xref: /openbmc/linux/arch/mips/cavium-octeon/smp.c (revision 3932b9ca)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004-2008, 2009, 2010 Cavium Networks
7  */
8 #include <linux/cpu.h>
9 #include <linux/delay.h>
10 #include <linux/smp.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/sched.h>
14 #include <linux/module.h>
15 
16 #include <asm/mmu_context.h>
17 #include <asm/time.h>
18 #include <asm/setup.h>
19 
20 #include <asm/octeon/octeon.h>
21 
22 #include "octeon_boot.h"
23 
24 volatile unsigned long octeon_processor_boot = 0xff;
25 volatile unsigned long octeon_processor_sp;
26 volatile unsigned long octeon_processor_gp;
27 
28 #ifdef CONFIG_HOTPLUG_CPU
29 uint64_t octeon_bootloader_entry_addr;
30 EXPORT_SYMBOL(octeon_bootloader_entry_addr);
31 #endif
32 
33 static irqreturn_t mailbox_interrupt(int irq, void *dev_id)
34 {
35 	const int coreid = cvmx_get_core_num();
36 	uint64_t action;
37 
38 	/* Load the mailbox register to figure out what we're supposed to do */
39 	action = cvmx_read_csr(CVMX_CIU_MBOX_CLRX(coreid)) & 0xffff;
40 
41 	/* Clear the mailbox to clear the interrupt */
42 	cvmx_write_csr(CVMX_CIU_MBOX_CLRX(coreid), action);
43 
44 	if (action & SMP_CALL_FUNCTION)
45 		smp_call_function_interrupt();
46 	if (action & SMP_RESCHEDULE_YOURSELF)
47 		scheduler_ipi();
48 
49 	/* Check if we've been told to flush the icache */
50 	if (action & SMP_ICACHE_FLUSH)
51 		asm volatile ("synci 0($0)\n");
52 	return IRQ_HANDLED;
53 }
54 
55 /**
56  * Cause the function described by call_data to be executed on the passed
57  * cpu.	 When the function has finished, increment the finished field of
58  * call_data.
59  */
60 void octeon_send_ipi_single(int cpu, unsigned int action)
61 {
62 	int coreid = cpu_logical_map(cpu);
63 	/*
64 	pr_info("SMP: Mailbox send cpu=%d, coreid=%d, action=%u\n", cpu,
65 	       coreid, action);
66 	*/
67 	cvmx_write_csr(CVMX_CIU_MBOX_SETX(coreid), action);
68 }
69 
70 static inline void octeon_send_ipi_mask(const struct cpumask *mask,
71 					unsigned int action)
72 {
73 	unsigned int i;
74 
75 	for_each_cpu_mask(i, *mask)
76 		octeon_send_ipi_single(i, action);
77 }
78 
79 /**
80  * Detect available CPUs, populate cpu_possible_mask
81  */
82 static void octeon_smp_hotplug_setup(void)
83 {
84 #ifdef CONFIG_HOTPLUG_CPU
85 	struct linux_app_boot_info *labi;
86 
87 	if (!setup_max_cpus)
88 		return;
89 
90 	labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
91 	if (labi->labi_signature != LABI_SIGNATURE) {
92 		pr_info("The bootloader on this board does not support HOTPLUG_CPU.");
93 		return;
94 	}
95 
96 	octeon_bootloader_entry_addr = labi->InitTLBStart_addr;
97 #endif
98 }
99 
100 static void octeon_smp_setup(void)
101 {
102 	const int coreid = cvmx_get_core_num();
103 	int cpus;
104 	int id;
105 	int core_mask = octeon_get_boot_coremask();
106 #ifdef CONFIG_HOTPLUG_CPU
107 	unsigned int num_cores = cvmx_octeon_num_cores();
108 #endif
109 
110 	/* The present CPUs are initially just the boot cpu (CPU 0). */
111 	for (id = 0; id < NR_CPUS; id++) {
112 		set_cpu_possible(id, id == 0);
113 		set_cpu_present(id, id == 0);
114 	}
115 
116 	__cpu_number_map[coreid] = 0;
117 	__cpu_logical_map[0] = coreid;
118 
119 	/* The present CPUs get the lowest CPU numbers. */
120 	cpus = 1;
121 	for (id = 0; id < NR_CPUS; id++) {
122 		if ((id != coreid) && (core_mask & (1 << id))) {
123 			set_cpu_possible(cpus, true);
124 			set_cpu_present(cpus, true);
125 			__cpu_number_map[id] = cpus;
126 			__cpu_logical_map[cpus] = id;
127 			cpus++;
128 		}
129 	}
130 
131 #ifdef CONFIG_HOTPLUG_CPU
132 	/*
133 	 * The possible CPUs are all those present on the chip.	 We
134 	 * will assign CPU numbers for possible cores as well.	Cores
135 	 * are always consecutively numberd from 0.
136 	 */
137 	for (id = 0; setup_max_cpus && octeon_bootloader_entry_addr &&
138 		     id < num_cores && id < NR_CPUS; id++) {
139 		if (!(core_mask & (1 << id))) {
140 			set_cpu_possible(cpus, true);
141 			__cpu_number_map[id] = cpus;
142 			__cpu_logical_map[cpus] = id;
143 			cpus++;
144 		}
145 	}
146 #endif
147 
148 	octeon_smp_hotplug_setup();
149 }
150 
151 /**
152  * Firmware CPU startup hook
153  *
154  */
155 static void octeon_boot_secondary(int cpu, struct task_struct *idle)
156 {
157 	int count;
158 
159 	pr_info("SMP: Booting CPU%02d (CoreId %2d)...\n", cpu,
160 		cpu_logical_map(cpu));
161 
162 	octeon_processor_sp = __KSTK_TOS(idle);
163 	octeon_processor_gp = (unsigned long)(task_thread_info(idle));
164 	octeon_processor_boot = cpu_logical_map(cpu);
165 	mb();
166 
167 	count = 10000;
168 	while (octeon_processor_sp && count) {
169 		/* Waiting for processor to get the SP and GP */
170 		udelay(1);
171 		count--;
172 	}
173 	if (count == 0)
174 		pr_err("Secondary boot timeout\n");
175 }
176 
177 /**
178  * After we've done initial boot, this function is called to allow the
179  * board code to clean up state, if needed
180  */
181 static void octeon_init_secondary(void)
182 {
183 	unsigned int sr;
184 
185 	sr = set_c0_status(ST0_BEV);
186 	write_c0_ebase((u32)ebase);
187 	write_c0_status(sr);
188 
189 	octeon_check_cpu_bist();
190 	octeon_init_cvmcount();
191 
192 	octeon_irq_setup_secondary();
193 }
194 
195 /**
196  * Callout to firmware before smp_init
197  *
198  */
199 void octeon_prepare_cpus(unsigned int max_cpus)
200 {
201 	/*
202 	 * Only the low order mailbox bits are used for IPIs, leave
203 	 * the other bits alone.
204 	 */
205 	cvmx_write_csr(CVMX_CIU_MBOX_CLRX(cvmx_get_core_num()), 0xffff);
206 	if (request_irq(OCTEON_IRQ_MBOX0, mailbox_interrupt,
207 			IRQF_PERCPU | IRQF_NO_THREAD, "SMP-IPI",
208 			mailbox_interrupt)) {
209 		panic("Cannot request_irq(OCTEON_IRQ_MBOX0)");
210 	}
211 }
212 
213 /**
214  * Last chance for the board code to finish SMP initialization before
215  * the CPU is "online".
216  */
217 static void octeon_smp_finish(void)
218 {
219 	octeon_user_io_init();
220 
221 	/* to generate the first CPU timer interrupt */
222 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
223 	local_irq_enable();
224 }
225 
226 #ifdef CONFIG_HOTPLUG_CPU
227 
228 /* State of each CPU. */
229 DEFINE_PER_CPU(int, cpu_state);
230 
231 static int octeon_cpu_disable(void)
232 {
233 	unsigned int cpu = smp_processor_id();
234 
235 	if (cpu == 0)
236 		return -EBUSY;
237 
238 	if (!octeon_bootloader_entry_addr)
239 		return -ENOTSUPP;
240 
241 	set_cpu_online(cpu, false);
242 	cpu_clear(cpu, cpu_callin_map);
243 	local_irq_disable();
244 	octeon_fixup_irqs();
245 	local_irq_enable();
246 
247 	flush_cache_all();
248 	local_flush_tlb_all();
249 
250 	return 0;
251 }
252 
253 static void octeon_cpu_die(unsigned int cpu)
254 {
255 	int coreid = cpu_logical_map(cpu);
256 	uint32_t mask, new_mask;
257 	const struct cvmx_bootmem_named_block_desc *block_desc;
258 
259 	while (per_cpu(cpu_state, cpu) != CPU_DEAD)
260 		cpu_relax();
261 
262 	/*
263 	 * This is a bit complicated strategics of getting/settig available
264 	 * cores mask, copied from bootloader
265 	 */
266 
267 	mask = 1 << coreid;
268 	/* LINUX_APP_BOOT_BLOCK is initialized in bootoct binary */
269 	block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
270 
271 	if (!block_desc) {
272 		struct linux_app_boot_info *labi;
273 
274 		labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
275 
276 		labi->avail_coremask |= mask;
277 		new_mask = labi->avail_coremask;
278 	} else {		       /* alternative, already initialized */
279 		uint32_t *p = (uint32_t *)PHYS_TO_XKSEG_CACHED(block_desc->base_addr +
280 							       AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
281 		*p |= mask;
282 		new_mask = *p;
283 	}
284 
285 	pr_info("Reset core %d. Available Coremask = 0x%x \n", coreid, new_mask);
286 	mb();
287 	cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
288 	cvmx_write_csr(CVMX_CIU_PP_RST, 0);
289 }
290 
291 void play_dead(void)
292 {
293 	int cpu = cpu_number_map(cvmx_get_core_num());
294 
295 	idle_task_exit();
296 	octeon_processor_boot = 0xff;
297 	per_cpu(cpu_state, cpu) = CPU_DEAD;
298 
299 	mb();
300 
301 	while (1)	/* core will be reset here */
302 		;
303 }
304 
305 extern void kernel_entry(unsigned long arg1, ...);
306 
307 static void start_after_reset(void)
308 {
309 	kernel_entry(0, 0, 0);	/* set a2 = 0 for secondary core */
310 }
311 
312 static int octeon_update_boot_vector(unsigned int cpu)
313 {
314 
315 	int coreid = cpu_logical_map(cpu);
316 	uint32_t avail_coremask;
317 	const struct cvmx_bootmem_named_block_desc *block_desc;
318 	struct boot_init_vector *boot_vect =
319 		(struct boot_init_vector *)PHYS_TO_XKSEG_CACHED(BOOTLOADER_BOOT_VECTOR);
320 
321 	block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME);
322 
323 	if (!block_desc) {
324 		struct linux_app_boot_info *labi;
325 
326 		labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER);
327 
328 		avail_coremask = labi->avail_coremask;
329 		labi->avail_coremask &= ~(1 << coreid);
330 	} else {		       /* alternative, already initialized */
331 		avail_coremask = *(uint32_t *)PHYS_TO_XKSEG_CACHED(
332 			block_desc->base_addr + AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK);
333 	}
334 
335 	if (!(avail_coremask & (1 << coreid))) {
336 		/* core not available, assume, that catched by simple-executive */
337 		cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid);
338 		cvmx_write_csr(CVMX_CIU_PP_RST, 0);
339 	}
340 
341 	boot_vect[coreid].app_start_func_addr =
342 		(uint32_t) (unsigned long) start_after_reset;
343 	boot_vect[coreid].code_addr = octeon_bootloader_entry_addr;
344 
345 	mb();
346 
347 	cvmx_write_csr(CVMX_CIU_NMI, (1 << coreid) & avail_coremask);
348 
349 	return 0;
350 }
351 
352 static int octeon_cpu_callback(struct notifier_block *nfb,
353 	unsigned long action, void *hcpu)
354 {
355 	unsigned int cpu = (unsigned long)hcpu;
356 
357 	switch (action) {
358 	case CPU_UP_PREPARE:
359 		octeon_update_boot_vector(cpu);
360 		break;
361 	case CPU_ONLINE:
362 		pr_info("Cpu %d online\n", cpu);
363 		break;
364 	case CPU_DEAD:
365 		break;
366 	}
367 
368 	return NOTIFY_OK;
369 }
370 
371 static int register_cavium_notifier(void)
372 {
373 	hotcpu_notifier(octeon_cpu_callback, 0);
374 	return 0;
375 }
376 late_initcall(register_cavium_notifier);
377 
378 #endif	/* CONFIG_HOTPLUG_CPU */
379 
380 struct plat_smp_ops octeon_smp_ops = {
381 	.send_ipi_single	= octeon_send_ipi_single,
382 	.send_ipi_mask		= octeon_send_ipi_mask,
383 	.init_secondary		= octeon_init_secondary,
384 	.smp_finish		= octeon_smp_finish,
385 	.boot_secondary		= octeon_boot_secondary,
386 	.smp_setup		= octeon_smp_setup,
387 	.prepare_cpus		= octeon_prepare_cpus,
388 #ifdef CONFIG_HOTPLUG_CPU
389 	.cpu_disable		= octeon_cpu_disable,
390 	.cpu_die		= octeon_cpu_die,
391 #endif
392 };
393