long nr, volatile unsigned long *addr) 59 { 60 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 61 unsigned short bit = nr & SZLONG_MASK; 62 unsigned long temp; 63 64 if (kernel_uses_llsc && R10000_LLSC_WAR) { 65 __asm__ __volatile__( 66 " .set mips3 \n" 67 "1: " __LL "%0, %1 # set_bit \n" 68 " or %0, %2 \n" 69 " " __SC "%0, %1 \n" 70 " beqzl %0, 1b \n" 71 " .set mips0 \n" 72 : "=&r" (temp), "=m" (*m) 73 : "ir" (1UL << bit), "m" (*m)); 74 #ifdef CONFIG_CPU_MIPSR2 75 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) { 76 do { 77 __asm__ __volatile__( 78 " " __LL "%0, %1 # set_bit \n" 79 " " __INS "%0, %3, %2, 1 \n" 80 " " __SC "%0, %1 \n" 81 : "=&r" (temp), "+m" (*m) 82 : "ir" (bit), "r" (~0)); 83 } while (unlikely(!temp)); 84 #endif /* CONFIG_CPU_MIPSR2 */ 85 } else if (kernel_uses_llsc) { 86 do { 87 __asm__ __volatile__( 88 " .set mips3 \n" 89 " " __LL "%0, %1 # set_bit \n" 90 " or %0, %2 \n" 91 " " __SC "%0, %1 \n" 92 " .set mips0 \n" 93 : "=&r" (temp), "+m" (*m) 94 : "ir" (1UL << bit)); 95 } while (unlikely(!temp)); 96 } else { 97 volatile unsigned long *a = addr; 98 unsigned long mask; 99 unsigned long flags; 100 101 a += nr >> SZLONG_LOG; 102 mask = 1UL << bit; 103 raw_local_irq_save(flags); 104 *a |= mask; 105 raw_local_irq_restore(flags); 106 } 107 } 108 109 /* 110 * clear_bit - Clears a bit in memory 111 * @nr: Bit to clear 112 * @addr: Address to start counting from 113 * 114 * clear_bit() is atomic and may not be reordered. However, it does 115 * not contain a memory barrier, so if it is used for locking purposes, 116 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 117 * in order to ensure changes are visible on other processors. 118 */ 119 static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) 120 { 121 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 122 unsigned short bit = nr & SZLONG_MASK; 123 unsigned long temp; 124 125 if (kernel_uses_llsc && R10000_LLSC_WAR) { 126 __asm__ __volatile__( 127 " .set mips3 \n" 128 "1: " __LL "%0, %1 # clear_bit \n" 129 " and %0, %2 \n" 130 " " __SC "%0, %1 \n" 131 " beqzl %0, 1b \n" 132 " .set mips0 \n" 133 : "=&r" (temp), "+m" (*m) 134 : "ir" (~(1UL << bit))); 135 #ifdef CONFIG_CPU_MIPSR2 136 } else if (kernel_uses_llsc && __builtin_constant_p(bit)) { 137 do { 138 __asm__ __volatile__( 139 " " __LL "%0, %1 # clear_bit \n" 140 " " __INS "%0, $0, %2, 1 \n" 141 " " __SC "%0, %1 \n" 142 : "=&r" (temp), "+m" (*m) 143 : "ir" (bit)); 144 } while (unlikely(!temp)); 145 #endif /* CONFIG_CPU_MIPSR2 */ 146 } else if (kernel_uses_llsc) { 147 do { 148 __asm__ __volatile__( 149 " .set mips3 \n" 150 " " __LL "%0, %1 # clear_bit \n" 151 " and %0, %2 \n" 152 " " __SC "%0, %1 \n" 153 " .set mips0 \n" 154 : "=&r" (temp), "+m" (*m) 155 : "ir" (~(1UL << bit))); 156 } while (unlikely(!temp)); 157 } else { 158 volatile unsigned long *a = addr; 159 unsigned long mask; 160 unsigned long flags; 161 162 a += nr >> SZLONG_LOG; 163 mask = 1UL << bit; 164 raw_local_irq_save(flags); 165 *a &= ~mask; 166 raw_local_irq_restore(flags); 167 } 168 } 169 170 /* 171 * clear_bit_unlock - Clears a bit in memory 172 * @nr: Bit to clear 173 * @addr: Address to start counting from 174 * 175 * clear_bit() is atomic and implies release semantics before the memory 176 * operation. It can be used for an unlock. 177 */ 178 static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr) 179 { 180 smp_mb__before_clear_bit(); 181 clear_bit(nr, addr); 182 } 183 184 /* 185 * change_bit - Toggle a bit in memory 186 * @nr: Bit to change 187 * @addr: Address to start counting from 188 * 189 * change_bit() is atomic and may not be reordered. 190 * Note that @nr may be almost arbitrarily large; this function is not 191 * restricted to acting on a single-word quantity. 192 */ 193 static inline void change_bit(unsigned long nr, volatile unsigned long *addr) 194 { 195 unsigned short bit = nr & SZLONG_MASK; 196 197 if (kernel_uses_llsc && R10000_LLSC_WAR) { 198 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 199 unsigned long temp; 200 201 __asm__ __volatile__( 202 " .set mips3 \n" 203 "1: " __LL "%0, %1 # change_bit \n" 204 " xor %0, %2 \n" 205 " " __SC "%0, %1 \n" 206 " beqzl %0, 1b \n" 207 " .set mips0 \n" 208 : "=&r" (temp), "+m" (*m) 209 : "ir" (1UL << bit)); 210 } else if (kernel_uses_llsc) { 211 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 212 unsigned long temp; 213 214 do { 215 __asm__ __volatile__( 216 " .set mips3 \n" 217 " " __LL "%0, %1 # change_bit \n" 218 " xor %0, %2 \n" 219 " " __SC "%0, %1 \n" 220 " .set mips0 \n" 221 : "=&r" (temp), "+m" (*m) 222 : "ir" (1UL << bit)); 223 } while (unlikely(!temp)); 224 } else { 225 volatile unsigned long *a = addr; 226 unsigned long mask; 227 unsigned long flags; 228 229 a += nr >> SZLONG_LOG; 230 mask = 1UL << bit; 231 raw_local_irq_save(flags); 232 *a ^= mask; 233 raw_local_irq_restore(flags); 234 } 235 } 236 237 /* 238 * test_and_set_bit - Set a bit and return its old value 239 * @nr: Bit to set 240 * @addr: Address to count from 241 * 242 * This operation is atomic and cannot be reordered. 243 * It also implies a memory barrier. 244 */ 245 static inline int test_and_set_bit(unsigned long nr, 246 volatile unsigned long *addr) 247 { 248 unsigned short bit = nr & SZLONG_MASK; 249 unsigned long res; 250 251 smp_mb__before_llsc(); 252 253 if (kernel_uses_llsc && R10000_LLSC_WAR) { 254 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 255 unsigned long temp; 256 257 __asm__ __volatile__( 258 " .set mips3 \n" 259 "1: " __LL "%0, %1 # test_and_set_bit \n" 260 " or %2, %0, %3 \n" 261 " " __SC "%2, %1 \n" 262 " beqzl %2, 1b \n" 263 " and %2, %0, %3 \n" 264 " .set mips0 \n" 265 : "=&r" (temp), "+m" (*m), "=&r" (res) 266 : "r" (1UL << bit) 267 : "memory"); 268 } else if (kernel_uses_llsc) { 269 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 270 unsigned long temp; 271 272 do { 273 __asm__ __volatile__( 274 " .set mips3 \n" 275 " " __LL "%0, %1 # test_and_set_bit \n" 276 " or %2, %0, %3 \n" 277 " " __SC "%2, %1 \n" 278 " .set mips0 \n" 279 : "=&r" (temp), "+m" (*m), "=&r" (res) 280 : "r" (1UL << bit) 281 : "memory"); 282 } while (unlikely(!res)); 283 284 res = temp & (1UL << bit); 285 } else { 286 volatile unsigned long *a = addr; 287 unsigned long mask; 288 unsigned long flags; 289 290 a += nr >> SZLONG_LOG; 291 mask = 1UL << bit; 292 raw_local_irq_save(flags); 293 res = (mask & *a); 294 *a |= mask; 295 raw_local_irq_restore(flags); 296 } 297 298 smp_llsc_mb(); 299 300 return res != 0; 301 } 302 303 /* 304 * test_and_set_bit_lock - Set a bit and return its old value 305 * @nr: Bit to set 306 * @addr: Address to count from 307 * 308 * This operation is atomic and implies acquire ordering semantics 309 * after the memory operation. 310 */ 311 static inline int test_and_set_bit_lock(unsigned long nr, 312 volatile unsigned long *addr) 313 { 314 unsigned short bit = nr & SZLONG_MASK; 315 unsigned long res; 316 317 if (kernel_uses_llsc && R10000_LLSC_WAR) { 318 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 319 unsigned long temp; 320 321 __asm__ __volatile__( 322 " .set mips3 \n" 323 "1: " __LL "%0, %1 # test_and_set_bit \n" 324 " or %2, %0, %3 \n" 325 " " __SC "%2, %1 \n" 326 " beqzl %2, 1b \n" 327 " and %2, %0, %3 \n" 328 " .set mips0 \n" 329 : "=&r" (temp), "+m" (*m), "=&r" (res) 330 : "r" (1UL << bit) 331 : "memory"); 332 } else if (kernel_uses_llsc) { 333 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 334 unsigned long temp; 335 336 do { 337 __asm__ __volatile__( 338 " .set mips3 \n" 339 " " __LL "%0, %1 # test_and_set_bit \n" 340 " or %2, %0, %3 \n" 341 " " __SC "%2, %1 \n" 342 " .set mips0 \n" 343 : "=&r" (temp), "+m" (*m), "=&r" (res) 344 : "r" (1UL << bit) 345 : "memory"); 346 } while (unlikely(!res)); 347 348 res = temp & (1UL << bit); 349 } else { 350 volatile unsigned long *a = addr; 351 unsigned long mask; 352 unsigned long flags; 353 354 a += nr >> SZLONG_LOG; 355 mask = 1UL << bit; 356 raw_local_irq_save(flags); 357 res = (mask & *a); 358 *a |= mask; 359 raw_local_irq_restore(flags); 360 } 361 362 smp_llsc_mb(); 363 364 return res != 0; 365 } 366 /* 367 * test_and_clear_bit - Clear a bit and return its old value 368 * @nr: Bit to clear 369 * @addr: Address to count from 370 * 371 * This operation is atomic and cannot be reordered. 372 * It also implies a memory barrier. 373 */ 374 static inline int test_and_clear_bit(unsigned long nr, 375 volatile unsigned long *addr) 376 { 377 unsigned short bit = nr & SZLONG_MASK; 378 unsigned long res; 379 380 smp_mb__before_llsc(); 381 382 if (kernel_uses_llsc && R10000_LLSC_WAR) { 383 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 384 unsigned long temp; 385 386 __asm__ __volatile__( 387 " .set mips3 \n" 388 "1: " __LL "%0, %1 # test_and_clear_bit \n" 389 " or %2, %0, %3 \n" 390 " xor %2, %3 \n" 391 " " __SC "%2, %1 \n" 392 " beqzl %2, 1b \n" 393 " and %2, %0, %3 \n" 394 " .set mips0 \n" 395 : "=&r" (temp), "+m" (*m), "=&r" (res) 396 : "r" (1UL << bit) 397 : "memory"); 398 #ifdef CONFIG_CPU_MIPSR2 399 } else if (kernel_uses_llsc && __builtin_constant_p(nr)) { 400 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 401 unsigned long temp; 402 403 do { 404 __asm__ __volatile__( 405 " " __LL "%0, %1 # test_and_clear_bit \n" 406 " " __EXT "%2, %0, %3, 1 \n" 407 " " __INS "%0, $0, %3, 1 \n" 408 " " __SC "%0, %1 \n" 409 : "=&r" (temp), "+m" (*m), "=&r" (res) 410 : "ir" (bit) 411 : "memory"); 412 } while (unlikely(!temp)); 413 #endif 414 } else if (kernel_uses_llsc) { 415 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 416 unsigned long temp; 417 418 do { 419 __asm__ __volatile__( 420 " .set mips3 \n" 421 " " __LL "%0, %1 # test_and_clear_bit \n" 422 " or %2, %0, %3 \n" 423 " xor %2, %3 \n" 424 " " __SC "%2, %1 \n" 425 " .set mips0 \n" 426 : "=&r" (temp), "+m" (*m), "=&r" (res) 427 : "r" (1UL << bit) 428 : "memory"); 429 } while (unlikely(!res)); 430 431 res = temp & (1UL << bit); 432 } else { 433 volatile unsigned long *a = addr; 434 unsigned long mask; 435 unsigned long flags; 436 437 a += nr >> SZLONG_LOG; 438 mask = 1UL << bit; 439 raw_local_irq_save(flags); 440 res = (mask & *a); 441 *a &= ~mask; 442 raw_local_irq_restore(flags); 443 } 444 445 smp_llsc_mb(); 446 447 return res != 0; 448 } 449 450 /* 451 * test_and_change_bit - Change a bit and return its old value 452 * @nr: Bit to change 453 * @addr: Address to count from 454 * 455 * This operation is atomic and cannot be reordered. 456 * It also implies a memory barrier. 457 */ 458 static inline int test_and_change_bit(unsigned long nr, 459 volatile unsigned long *addr) 460 { 461 unsigned short bit = nr & SZLONG_MASK; 462 unsigned long res; 463 464 smp_mb__before_llsc(); 465 466 if (kernel_uses_llsc && R10000_LLSC_WAR) { 467 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 468 unsigned long temp; 469 470 __asm__ __volatile__( 471 " .set mips3 \n" 472 "1: " __LL "%0, %1 # test_and_change_bit \n" 473 " xor %2, %0, %3 \n" 474 " " __SC "%2, %1 \n" 475 " beqzl %2, 1b \n" 476 " and %2, %0, %3 \n" 477 " .set mips0 \n" 478 : "=&r" (temp), "+m" (*m), "=&r" (res) 479 : "r" (1UL << bit) 480 : "memory"); 481 } else if (kernel_uses_llsc) { 482 unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); 483 unsigned long temp; 484 485 do { 486 __asm__ __volatile__( 487 " .set mips3 \n" 488 " " __LL "%0, %1 # test_and_change_bit \n" 489 " xor %2, %0, %3 \n" 490 " " __SC "\t%2, %1 \n" 491 " .set mips0 \n" 492 : "=&r" (temp), "+m" (*m), "=&r" (res) 493 : "r" (1UL << bit) 494 : "memory"); 495 } while (unlikely(!res)); 496 497 res = temp & (1UL << bit); 498 } else { 499 volatile unsigned long *a = addr; 500 unsigned long mask; 501 unsigned long flags; 502 503 a += nr >> SZLONG_LOG; 504 mask = 1UL << bit; 505 raw_local_irq_save(flags); 506 res = (mask & *a); 507 *a ^= mask; 508 raw_local_irq_restore(flags); 509 } 510 511 smp_llsc_mb(); 512 513 return res != 0; 514 } 515 516 #include <asm-generic/bitops/non-atomic.h> 517 518 /* 519 * __clear_bit_unlock - Clears a bit in memory 520 * @nr: Bit to clear 521 * @addr: Address to start counting from 522 * 523 * __clear_bit() is non-atomic and implies release semantics before the memory 524 * operation. It can be used for an unlock if no other CPUs can concurrently 525 * modify other bits in the word. 526 */ 527 static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr) 528 { 529 smp_mb(); 530 __clear_bit(nr, addr); 531 } 532 533 /* 534 * Return the bit position (0..63) of the most significant 1 bit in a word 535 * Returns -1 if no 1 bit exists 536 */ 537 static inline unsigned long __fls(unsigned long word) 538 { 539 int num; 540 541 if (BITS_PER_LONG == 32 && 542 __builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) { 543 __asm__( 544 " .set push \n" 545 " .set mips32 \n" 546 " clz %0, %1 \n" 547 " .set pop \n" 548 : "=r" (num) 549 : "r" (word)); 550 551 return 31 - num; 552 } 553 554 if (BITS_PER_LONG == 64 && 555 __builtin_constant_p(cpu_has_mips64) && cpu_has_mips64) { 556 __asm__( 557 " .set push \n" 558 " .set mips64 \n" 559 " dclz %0, %1 \n" 560 " .set pop \n" 561 : "=r" (num) 562 : "r" (word)); 563 564 return 63 - num; 565 } 566 567 num = BITS_PER_LONG - 1; 568 569 #if BITS_PER_LONG == 64 570 if (!(word & (~0ul << 32))) { 571 num -= 32; 572 word <<= 32; 573 } 574 #endif 575 if (!(word & (~0ul << (BITS_PER_LONG-16)))) { 576 num -= 16; 577 word <<= 16; 578 } 579 if (!(word & (~0ul << (BITS_PER_LONG-8)))) { 580 num -= 8; 581 word <<= 8; 582 } 583 if (!(word & (~0ul << (BITS_PER_LONG-4)))) { 584 num -= 4; 585 word <<= 4; 586 } 587 if (!(word & (~0ul << (BITS_PER_LONG-2)))) { 588 num -= 2; 589 word <<= 2; 590 } 591 if (!(word & (~0ul << (BITS_PER_LONG-1)))) 592 num -= 1; 593 return num; 594 } 595 596 /* 597 * __ffs - find first bit in word. 598 * @word: The word to search 599 * 600 * Returns 0..SZLONG-1 601 * Undefined if no bit exists, so code should check against 0 first. 602 */ 603 static inline unsigned long __ffs(unsigned long word) 604 { 605 return __fls(word & -word); 606 } 607 608 /* 609 * fls - find last bit set. 610 * @word: The word to search 611 * 612 * This is defined the same way as ffs. 613 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. 614 */ 615 static inline int fls(int x) 616 { 617 int r; 618 619 if (__builtin_constant_p(cpu_has_clo_clz) && cpu_has_clo_clz) { 620 __asm__("clz %0, %1" : "=r" (x) : "r" (x)); 621 622 return 32 - x; 623 } 624 625 r = 32; 626 if (!x) 627 return 0; 628 if (!(x & 0xffff0000u)) { 629 x <<= 16; 630 r -= 16; 631 } 632 if (!(x & 0xff000000u)) { 633 x <<= 8; 634 r -= 8; 635 } 636 if (!(x & 0xf0000000u)) { 637 x <<= 4; 638 r -= 4; 639 } 640 if (!(x & 0xc0000000u)) { 641 x <<= 2; 642 r -= 2; 643 } 644 if (!(x & 0x80000000u)) { 645 x <<= 1; 646 r -= 1; 647 } 648 return r; 649 } 650 651 #include <asm-generic/bitops/fls64.h> 652 653 /* 654 * ffs - find first bit set. 655 * @word: The word to search 656 * 657 * This is defined the same way as 658 * the libc and compiler builtin ffs routines, therefore 659 * differs in spirit from the above ffz (man ffs). 660 */ 661 static inline int ffs(int word) 662 { 663 if (!word) 664 return 0; 665 666 return fls(word & -word); 667 } 668 669 #include <asm-generic/bitops/ffz.h> 670 #include <asm-generic/bitops/find.h> 671 672 #ifdef __KERNEL__ 673 674 #include <asm-generic/bitops/sched.h> 675 676 #include <asm/arch_hweight.h> 677 #include <asm-generic/bitops/const_hweight.h> 678 679 #include <asm-generic/bitops/ext2-non-atomic.h> 680 #include <asm-generic/bitops/ext2-atomic.h> 681 #include <asm-generic/bitops/minix.h> 682 683 #endif /* __KERNEL__ */ 684 685 #endif /* _ASM_BITOPS_H */ 686